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Using biennial data from the Health and Retirement Study, we estimate
age-dependent health dynamics and survival probabilities at annual fre-
quency conditional on race, sex, and health. The health gradient in life
expectancy is steep and persists after controlling for socioeconomic status.
Moreover, even conditional on health and socioeconomic status, the racial
gap in life expectancy remains large. Simulations show that this gap affects
savings rates but does not play a major role in explaining the racial wealth
gap. However, differences in mortality imply that black individuals on aver-
age can expect to receive 15% less in Social Security benefits in present value
terms.
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1 Introduction

Health shocks and uncertain survival are major sources of risk over the life cycle. A
negative health shock can result in large medical expenditures (De Nardi, French, and
Jones 2010; Kopecky and Koreshkova 2014), which affects the incentives to accumulate
assets and could also affect the earnings potential (French 2005; Coile, Milligan, and
Wise 2016). The survival probability directly affects the effective discount factor, a
mechanism present in any life cycle model with uncertain life span. According to
Finkelstein, Luttmer, and Notowidigdo (2013), health directly influences the marginal
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utility from consumption. In order to quantify the risk individuals face, model their
choices in the presence of such risk, or evaluate the economic implications of health
inequality, a realistic health and survival process is therefore crucial.

In this paper, we make three contributions: first, we provide improved estimates of
health and survival dynamics at an annual frequency which are better suited for life
cycle models than existing biennial estimates obtained from standard data sets, as such
models are usually calibrated to one-year periods. Second, we use our estimates to
quantify heterogeneity in life expectancy along the health gradient conditional on race,
sex and socioeconomic status. Third, using a life cycle model, we examine the economic
implications of these differences, in particular for savings and wealth accumulation as
well as for Social Security wealth, where in addition to health we focus on differences by
race as these are the most pronounced.

Our first contribution is methodological: existing papers estimating stochastic pro-
cesses of health and survival dynamics are usually based on the Health and Retirement
Study (HRS), a biennial panel representative for the elderly in the US, and their mortality
estimates inherit this two-year frequency (Pijoan-Mas and Rios-Rull (2014), Amengual,
Bueren, and Crego (n.d.), Hosseini, Kopecky, and Zhao (2021b)). Our method instead
directly estimates annual transition dynamics from the HRS and is moreover able to
deal with varying transition lengths (only about 84% of observations in the HRS are best
described as spanning two years) and periods of nonresponse. Additionally, in contrast
to the above studies, we also report results for the black subsample in the HRS.!

Next, we use these estimates to compute life expectancy by health, race, and sex (our
main specification), as well as by socioeconomic status. The estimated longevity health
gradient is steep: for example, a 50-year-old nonblack man has a 80% chance of turning
70 if he is in excellent health, whereas this probability drops by 20 percentage points if
he instead were in poor health. Furthermore, we show that even conditional on health,
differences by race are substantial: a 50-year-old nonblack woman in excellent health
has a 3.5 years higher life expectancy than a black woman of the same age and in the
same health state. This racial gap is the result of two factors: the health distribution
at a given age (which on average is worse within the black group), and the estimated
survival dynamics going forward (which again are worse, i.e., blacks are more likely
to experience a deterioration in health and have higher mortality). We show that only
approximately one tenth of the difference in life expectancy at the age of 50 is due to

1We make the health-to-health (conditional on survival) and survival probabilities for different de-
mographic groups and health classifications available online so they can be directly incorporated
into standard life cycle models with minimal effort. See https://github.com/richardfoltyn/
health-process.
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worse initial health conditions, and nine tenths are due to adverse health dynamics and
higher mortality in the following years. The latter are therefore much more important
than initial health to understand the differences in longevity.

The relationship between socioeconomic status and life expectancy is well established
(see, e.g., Chetty et al. (2016) and the references therein). In a second set of results, we
therefore extend our analysis to incorporate two different measures of socioeconomic sta-
tus: education level and permanent income. Our model predicts large differences across
socioeconomic groups, in line with previous studies. We show that even conditional on
socioeconomic group and health, there is a significant racial gap in life expectancy. For
example, a nonblack woman with high school education and in best health is expected
to live 2.4 more years than a black woman with the same education and health.

This racial gap gives rise to substantial differences in welfare between black and
nonblack individuals due to the additional years of life enjoyed by the latter group (see
Brouillette, Jones, and Klenow (2021) for one quantification). Our third contribution
is to examine the importance for health and survival heterogeneity for additional eco-
nomic outcomes in a standard overlapping-generations model. Already Smith (1995)
conjectured that differences in life expectancy could contribute to lower savings rates
and thus lower wealth accumulation among the black population. We show that while
the differences in life expectancy indeed lead to differences in savings rates and wealth
trajectories over the life cycle, the magnitudes are way too small to explain the observed
wealth gap. In our model, nonblack individuals on average accumulate only 25% more
wealth at the time of retirement compared to an otherwise identical black group, a gap
that is about an order of magnitude smaller than in the data. Consequently, factors other
than differences in discount rates due to differences in mortality are quantitatively more
important.

Another economic measure that is potentially strongly effected by heterogeneity in
life expectancy is the present value of expected Social Security benefits, so-called Social
Security wealth. We find that the racial gap in Social Security wealth that is due to
differences in life expectancy can be substantial, on average around 15% at the age of
50 and approximately 8% at the time of retirement. The welfare implications of such
disparities are large: if a black man with median wealth in excellent health were given
this difference as a one-time lump sum payment at retirement, he would perceive this
transfer as being equivalent to a permanent consumption increase of 6.5% during his
remaining lifetime.

This paper relates to two main strands of literature: first, papers that document het-
erogeneity in life expectancy, for instance across race, education and behavioral health



conditions such as smoking (Meara, Richards, and Cutler 2008), race and geographic
region (Chang et al. 2015), or income and geographic region (Chetty et al. 2016). Com-
pared to these studies, we provide estimates of life expectancy heterogeneity not only
conditional on race (and different measures of socioeconomic status) but also current
health, taking into account future health dynamics as suggested in the seminal work by
Pijoan-Mas and Rios-Rull (2014). In comparison to the latter, we extend their estima-
tion methodology as described above, and also report results for the racial gap in life
expectancy.

The other strand are papers estimating health and survival processes that can be
used in life cycle models that study the effects of health and mortality. The most
common approach is to use self-reported health, which can be thought of as letting the
respondents themselves aggregate the multidimensional information about their health
(that is potentially unobservable to the econometrician) into a single categorical variable.
This measure has been shown to be surprisingly informative, see for instance Idler
and Benyamini (1997) for an early overview, or more recent contributions by DeSalvo
et al. (2006) and Latham and Peek (2013). Many studies using this data further aggregate
the five health categories recorded in the HRS into two coarser groups, good or bad
health (French 2005; De Nardi, French, and Jones 2010; De Nardi, Pashchenko, and
Porapakkarm 2017). We show that using all five values is useful for two reasons: it
trivially captures more of the heterogeneity in the population, and the finer measure is
able to better capture the persistence and duration dependence of bad health.

An alternative method is to let the econometrician aggregate numerous physical and
mental health indicators into a single index. For example, Poterba, Venti, and Wise
(2017) use the first principal component extracted from 27 different health indicators,
while Hosseini, Kopecky, and Zhao (2021b) construct an index based on the number of
deficits accumulated over life. A related approach is taken by Amengual, Bueren, and
Crego (n.d.) who assign individuals probabilities to fall into one of four latent health
groups based on whether they are able to perform activities of daily life or cognitive
tasks. Whereas these methods perform somewhat better in certain scenarios (for example
predicting nursing home entry), they come with added complexity compared to the
tive-state Markov process presented here which makes their inclusion in standard life
cycle models more challenging.

In the next section, we describe the HRS data and our estimation method. Section 3
presents the results for our main specification, while section 4 extends the analysis to
include socioeconomic indicators. In section 5, we quantify the economic importance of

racial inequality in life expectancy. The last section concludes.



2 Estimation

2.1 Data

We use the Health and Retirement Study (HRS), a representative panel of US households
in older ages, to investigate longevity and health dynamics in the later stages of life. The
survey includes questions about self-reported health and records the date of death, if
applicable.

Our analysis is based on the survey years 1992-2014 taken from the HRS data compiled
by RAND, version 2018 (V1) (Health and Retirement Study (2018)).2® The first cohort
included in the survey was between 51 and 61 years old in 1992, and thereafter new
(older and younger) cohorts have been included. Many of the respondents have died
over the sample period, making it an ideal data set for studying survival.

As can be seen from Figure 1, the survey was administered biennially for most cohorts
and time periods. However, in practice, there is a some variation in the time elapsed
between interviews. Each survey round is conducted over a period of time, so the actual
time elapsed between interviews in consecutive waves varies between one and three
years. For respondents missing one or more interviews, the time interval between two
interviews or the time elapsed between the last interview and the date of death is more
than three years. All in all, the time elapsed between two records is approximately
two years for slightly more than 80% of the observations, while one- and three-year
periods make up most of the remainder. Detailed statistics are shown in Table A.3 in the
appendix.

For the remainder of the paper, we report statistics split along the dimensions of race
and sex for black/nonblack as well as male/female subpopulations. The “black” sample
consists of respondents who identify as black or African-American, while “nonblack” is
the complementary group which also includes Hispanics. The HRS sample is not large
enough to disaggregate the nonblack group further, since the (unweighted) sample of

person-year observations is approximately 72.7% white, 15.7% black/ African-American,

2Up until RAND version O (covering waves until 2012), the survey was complemented with death dates
taken directly from the National Death Index (NDI), but this data was later removed from the public
files. Our analysis of death dates in the releases following version O shows that without the NDI
data, death dates are sometimes recorded with considerable lag. Using the RAND 2018 (V1) files but
including only the years up to 2012 produces almost identical results to the ones obtained with the
original version O data that included the NDI death dates. However, for later years we suspect that
not all death dates have been recorded yet, which we believe gives rise to the nonresponse patterns
documented in appendix section A.1. Based on these nonresponse patterns, we decided to only include
waves up to and including the year 2014.

3The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan.
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Figure 1: Longitudinal survey design of the HRS. The y-axis shows respondents” age by cohort
and wave, ignoring spouses who are not age eligible. The legend lists all birth cohorts
included in the HRS (using their official acronyms) as well as their birth years. AHEAD
was initially a separate survey conducted in 1993 and 1995.

9.4% Hispanic, with other ethnicities together contributing the remaining 2.3%.4

The two key variables we use are the date of death and self-reported health. The
latter is simply the respondent’s answer to the question “Would you say your health
is excellent, very good, good, fair, or poor?” The answers are coded on a scale from
one to five, with one being “excellent,” and we follow this convention throughout the
paper. Self-reported health can be interpreted as a one-dimensional variable capturing
high-dimensional information, letting the respondent aggregate this information him-
or herself.

Figure 2 shows the distribution over health states for different demographic groups
and ages. In general, the health distribution for black individuals is slightly worse than
for nonblack individuals. Overall, health is declining in age, but the health distribution
among 50-year-old individuals is not that much better than among 90-year-olds. This
suggests that the aggregation of underlying health measures done by respondents also
takes into account the relative health within their cohort. A 90-year-old respondent

4This partition is also in line with the US life tables, where the Hispanic subpopulation was added as
a separate group only in 2006, while we use earlier data for some comparisons (see Arias (2014) for
technical details of the life table program). Other groups than white and black (and later Hispanics) are
not reported separately by the NVSS.
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Figure 2: Distribution of health states by age. Dark green indicates best (“excellent”) while red
indicates worst (“poor”) health. Observations are grouped into two-year age bins.

who reports “excellent” health might feel worse than he or she did 40 years earlier,
but “excellent” in comparison to what the person perceives could be expected as a

90-year-old. Since all our estimates condition on age, this is taken into account.’

Self-reported health vs. other health measures. Using self-reported health has several
advantages: first, a very similar question is asked in many other surveys, both in the
US (e.g., the Panel Study of Income Dynamics (PSID) and the Medical Expenditure
Panel Survey (MEPS)) and also globally (for instance the Survey of Health, Aging and
Retirement in Europe (SHARE)). Hence, the insights into the dynamics of self-reported
health and life expectancy conditional on this measure can be used for analyses based
on many other data sets.

Second, a number of studies have shown that self-reported health is highly correlated

5 Another interpretation is that the relevant measure is not self-reported health by itself, but self-reported
health by age. In this sense, the variable takes on not five but 5 x (99 — 50 + 1) = 250 distinct values for
the age range of 50-99 considered in our estimation.



with other subjective and objective measures of health and is also a good predictor for
future mortality (see e.g. Idler and Benyamini (1997), DeSalvo et al. (2006), Latham and
Peek (2013) and Pijoan-Mas and Rios-Rull (2014)).

More recent papers propose alternative measures of health which are based on numer-
ous indicators such as having problems performing daily activities of life or suffering
from cognitive impairments. These are then aggregated by the researcher (as opposed
to the respondent) into a single index. For example, Amengual, Bueren, and Crego
(n.d.) combine 12 such indicators, and Hosseini, Kopecky, and Zhao (2021b) construct
a frailty index from 28 underlying deficits. As one would expect, these more granular
measures perform better than self-reported health, e.g., when predicting nursing home
entry. However, the gain from this substantially more complex approach is often small.®
Which approach to use therefore comes down to the research question and computa-
tional considerations if the health and survival dynamics are to be included in a life
cycle model.”-® In the latter case, it is unclear whether a sufficiently simplified variant
of these more elaborate health measures retains the improved predictive properties
documented in these papers. On the other hand, no further simplifications are needed
for self-reported health, since a discrete variable with five values following a Markov

process can directly be added to any model: what you see is what you get.

Estimation sample. We exclude all observations with missing age, race, sex, education
or self-reported health. Because our goal is to estimate probabilities of surviving to
the next period and observing a particular health state, the fundamental input into our
estimation procedure is a transition which consists of a set of observables at date t and
either a health state or death record at some future t + n. For this reason, we drop all
individuals with only a single observation since the individual’s state at the end of

®For example, for a probit model of nursing home entry, Hosseini, Kopecky, and Zhao (2021b) report a
pseudo R? of 0.236 for the model with self-reported health, whereas a model using their frailty index has
a pseudo R? of 0.264 (see their online appendix, Table 67). Amengual, Bueren, and Crego (n.d.) report
an R? of 0.112 for a linear probability model of survival to the next HRS wave based on self-reported
health which increases by about 0.01 when using their health measure (see their Table 4).

"The frailty index in Hosseini, Kopecky, and Zhao (2021b, 2021a) is continuous and consists of three
components: a randomly drawn permanent effect, a transitory shock and an AR(1) term. The latter is
commonly discretized using the Rouwenhorst method with at least five grid points, but no guidance is
given about the other two components. The size of the discrete state space required to represent the
estimated cross-sectional and time-series moments is thus not obvious.

8The four health groups in Amengual, Bueren, and Crego (n.d.) are latent, so one either has to add
a three-dimensional simplex to the set of state variables to represent the probability distribution of
belonging to any of these groups, or assign each individual the modal group.



All Nonblack Black

Male Female Male Female

Sample size

N. of individuals 34,179 12,737 15455 2,421 3,566
N. of observations 219,530 81,248 103,879 13,247 21,156
Avg. observations/indiv. 6.4 6.4 6.7 5.5 5.9
Age distribution
[50, 60) 344%  36.0% 32.3%  40.7% 36.8%
[60, 70) 30.6% 31.8% 29.3%  33.0% 31.2%
[70, 80) 21.7%  21.4% 22.4%  18.4% 19.9%
[80, 90) 11.3% 9.5% 13.3% 7.0% 10.0%
90+ 2.0% 1.3% 2.8% 1.0% 2.1%
Mean 66.1 65.3 67.0 64.0 65.4
Self-reported health (all ages)
(1) Excellent 125%  13.6% 12.7% 8.8% 5.1%
(2) Very good 30.0%  30.9% 31.0% 22.1% 20.3%
(3) Good 30.6%  30.9% 29.9%  31.6% 34.0%
(4) Fair 18.6% 17.1% 18.1%  25.9% 28.1%
(5) Poor 8.4% 7.6% 83% 11.6% 12.5%

Table 1: Descriptive statistics for HRS estimation sample. The distribution of self-reported health
is reported for samples pooled across all age groups. Mean age and population shares
are weighted using HRS respondent-level weights.

the transition is not known. We only consider individuals aged 50 or older,’ and we
restrict the sample to a maximum age of 99 at transition start, even though individuals
can be older when we observe them at the end of a transition. We estimate the health
and survival process separately for the four subsamples of males/females and the
nonblack/black, since it is well known that the life expectancies for these groups are very
different. Table 1 shows the final number of individuals and person-year observations by
subgroup included in the sample. Unsurprisingly, the black subsample is substantially
smaller, which is reflected in the confidence intervals reported for estimates for the black
subpopulation.

2.2 Estimation of transition probabilities

Our goal is to estimate a first-order Markov process for annual survival probabilities and
health-to-health transitions conditional on survival. We use Pijoan-Mas and Rios-Rull
(2014) as a starting point, who estimate health and survival outcomes at a fixed two-year
horizon using a multinomial logit model. We extend their analysis to account for some

9Each incoming HRS cohort is aged 51-56, but the survey contains younger individuals who are spouses
of age-eligible respondents.



shortcomings of the HRS data:

1. The majority of life cycle models in macroeconomics and household finance where
health and survival are of interest are calibrated to annual frequencies, but HRS
waves are biennial. Due to variation in interview dates, we effectively observe
transitions over one, two, three or more years, with about 80% of transitions being

best described as two-year transitions.

2. Additionally, because our estimator keeps track of the distribution over latent
health states for every year in which an individual is not observed, we can easily
handle transitions which span an arbitrary number of periods of nonresponse. As
a consequence, we can use recorded deaths that occur years after an individual

stopped responding in the HRS as part of our estimation sample.

This is in contrast to a simpler approach which ignores variation in transition lengths
in the HRS to estimate transition probabilities over a two-year horizon, and discards
any transitions that include periods of nonresponse. In appendix section C, we compare
the results from both approaches and find that when evaluated at two-year horizons,
both yield similar results. Nevertheless, our estimates are more useful to researchers
performing analyses at annual frequencies. '

While the HRS itself is organized into individual-year observations, for the purpose
of estimating transition probabilities, we reinterpret the sample such that one transition
constitutes one observation. Let s; be a binary indicator for whether a person is alive at
date ¢,

1 ifaliveatt
st = )
0 else
We assume that the one-period-ahead probability of survival is given by the binary-
outcome logit model

1
1 + e—8(hexi|y)

()

piv1 =Pr(sp =1 h,x) =

where g(e) is a function of current health /; and a vector x; which contains any other

10As a by-product of their study of the savings behavior of the elderly, De Nardi, French, and Jones (2010)
also estimate two-year transition and survival probabilities from the HRS and then use an approximation
to recover annual transition probabilities. However, their method does not take into account varying
transition lengths and uses a health classification with only two health states. While this approximation
may be sufficient in some cases, it exhibits a downward bias in survival rates and has numerically
undesirable properties if all five health states are used (see section D in the appendix for a detailed
discussion).

10



variable of interest, in particular age, sex and race. Survival probabilities are governed
by the parameter vector o which is to be estimated. Similarly, conditional on survival,
the probability that health state j is realized next period is given by the multinomial logit

formula
efi(hxi|Bj)

Yy eft(exilBe) )

h,j _ .
pH{”S =Pr (htJrl =] ’ St41 = 1/hf/xt) =

where each outcome-j-specific function f; is parametrized by the vector ;. We nor-
malize the parameter vector for the first outcome (“excellent” health) to f; = 0 as the
model is otherwise not identified.

This general setup makes it possible to assume different functional forms for the
health-to-health and survival transitions. For example, one could impose that f;(e) is
linear in age whereas g() is quadratic.!> While we experimented with richer models,
adding higher-order terms in age turned out not to affect our results much. In our main
specification, we therefore impose the same functional form for health-to-health and
survival transitions, which are both assumed to be linear in age:'®

8 (hit, mi, bi, @i | ¥) = Youmb + Y hmp * Qi 4)
fi (hig, mi, bi, aig | v) = Bojump + Bijump @i j=2,...,5 (5)

where h; = 1,...,5 is individuals i’s health state at time ¢, m; and b; are indicator
variables for male and black, and a;; is an individual’s age at the start of a transition. The
vector of covariates is therefore x;; = (m;, b;, a;;). Since we estimate all transitions for the
male/female and black/nonblack groups separately, the estimated coefficients depend
on the demographic group, the initial health state /1;; as well as the outcome (health state
conditional on survival, or death).

We discuss the technical details of deriving the likelihood function and some pitfalls
that arise due to variable transition lengths in the appendix section B. However, the
intuition how our estimator handles variable transition lengths is straightforward: For

H'We assume that all parameters in 8 j are specific to outcome j and there are no “common” parameters
shared across all outcomes. This is due to the fact that we have no outcome-specific regressors and thus
any common parameters would cancel out in (3), leaving these parameters unidentified.

12This allows for more parsimonious specifications, since adding one additional term to the multinomial
logit in (3) adds 2 x 2 x 5 x 4 = 80 parameters to the model, whereas only 2 x 2 x 5 = 20 more
parameters are needed for the survival process (separate parameters have to be estimated for each
race/sex combination!).

13When fj(e) and g(e) are identical, the MLE simplifies to a multinomial logit on a pooled set of outcomes
which includes both health conditional on survival, and death. However, unlike the multinomial logit
estimators implemented in standard statistical software, our estimator still allows for variable transition
lengths and periods of nonresponse.

11



any conjectured parameter vector, we obtain the conditional health-to-health and sur-
vival transition probabilities from (2) and (3). Given some initial health state h;, we
can then compute the the distribution of the latent 4, over the states {1,2,...,5} as
well as the probability of being alive for any year t + n in which the individual is not
observed. This allows us to bridge periods of nonresponse. In the appendix, we show
that the log-likelihood function (and its gradient) can be computed in a recursive fashion,
making the technical implementation relatively tractable.

In the next section, we present estimation results and use these to compute life
expectancies for each demographic group. Our estimates are reported with bootstrapped
confidence intervals which are based on the Rao-Wu rescaling bootstrap (Rao and Wu
1988) that takes into account the stratified cluster sampling of the HRS survey design.
We provide details in section B.3 in the appendix.

In the appendix section C, we contrast the main specification with one that includes
a quadratic term in age. The resulting transition probabilities are very similar except
for some health and age combinations for the black subpopulation, which is due to the

relatively smaller sample size.

3 Estimation results

In this section, we present several types of model estimates: first, we report the model-
predicted health and survival transition probabilities and contrast them with the raw
data. Next, we compute the implied life expectancy by demographic group and quantify
its health gradient. Last, we examine the persistence of health dynamics.

3.1 Health transitions and survival probabilities

In Figure 3, we plot the predicted health and survival probabilities for nonblack men.
The figure shows the distribution over health states and the probability of being dead
conditional on an initial health state and age over a forecast horizon of 30 years. As can
be seen, the survival probability differs substantially depending on the initial health
state: for a man aged 70 in excellent health, the predicted probability of surviving an
additional 10 years is around 75%, but if he is in poor health, the probability is below
40%. The corresponding graphs for nonblack women, black men, and black women can
be found in Figure A.10 in the appendix.

These distributions are obtained by repeatedly applying annual age-specific health-
to-health transition and survival probabilities which are visualized in Figure A.11 and

12
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Figure 3: Predicted distribution over health states and death conditional on initial health for a
50-year-old (upper row) and a 70-year-old (lower row). The colors indicate probability
per health state (dark green being the best health state, red the worst). The white area
represents the probability of being dead.

Figure A.12 in the appendix. As the figures show, health is persistent: for 70-year-olds
in poor health, the probability of remaining in the same poor health state next year is
around 75%. The probability of improving to anything better than the second-worst
health state is low, below 5%.

The same pattern holds true for all health states: to remain in the current health state
is the most likely outcome, and to improve or deteriorate one step is the second most
likely outcome. For 50-year-olds in the best health state, the probability of remaining in
excellent health is around 70%, but transitioning to the second-best state becomes more
likely as they age.

The survival probabilities are unsurprisingly decreasing in age, but there is also a clear
health gradient. The probability of surviving one additional year for a 70-year-old in the
best health state (excellent) is almost 100% while for an otherwise identical individual
in the worst health state it is closer to 90%. As is well known, the survival probability

conditional on age is higher for women than for men.
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3.1.1 Comparing model predictions and data

To compare model predictions to raw data moments, we compute the two-year transi-
tion probabilities implied by our annual model. We then plot these together with the
fraction of individuals with a particular outcome in the subsample restricted to two-year
transitions, which is the large majority of observations (84% of the full sample). Figure 4
and Figure 5 show the results for the nonblack and black subpopulations, respectively.
Despite the rigid functional form assumption imposed by multinomial logit with linear
functions (4) and (5), the estimated probabilities and the data are remarkably close for
the nonblack groups. On the other hand, the data for the black population are more
noisy due to the smaller number of observations, with unsurprising consequences for
model fit and confidence intervals.

To assess how well our model predicts long-run outcomes, we compare actual survival
rates as observed in the HRS with model predictions over a time horizon of up to 22 years.
Figure 6 plots the model-predicted survival probabilities for all individuals observed
in the survey in 1994 against the fraction actually surviving until 2014.1 Each dot
represents a two-year age bin, and we discard age bins with less than 20 observations.
As can be seen, the estimated model captures the long-term survival probabilities well.
In section E.3 in the appendix, we show analogous graphs for survival from each of
the first ten survey waves until the year 2014, the last year in our sample. The overall
message is that the model does well in predicting survival at both shorter and longer

horizons, with a somewhat larger dispersion for the black subpopulation.

3.2 Life expectancy conditional on health

To calculate the life expectancy conditional on health, we need to take into account all
future health-to-health transition probabilities. We follow Pijoan-Mas and Rios-Rull
(2014) and compute life expectancy at age a conditional on initial health / as

amax H 1
ean =3 ) @ (1 - Pf7+1|k) Pea| T35
a=a k=1

14We show survival from 1994 (wave 2) onward instead of 1992 (wave 1) since the former includes both the
HRS and AHEAD cohorts.
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where

H
_ h,j s
Hja+1 = kE Patiks = Patijk  Hka
1

1 if j is initial health state
i 0 otherwise
The transition probabilities are those defined in (2) and (3), and p; , is the probability
of being in health state j at age 2. The addition of the half year is to correct for the fact
that people do not die exactly on their birthday, but deaths are instead approximately
uniformly spread out over the year.

Figure 7 plots the resulting life expectancies conditional on the initial health state at
the age of 50 and 70. As can be seen, the health gradient is substantial: the difference in
expected life length between a 50-year-old nonblack man in the best and in the worst
health state is 6.1 years. The figure also shows that the life expectancy is lower for the

17



Age 50

= : L1
i | i I i
o B e B

o
o

Life expectancy
(e}
o

75 1
70 A
Age 70
> =
8 85 1 i = £ I I
8 = I -
(@] = I T
L 80
i
()
& 751
S|
70 - . . . .
male/nonblack female/nonblack male/black female/black

Figure 7: Life expectancy by race, sex and health state for at age 50 and 70. Error bars indicate
bootstrapped 95% confidence intervals.

black subpopulation, even conditional on health. A 50-year-old black man in excellent
health can expect to live another 26.2 years, while a nonblack man in the same excellent
health can expect to live 3.4 years on top. Moreover, the health gradient is steeper for
the nonblack population, both for males and (albeit less pronounced) for females, hence
the the difference between the black and nonblack subpopulation increases for healthier
individuals.

Table 2 shows the life expectancies by race, sex, and health and also the differences
along the race and sex dimensions.!> The “Average” row is calculated using the ob-
served age-specific health distribution for each subgroup. The average life expectancy
for 50-year-old nonblack men is 78.4 years, while it is only 74.9 years for black men.
The difference of 3.5 years is the result of two factors. First, black men have a worse
distribution over self-reported health at the age of 50 (see Figure 2). Second, conditional
on health, their health dynamics and survival probabilities are worse from this age and
onward. To disentangle these two effects we make the following experiment: we take
the health and survival process of black men but use the initial health distribution of
nonblack men. The life expectancy for this hypothetical group of 50-year-olds rises from
74.9 to 75.3 years. Hence, approximately 10% of the difference in life expectancies of
black vs. nonblack 50-year-old men (0.4 of out 4 years) is due to worse initial health, and

15Tn the appendix section E.4, Figure A.17 shows graphs of life expectancies for the four demographic
subgroups and all health states for all ages.
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Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black

Age 50
Average 78.4 82.4 74.9 78.5 3.5 3.8 —4.0 —3.6
[78.0,78.8] [820,827] [741,759] [77.7,794] [24,45]  [3.0,47]  [-43,-36] [-49,-24]
(1) Excellent ~ 79.5 83.3 76.1 79.8 3.4 3.5 -3.8 -3.7
[79.2,79.8] [83.0,835] [752,77.0] [788,807]  [24,43]  [2545]  [-41,-35] [-51,-23]
(3) Good 78.3 82.3 75.3 79.0 3.0 3.3 —4.0 3.7
[780,78.7] [82.0,82.6] [745,762] [782,799]  [2.0,40]  [24,41]  [-44,-36] [-50,-25]
(5) Poor 73.4 78.4 71.8 75.4 1.7 3.0 -5.0 -3.7
[72.7,744] [77.7,790] [705,732] [744,767] [-0.0,34] [1542] [-60,-37] [-53,-2.0]
Age 70
Average 83.2 85.6 81.5 84.2 1.7 14 —24 —2.7
[83.0,834] [854,859] [81.0,81.9] [83.6,849] [12,23]  [07,21]  [-26,-22] [-38 —19]
(1) Excellent ~ 84.9 87.1 82.8 85.5 2.2 1.6 —-22 -2.8
[84.7,852] [87.0,87.4] [82.0,83.6] [849,865] [14,29]  [07,23]  [-25-20] [-43,-16]
(3) Good 83.4 85.8 81.9 84.8 1.5 1.1 —24 —-2.9
[83.2,83.6] [856,860] [81.3,824] [842,855] [09,21]  [03,17]  [-27,-22] [-40,-20]
(5) Poor 78.6 81.5 78.8 81.5 —0.2 0.0 -3.0 —-2.7
[784,78.8] [813,81.8] [78.3,79.3] [80.9,823] [-08,03] [-0.7,08] [-33,-26] [-37 —18]

Table 2: Life expectancy by race, sex and initial health. Average life expectancy is computed
as the weighted mean over health states at ages 50-51 (top) or 70-71 (bottom). Right
columns show differences in race (holding sex fixed) and sex (holding race fixed).
Brackets indicate bootstrapped 95% confidence intervals.

the remainder results from worse health trajectories after that age. Table 3 shows the
full set of combinations of health and survival dynamics and initial health distributions.
These estimates suggest that the health and survival dynamics after the age of 50 (or 70)
have a much larger effect on the average life expectancy than the health distribution at

that age.

3.3 Comparing to life tables

The HRS data we use is from the period 1992 to 2014. With a substantially longer panel
dimension, we could have computed cohort-specific health and survival probabilities
by age. However, the sample is not large enough to permit this. Instead, the survival
probabilities we calculate should be viewed as period life expectancies for the sample
period as a whole and correspond to a weighted average of what is reported in the
period life tables by the National Vital Statistics System (NVSS) during those years.!°

16There are two types of life tables: period (or current) life tables and cohort (or generation) life tables. The
(more common) period life table presents what would happen to a hypothetical cohort if it experienced
the mortality conditions of a particular period in time throughout its entire life. The cohort life table, on
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Nonblack Black

Male Female Male Female

Age 50

Initial health distribution

Nonblack 784 82.4 75.3 79.0
Black 77.8 81.9 749 78.5

Age 70

Initial health distribution

Nonblack  83.2 85.6 81.8 84.5
Black 82.7 85.1 81.5 84.2

Table 3: Life expectancies for actual and counterfactual health distributions. Each row reports
average life expectancy using the indicated nonblack or black initial health distribution
(of the same sex).

Our model gives an average life expectancy of 78.4 years for 50-year-old nonblack
men and 82.4 for nonblack women. This is well in line with what is reported by the
NVSS during this period.!” For white men the NVSS life expectancy at the age of 50
is between 77.0 and 79.9 during the sample period, while for white women it ranges
from 81.7 to 83.4. For black men, our model predicts 74.9 years, while NVSS reports
between 72.8 and 77.2 for the period. For black women, our model predicts 78.5, while
the NVSS reports between 78.3 and 81.5. Thus, in general the model predictions are well
within what is reported by NVSS, even though the prediction for life expectancy for
black women is on the lower end.®

The conclusions are similar for life expectancy at 70. Our model predicts a life ex-
pectancy of 83.2 years for nonblack men and 85.6 for nonblack women. The correspond-
ing life expectancies reported by NVSS during the period 1992 to 2014 range between
82.3 and 84.5 for white men, and between 85.3 and 86.6 for white women. For black men
the model predicts 81.5, while the NVSS estimates range from 80.8 and 83.3, and for the
black women the model prediction is 84.2, while the NVSS estimates range from 83.9 to
86.1.

We also document changes in life expectancy over the sample period of 1992-2012. To

this end, we augment the main model with a linear time trend. Again, our estimates

the other hand, presents the mortality experience of a particular birth cohort from the moment of birth
through consecutive ages.

17 All life tables can be found at https://www.cdc.gov/nchs/products/life_tables.htm.

18As pointed out by Pijoan-Mas and Rios-Rull (2014), life expectancies computed from the HRS should
differ slightly from the national average, since the HRS does not include institutionalized individuals.
Note that in our analysis, individuals who moved to nursing homes do not count as institutionalized
and are included in the sample. See appendix section A.2 for details.
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are close to the NVSS figures: for nonblack 50-year-old men, we estimate a period life
expectancy in 1992 of 76.9 years, and an increase to 79.1 in 2010, i.e., by 2.2 years. The
NVSS reports an increase of 2.6 years for white men over the same period. For nonblack
women, we estimate an increase of 1.1, while the NVSS reports 1.4 years.

Our estimated increase over time is slightly lower than the data from NVSS for the
black population (but also with larger standard errors). For black males, we estimate an
increase between 1992 and 2010 of 2.5 years (NVSS: 3.6 years). For black females, we
estimate an increase of 2.0 years (NVSS: 2.6 years). In appendix section E.7, we provide

detailed results for the specification with a time trend.

3.4 Duration dependency

Our estimated process is highly persistent, especially for the worst health state. Once
there, the probability of remaining in the worst health state another period is above
75%.1% The importance of health persistence is stressed by, e.g., Contoyannis, Jones, and
Rice (2004).

It is common in the literature to aggregate the health states into two coarser categories:
good (covering excellent, very good, and good health) and bad (covering fair and poor)
(French 2005; French and Jones 2011; De Nardi, Pashchenko, and Porapakkarm 201 7).20
There are two benefits from using all five self-reported health states: First, trivially,
a larger state space captures more of the heterogeneity in the population. Second,
while a process estimated on a cruder two-state measure of health is appealing from a
computational point, it struggles to capture some of the dynamics observed in the data.

For example, De Nardi, Pashchenko, and Porapakkarm (2017) document that the
probability of transitioning from the coarser bad health state to the good health state
decreases with time. The longer an individual has been unhealthy, the less likely
he/she is to become healthy again. To address this issue, De Nardi, Pashchenko, and
Porapakkarm (2017) use a higher-order Markov chain which also includes the lagged
health states, thus effectively creating a first-order Markov process on 4 = 2 x 2 states.
However, using a five-state process and following the literature by classifying the two
worst health states as bad also partly captures this duration dependency.

To illustrate, let G = {1,2,3} and B = {4,5} be the coarse good and bad health states,

190n a two-year horizon, the persistence of self-reported health is very similar to what Hosseini, Kopecky,
and Zhao (2021b) find for their frailty index: using HRS data they conclude that “the difference in
persistence [...] is small” (p. 72 online appendix).

200ne reason is that to estimate yearly transitions, authors have resorted to using PSID, which until 1997
was a yearly survey. However, the number of individuals there is relatively small and therefore it is
necessary to combine data into coarser health states.
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respectively, and consider the following health-to-health transition matrix for the true

model with five health states:

[ 3/4 1/4 0 0 0
1/4 1/2 1/4 0 0
n"=| o 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 1/4 3/4 |

Assume that all individuals start out at time t = 0 in health state 3, i.e., they start in
G. We are interested in the individuals in B at time ¢t = 2 and their probabilities of
transitioning back to G, depending on whether they were in bad health for one or two
periods.

After two periods, 31.25% of individuals are in B; 18.75% have been in bad health for
two periods, and two thirds of these are in health state 4 while one third are in health
state 5. Hence, the probability of transitioning back to G, conditional on having been in
bad health for two periods, is 16.7%.

However, the probability of transitioning back to good health for the individuals who
have only been in bad health for one period is 25% (this follows immediately since the
unhealthy who were in good health in period t = 1 can, by construction, only be in
health state 4 in this stylized example).

We now apply this reasoning to our estimated model. Formally, we define the age-
dependent probability of recovering from the bad health state as a function of the number

of periods j already spent in bad health as
ra(j) :Pr(htﬂ €g ‘ hy y€BYVYO<k<j hj =3> )

For simplicity, we assume that the individual was in the middle health state (3) prior to
entering the bad health state j periods ago. This make little difference as the probability
of transitioning from states 1 or 2 directly into 4 or 5 is quite low, as shown in Figure A.11
and Figure A.12 in the appendix.

The recovery probabilities ,(j) for 50- and 70-year-olds are shown in Figure 8. As
predicted by the stylized example, these probabilities are decreasing in the number of
years spent in bad health. For example, a 50-year-old nonblack man who has spent just
one year in bad health has a 24% probability of recovering, but if he had spent the last
five years in bad health the probability is down to 18%. Even though the magnitude of

the effect is smaller than the one reported in De Nardi, Pashchenko, and Porapakkarm
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Figure 8: Probability of recovering from the bad health state B as a function of the number of
years spent in bad health.

(2017) for the PSID, it is a substantial improvement over a first-order Markov chain with
two states.

4 Life expectancy conditional on education or income

We now extend our main specification to include two indicators of socioeconomic status,
education and income level, and we report life expectancy and its gradient with respect

to health within each socioeconomic group.

4.1 Life expectancy and education level

We first extend (4) and (5) with education which we fully interact with age and health.
We create three education groups defined as: 1) less than high school, 2) high school
(broadly defined), and 3) a college degree or higher.?!

Table 4 shows the life expectancy for 50- and 70-year-olds conditional on education
level. The rows labeled “Average” report the life expectancy for each education group
computed as the weighted average over the health distribution observed in the HRS

2ITable A.2 in the appendix contains the distribution of individuals and person-year observations by
education and demographic subgroup.
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for that particular group, race, sex and age. As is well known, life expectancy is higher
for individuals with higher levels of education: a 50-year-old nonblack male with a
college degree has a life expectancy that is 7.3 years higher than one with no high school
education. The estimated magnitudes are well in line with what is reported by, e.g.,
Rostron, Boies, and Arias (2010), who find a difference of 8.6 years in life expectancy
for 45-year-old males and 4.5 years for 65-year-old males comparing no high school to
college educated using data from 2005, i.e., towards the end of our sample.?? In line with
findings by Hummer and Hernandez (2013), we estimate a flatter education gradient
for the black population: for example, the difference for black males at age 50 between
college vs. high school educated is only 4.8 years (vs. 7.3 years for nonblack).

Table 4 also reports the life expectancy additionally broken down by health state. For
the purpose of this analysis, we collapse the data into three health groups, merging
health states 1 (excellent) and 2 (very good) into “best” health, and health states 4 (fair)
and 5 (poor) into “worst” health, as otherwise sample sizes in some of the covariate cells
become too small.

The first observation is that a health gradient exists even after additionally condition-
ing on education level. The life expectancy of a nonblack man with a college degree in
best health is 4.5 years higher than an otherwise identical man in worst health. More-
over, the point estimates indicate that the health gradient is slightly stronger for the
high-educated group than the low-educated group, confirming findings by Dowd and
Zajacova (2007) and Burstrom and Fredlund (2001).

The second observation is that even conditional on education level and health, black
individuals have a lower life expectancy, and this is true for both men and women.
However, the estimates are noisy, especially for the black college educated population

since there are few such individuals in our sample.

4.2 Life expectancy and income level

We now examine the impact of socioeconomic status as defined by income level. To this
end, we sum up non-financial income at the household level and adjust for household
size. Thereafter, we compute six-year averages (i.e., three waves) counted from the first
time we observe the individual and interpret this measure as a proxy for permanent

income. For most cohorts, this means that we use an income measure from their 50s, i.e.,

22The consensus in the literature is that the life expectancy gradient in education has increased over time, at
least partly due to a stronger negative selection into the no-high-school group, see National Academies
of Sciences and Medicine (2015) for further references.
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Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black

Age 50
No high school
Average 74.6 78.7 72.5 76.0 2.1 2.7 —4.0 -35
[739,754] [781,79.2] [71.1,743] [749,771]  [02,3.7] [1539] [-50,-30] [-51,—16]
(1) Best health 75.8 79.5 734 76.9 24 2.5 —3.7 -35
[75.2,764] [79.0,80.0] [722,749] [76.0,779]  [0.8,3.9] [14,37]  [-46,—28] [-5.0,-2.0]
(3) Worst health 73.7 77.9 71.6 75.4 2.0 2.5 —43 —-3.8
[72.8,746] [77.3,786] [70.1,73.6] [74.4,766] [-02,38] [12,39] [-54,-30] [-55,—19]
High school
Average 77.8 82.6 754 79.5 24 3.1 —438 —4.0
[77.3,784] [82.1,830] [741,769] [782,81.0]  [0.8,3.9] [15,45]  [-54,—41] [-63,-20]
(1) Best health 78.6 83.2 76.5 80.8 2.1 2.4 —4.6 —43
[78.1,79.0] [82.7,83.6] [75.2,77.8] [79.6,822]  [0.6,3.6] [09,37]  [-52,-39] [-64,—23]
(3) Worst health 75.8 81.0 74.0 77.9 1.8 3.1 —-5.2 -3.9
[75.2,765] [80.4,81.6] [725,755] [765,79.6]  [0.1,3.6] [14,46] [-60,-42] [-63,—17]
College
Average 81.9 84.9 77.3 81.4 4.6 3.5 —-3.0 —4.1
[81.1,82.7] [84.0,858] [74.2,799] [77.3,839]  [2.0,7.8] [09,78]  [-42,-17] [-7.8,1.0]
(1) Best health 82.4 85.3 78.2 81.7 4.1 3.6 —2.9 —34
[81.6,832] [844,862] [76.1,80.6] [752,844]  [1.7,65] [08,99]  [~4.1,-17] [-7.1,3.9]
(3) Worst health 77.9 82.7 74.2 80.6 3.7 2.1 —4.7 —6.4
[76.4,79.5] [81.0,842] [67.9,782] [784,832] [-12,105] [-1.0,48] [-68,-27] [-139,—18]
Age 70
No high school
Average 81.6 83.8 80.7 83.0 0.9 0.8 —22 —-2.3
[81.3,81.8] [835,841] [80.1,81.2] [823,837]  [0.2,1.6] [01,1.6] [-26,—18] [-34,—12]
(1) Best health 82.9 85.0 81.7 84.0 1.2 1.1 —2.1 —2.3
[82.6,833] [84.7,854] [81.0,823] [83.1,84.8]  [04,2.0] [02,20] [-26,—17] [-35,—1.0]
(3) Worst health 80.4 82.9 79.7 82.4 0.6 0.5 —2.5 —2.6
[80.1,80.6] [825,832] [79.2,803] [818,831]  [0.0,1.2]  [-03,12] [-29,—21] [-3.6,—1.6]
High school
Average 83.0 86.0 82.2 85.6 0.8 0.3 -29 —35
[82.7,83.3] [85.7,86.2] [81.1,834] [847,867] [-04,20] [-08,13] [-33,—26] [-5.1,-1.9]
(1) Best health 84.3 87.0 83.3 86.8 1.0 0.2 —2.7 —3.5
[83.9,84.6] [86.7,87.3] [82.0,847] [858,88.0] [-04,22] [-1.0,12] [-32,-23] [-54, —18]
(3) Worst health 80.9 83.8 80.9 83.9 0.0 —-0.2 —-29 —-3.1
[80.6,81.2] [83.4,841] [79.8,820] [829,851] [-1.1,1.1] [-13,09] [-33,—25] [-47, —1.6]
College
Average 85.4 87.0 81.9 85.1 3.5 1.9 —1.6 —3.2
[84.9,86.0] [86.3,87.8] [79.6,847] [832,88.0] [07,61]  [-09,40] [-27,—0.6] [—64, —0.3]
(1) Best health 86.4 87.9 83.2 86.9 3.2 1.0 —1.5 —3.7
[85.9,87.1] [87.2,88.6] [80.8,86.0] [848,89.9]  [04,59]  [-20,32] [-23,—05] [-7.3,—0.5]
(3) Worst health 81.8 84.1 79.5 82.6 2.3 1.5 —2.2 —-3.0

[812,825] [83.1,851] [772,825] [805,850] [-0.7,48] [-12,40] [-3.5 —1.0] [—6.0,0.2]

Table 4: Life expectancy by race, sex and education for model with three health states. Average
life expectancy is computed as the weighted mean over health states at ages 50-51 (top)
or 70-71 (bottom). Right columns show differences in race (holding sex fixed) and sex
(holding race fixed). Brackets indicate bootstrapped 95% confidence intervals.
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during their prime working age.?® To take into account life cycle effects, we then rank
respondents” permanent income within the distribution of individuals of the same age,
and we group these ranks into terciles. The tercile dummies are then included in (4) and
(5), fully interacted with age and health.?*

The motivation for creating a time-invariant permanent income measure is that we
are unable to estimate transitions within the income distribution on top of age-specific
health transitions for the black subsample due to the small sample size. With a larger
sample one could estimate a joint transition matrix for health and income group (as is
done in Pijoan-Mas and Rios-Rull (2014) for whites). Our income definition is closer
to the mid-career earnings measures used by Bosworth and Burke (2014) (who use age
41-50) and Waldron (2007) (who uses age 45-55).

In our analysis, we prefer household rather than individual income. The household
level better captures the socioeconomic differences that have implications for health and
mortality, especially for women: a housewife with no own income who is married to a
high-earner is better classified as rich rather than poor.

The upper half of Table 5 shows the life expectancy for individuals at the age of 50
conditional on their income tercile. The rows labeled “Average” report the life expectancy
for each income group computed as the weighted average over the health distribution
observed in the HRS for that particular group, race, sex and age. The income gradient
in life expectancy is large, and larger for black than for nonblack individuals. For a
black male in the third tercile, the life expectancy is 8.7 years higher than for one in
the first tercile, while the corresponding figure for nonblack males is 6.5 years. Using a
different method, the National Academies of Sciences and Medicine (2015) documents a
difference of 5.1 years between the upper and lower income quintile for males in the
1930 cohort, which is slightly lower than our period estimates for 1992 to 2014.

The bottom half of Table 5 shows the corresponding figures for individuals at the age
of 70. The difference in life expectancy between the first and the third tercile for nonblack
males is 2.5 years, higher than the 1.3 years Waldron (2007) estimates as the difference
between first and fourth quartile for 70-year-olds based on data from 1999-2001. The
difference in estimates is partly due to different income definitions and estimation
methods, but also points to the increase in the life expectancy income gradient over time

23For the AHEAD and CODA cohorts the classification is based on retirement income at the age of 70 (see
Figure 1), but given the high correlation between retirement income and earnings during working life
this is not a major concern.

24Gee section A.2 in the appendix for a detailed description of how the permanent income measure
is constructed. Table A.2 in the appendix reports the distribution of individuals and person-year
observations by permanent income tercile and demographic subgroup.
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(see National Academies of Sciences and Medicine 2015).

Table 5 additionally breaks down the differences by health. As with education, we
collapse the data to three health states, and again the health gradient in life expectancy
is present even after conditioning on income. The point estimates suggest that there is a
racial gap even within health and income bins, however, the precision of these estimates
varies considerably. The estimated differences are larger for the lower terciles, and for
the better health groups: the largest differences at the age of 50 can be found among the
poorest tercile in good health, where a nonblack man has a life expectancy that is 3.7
years higher than for a black man, and a nonblack woman can expected to live 4.4 more
years compared to a black woman. The estimated differences at the age of 70 are smaller

(and for some subgroups even reversed), but also less precise.

5 Economic implications

In this final section, we examine the implications of differences in health dynamics and
survival for economic outcomes. We do this through the lens of a quantitative models,
since this permits us to shut down any other differences between individuals across race
and sex observed in the data, which would confound the analysis. Moreover, we are
also able to quantify the welfare implications of the inequality in life expectancy.

We use the same framework as in Foltyn and Olsson (2021), which can be thought of as
an overlapping-generations version of an Aiyagari (1994)-type economy and additionally
features survival risk which varies by health, inelastic labor supply during working age,
an exogenous retirement age, and a US-style Social Security system financed by payroll
taxes. Households can choose to save in risk-free capital to insure themselves against
income fluctuations as well as for consumption in old age (on top of retirement benefits).
We do not describe the model in any technical detail here but instead refer interested
reader to the exposition in Foltyn and Olsson (2021).

We use the health and survival processes estimated above and solve the household
problem for all four demographic groups.?> Using the model, we first examine the effects
of life expectancy on savings and wealth accumulation. In a second step, we quantify
the impact of life expectancy on Social Security wealth (the present value of retirement
benefits a person is expected to receive) and uncover substantial differences between
black and nonblack individuals which have sizable welfare implications.

25We compute the general equilibrium using the health and survival process for nonblack males and find
the partial-equilibrium solution to the household problem for the remaining groups, taking as given the
prices from the nonblack/male economy. In Foltyn and Olsson (2021), we show that aggregate prices
are not very sensitive to assumptions about life expectancy, so we view this as an acceptable shortcut.
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Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male  Female Nonblack Black
Age 50
1st tercile
Average 75.0 79.8 71.2 75.1 3.8 4.7 —4.8 -3.9
[74.2,75.8] [79.3,80.2] [69.8,72.7] [74.0,764]  [1.9,55] [34,58]  [-5.6,—40] [-5.8,—2.0]
(1) Best health 76.2 80.8 72.5 76.4 3.7 44 —4.6 -3.9
[754,769] [804,81.3] [713,738] [752,77.7] [2.1,5.1] [30,56] [-55,-38] [-5.8,—2.0]
(3) Worst health 73.5 78.5 70.2 74.2 3.3 4.3 -5.0 —4.0
[72.6,744] [78.0,79.0] [68.7,72.0] [73.1,755] [1.2,52] [3.0,54]  [-6.0,—40] [-5.9,—19]
2nd tercile
Average 78.1 82.6 76.0 81.6 2.1 1.0 —45 -5.6
[775,78.7] [82.0,831] [75.0,77.0] [80.1,832] [09,33] [-07,27] [-52,-36] [-7.8, —3.6]
(1) Best health 78.7 83.0 76.5 82.3 2.3 0.7 —4.3 —5.8
[78.2,79.3] [825,835] [75.4,77.5] [80.9,838] [1.1,35] [-08,22] [-49,—35] [-7.7, —4.0]
(3) Worst health 76.1 81.3 74.7 80.5 1.4 0.8 —5.1 —5.7
[752,77.1] [80.6,81.9] [734,759] [787,823] [-02,30] [-12,26] [-63,-39] [-8.1,—34]
3rd tercile
Average 81.4 85.4 79.9 83.2 1.5 2.2 —4.0 -3.3
[80.9,82.0] [848,861] [78.0,81.8] [81.0,852] [-05,37] [0.1,44] [-48,-32] [-57, —07]
(1) Best health 81.8 85.7 80.2 83.3 15 24 -39 -3.1
[81.2,823] [85.1,86.4] [783,82.1] [80.6,853] [-05,36] [04,50] [-47,-32] [-55,0.0]
(3) Worst health 78.9 83.6 78.7 82.7 0.2 0.9 —4.7 —-4.0
[778,799] [82.6,846] [759,81.0] [804,852] [-25,33] [-1633] [-60,-34] [-7.3,—1.0]
Age70
1st tercile
Average 81.9 84.3 79.9 82.7 2.0 1.6 —24 -2.8
[81.5,823] [84.1,84.7] [794,80.6] [82.0,83.7] [1.2,2.6) [07,25]  [-29,—20] [-40,—1.7]
(1) Best health 83.4 85.8 81.2 83.9 2.2 1.9 -2.3 -2.6
[83.0,839] [855,86.1] [80.6,82.0] [829,850] [1.3,29] [08,30] [-28 —18] [-40,—1.3]
(3) Worst health 80.4 82.9 79.1 82.0 1.3 0.9 —-2.6 -3.0
[80.1,80.7] [82.6,833] [78.6,79.6] [81.3,829] [07,1.8] [-00,1.8] [-3.0,-22] [-4.0, —18]
2nd tercile
Average 83.1 85.8 81.3 85.8 1.8 -0.0 2.7 —45
[82.8,83.4] [855,861] [80.4,821] [849,8.7] [09,27] [-10,1.0] [-3.1,-23] [-59,—3.3]
(1) Best health 84.3 86.7 82.1 86.9 2.2 -0.1 -25 —4.7
[84.0,84.6] [86.4,87.0] [81.1,83.1] [859,87.8] [12,32] [-1.1,09] [-28,—20] [-62, —34]
(3) Worst health 81.0 83.9 80.1 84.3 0.9 —0.4 —-2.8 —4.2
[80.7,81.3] [835,843] [794,809] [834,853] [0.1,17] [-15,06] [-33,-24] [-55, —3.0]
3rd tercile
Average 84.4 87.4 84.3 86.5 0.1 0.9 -29 -2.2
[84.1,84.8] [86.9,87.9] [82.6,861] [85.1,884] [-17,20] [-09,23] [-36-23] [-45 —0.1]
(1) Best health 85.4 88.1 85.2 87.4 0.2 0.7 2.7 -2.2
[85.0,85.8] [87.7,88.6] [83.3,87.1] [86.1,89.2] [-18,22] [-1.1,20] [-33,-21] [-45 —0.1]
(3) Worst health 81.5 84.5 83.0 84.7 -1.5 -0.2 -3.0 -1.7
[81.1,82.0] [83.9,85.1] [812,847] [828,869] [-33,05] [-24,17] [-37 -22] [-41,05]

Table 5: Life expectancy by race, sex and permanent income tercile for model with three health
states. Average life expectancy is computed as the weighted mean over health states at
ages 50-51 (top) or 70-71 (bottom). Right columns show differences in race (holding
sex fixed) and sex (holding race fixed). Brackets indicate bootstrapped 95% confidence

intervals.
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5.1 Savings rates and wealth accumulation

The racial wealth gap is large, much larger than the income gap. How much of it can be
explained by income differences and demographic variables is debated, see, e.g., Barsky
et al. (2002) and Altonji and Doraszelski (2005). One factor that has been identified to
contribute to the wealth gap is the difference in savings rates between black and white
households. As suggested already by Smith (1995), life expectancy could play a role in
this: lower life expectancy for blacks should reduce savings incentives.

We use our model to evaluate this hypothesis quantitatively. To focus on the impor-
tance of life expectancy in isolation, we let the black and the nonblack agents in our
model be identical in every respect except for their health and survival prospects.

Figure 9(a) shows the differences in total savings rates for black and nonblack men,
respectively. We define the total savings rate as the fraction of current cash-at-hand an
agent saves for the next period, where cash-at-hand is the sum of beginning-of-period
wealth and income (both financial and non-financial) received in the period.?® As the
figure shows, a black man in excellent health at the age of 50 who is at the median
of the cash-at-hand distribution has a 1.5 percentage points lower savings rate than a
nonblack man with the same health, age and wealth. The reason for this behavior is
straightforward: a nonblack man in excellent health expects to live another 29.5 years,
while the corresponding black man can only expect another 26.1 — a difference of 3.4
years (as can be seen in Table 2). The difference in savings rates for 50-year-olds in
poor health is smaller since the difference in remaining life time is smaller: 23.4 years
(for nonblack) vs. 21.8 years (for black) — a difference of “only” 1.7 years. Another way
to understand these differences is through the lens of discount rates. In the appendix
section F.1, we show that the effective discount rates for black men are generally lower
than those of nonblack men. Because periods farther into the future are more heavily
discounted, the black population has lower incentives to save for old age.

To gauge the quantitative implication of these differences in savings rates, we simulate
the model over the life cycle and compare the wealth accumulation of black and nonblack
individuals. As Figure 9(b) shows, the differences in life expectancy contribute to
differences in wealth accumulation. Just prior to retirement (which occurs at age 65),
nonblack individuals in excellent health have on average accumulated 25% more wealth
than their black counterparts.

However, a difference of 25% is a far cry from the actual wealth gap between white
and black documented for the US. For example, Blau and Graham (1990) estimate the

26Tn this class of models, cash-at-hand, not wealth, is the state variable that is relevant for household
optimization.
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Figure 9: Effect of health and survival on savings behavior and wealth accumulation. The left
panel shows the difference in savings rates between a black and a nonblack man in
percentage points. The right panel reports the wealth accumulation profiles over the
life cycle. The best (green), middle (yellow) and worst (red) health states are shown.

average wealth by white households to exceed that of black households by a factor of 5.5
for young families in the 1970s, while Altonji and Doraszelski (2005) estimate a factor of
around 4 using PSID data, and Derenoncourt et al. (2021) report a factor of 6. Our results
therefore corroborate the conjecture in Altonji and Doraszelski (2005), who “doubt that it

[the difference in life expectancy] plays a major role” in explaining the racial wealth gap.

5.2 Social security wealth

The US Social Security system not only redistributes from high- to low-income earners
due to its regressive replacement rates, but also from individuals with short life spans
to those with long life expectancy who continue receiving benefits for more years. The
interplay between those two channels has been extensively evaluated (see, e.g., National
Academies of Sciences and Medicine (2015), Auerbach et al. (2017), Sdnchez-Romero and
Prskawetz (2017), Sanchez-Romero, Lee, and Prskawetz (2020), Haan, Kemptner, and
Liithen (2020), and the references therein), and some papers have looked at the average
outcomes for different racial groups (Liu and Rettenmaier 2003).

In this section, we proceed in two steps: we first report the differences in the present
value of expected Social Security benefits (“Social Security wealth”) between black and
nonblack groups. In a second step, we ask how much black individuals would value this
difference in consumption terms if they received it as a one-time lump-sum payment
when they retire.
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The Social Security system in our model closely mimics the one in the US, in particular,
it uses the same bend-point formula to produce a regressive replacement rate and the
same maximum amount subject to payroll taxes. In this sense the model results should
be informative about differences observed in the real world.

Intuitively, two individuals with identical life cycle profiles of labor earnings would
have paid the same amount of Social Security contributions and should thus be entitled
to the same Social Security benefits once retired. However, if these individuals have
different life expectancies, the present value of their expected Social Security wealth
will in fact be different. To formalize our comparison between black and nonblack
individuals, assume that retirement happens exogenously at age ag = 65, and once
retired, a person is entitled to annual Social Security benefits yr which are constant for
the remaining life. The present value of expected Social Security wealth at retirement is
then defined as

Amax 1
Wi (m, b, hap, yr) = NZ WPT(% =1|m,b,h,ar ) YR (6)
a=apr

where m and b are indicators for male and black, % is the initial health state and
Pr(s; =1|m,b,h,a) is the probability of being alive at age 4 > ar given the initial
state (m, b, h,ag). Individuals are assumed to survive to a maximum age amax Which we
set to 99. Future cash flows are discounted using a fixed interest rate r. For any age prior
to retirement, our model features persistent income risk, so the present value of Social
Security wealth at some age a < ap is the discounted expected value of (6),

1

W, (m, b, ha,y,) = (T

Pr(ss, =1|m,b,hy,a)E [WaR (m, b, hay, YR)

ha,Ya,a ]

where expectations are taken over income and health at the time of retirement, and
survival until retirement is uncertain.

We use the above formulas to quantify differences in Social Security wealth between
the black and nonblack groups conditioning on sex, health and age. Specifically, we
compute the relative difference A as

W, (m,b=1,h,y)

Ba(m, ) = - (m,b=0,h,y)

—1 7)

for ages a € {50,65,70}, males and females, and the best, middle and worst health
states. Since benefits are constant in retirement and labor income y is uncorrelated with
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health, sex or race in the model, y cancels out in (7).?” Figure 10 plots the results for
three discount rates used to compute the present value: a low interest rate scenario
with r = 1%, a high interest rate scenario with » = 4% and the equilibrium interest
rate arising in the model if we assume that all individuals have the health and survival
process of nonblack males, r = 2.4%.

As the figure shows, the differences in expected Social Security wealth are substantial.
At the age of 50, a black man in excellent health has an expected Social Security wealth
which is 17% lower than that of a nonblack man in excellent health. This again is a
consequence of the life expectancy gap of 3.4 years for this group reported in Table 2.

By the age of 65, the life expectancy gap across races shrinks, which is reflected in
the smaller differences in Social Security wealth. Moreover, for men in poor health this
gap is negligible, as indicated by the very small difference in Social Security wealth.?8
The picture remains overall unchanged when comparing black to nonblack women as
shown in the bottom panel of Figure 10.

Lastly, in Table 6 we report the relative differences in Social Security wealth averaged
over health states using the empirical health distributions for black individuals observed
in the HRS at each age (note that these statistics show the expected differences, not
the difference of expected values between black and nonblack groups). Thus, the
table quantifies how much the black population on average loses out in Social Security
wealth given their lower life expectancy, holding everything else constant. At the age of
retirement, this loss amounts to 7-8% for both males and females, and is even double
that at age 50.%

In the remainder of this section, we assess the welfare implications of these substantial
differences in Social Security wealth. To this end, we compute the increase in consump-
tion that is required in every period to make a black individual equally well off as giving
him or her the difference in Social Security wealth as a one-time lump-sum payment at
the time of retirement. Specifically, denote by

AuWR(m,h,y) = Wa, (m,b=0,h,y) — W, (m,b=1,h,y)

270f course the level of Social Security wealth depends on income and retirement benefits. We plot Social
Security wealth in levels in the appendix in Figure A.19 and Figure A.20 for nonblack and black men,
respectively.

28To be precise, it is not only the life expectancy but the whole time path of survival probabilities that
matters for these calculations. This is the reason for the difference being slightly below 0 for the low
interest rate and slightly above zero for the high interest rate when comparing 65-year-old males in poor
health.

2We include only the middle interest rate in the table since the magnitudes are similar across all three
scenarios.
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Figure 10: Relative difference in present discounted value of expected Social Security wealth
between black and nonblack males.

the absolute difference at the onset of retirement for two individuals who are identical
except for their race, where the definition of Social Security wealth is the same as in (6).
Let

amax

Y B u(C (o, m, b, y) )

a=apr

VaR(qurmr b/haR/yR) =E [ m, bl haR,[lR]

be an individual’s value function which is defined on cash-at-hand x as an additional
state, and denote by C(e) the consumption policy function which characterizes optimal
consumption. We are interested in finding the value A. which represents a permanent

relative increase in consumption such that

VaR <xth + AaWR (m/ br haR)/ m/ br haRryR>

m, b/ haR/ aR ]

—E [ aiaf B u (C (xa,m,b,ha,yr) - (1 + Ac))

ad=ag
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Male Female
Age50 —163% —15.6%
Age 65 —7.7% —7.2%
Age 70 —7.50/0 —5.60/0

Table 6: Model-predicted loss in Social Security wealth due to life expectancy differences of black
subpopulation relative to the nonblack group of the same sex. The loss is averaged over
the health distribution at each age as observed in the HRS. Interest rate is set to 2.4% in
the calculation.

In words, A, represents the permanent relative increase in consumption required to give
an individual the same utility as the one-time lump sum payment A;". Our calibration
uses log preferences which makes computing A, particularly easy as it can be separated
from the expected utility term:

VEIR (xﬂR + AaWR (ml b/ haR)/m/ b/ haR/yR)

amax -
—E [ Z B <1ogC (xa, m,b,ha,yr) +log(1 + Ac)> m, b,haR,aR]
a=ag
amax -
= Vi (Xag, m, b, N4, yr) + E Z B “log(1+ Ac) | m,b, haR,aR]
a=ag

The expectation in the last term is taken only with respect to survival, and therefore

Amax

E [ Y., B log(1+Ac) | m, b,haR,aR] =1log(1+Ac) Y, B "Pr (3= 1| m,b, hsy, ar)

ﬁ:ﬂR

Consequently, with log preferences we can recover A, by interpolating the individual’s
value function at x and x + A" and rescaling the difference by the sum of discounted
survival probabilities.

Figure 11 plots the resulting consumption equivalent variation for the age of 65. As the
tigure shows, the resulting welfare differences are large for most combinations of health
and financial resources.’® For example, a black individual with median cash-at-hand
in excellent health on average perceives the lump-sum transfer of unrealized Social
Security wealth as being equivalent to a permanent increase in consumption by 6.5%
during his remaining life time. Again, the only exception are black men in poor health
who can expect to receive almost the same Social Security wealth as their nonblack peers,
and hence their CEVs are almost exactly zero. Overall, the average CEV is 4.2% for black

30 Any differences in income are averaged out in these graphs. See Figure A.21 in the appendix for CEVs
disaggregated by income level.
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Figure 11: CEV implied by the difference in Social Security wealth between black and otherwise
identical nonblack individuals at the age of 65. CEV values are averaged over labor
productivity. The worst health state for black men is not visible because the CEV is
almost zero.

men and 3.7% for black women (using their respective equilibrium distributions over
health, labor productivity and cash-at-hand at the age of 65) .

6 Conclusion

Health dynamics and uncertain survival are major risks facing individuals. To incor-
porate these risks in life cycle models, a health and survival process that captures the
main features of the data while being sufficiently parsimonious is required. In this paper,
we provide such estimates for annual age-dependent health transitions and survival
probabilities for different demographic groups of the US population.

These health and survival probabilities can be used to compute life expectancies by
race, sex and socioeconomic status. The race gap in life expectancy is well known and
large. We show that even conditioning on health and different measures for socioeco-
nomic status, this gap persists. Moreover, we are able to disentangle the importance
of initial health, say at age 50, and the health and survival dynamics individuals face
beyond that age. We document that the latter explain about 90% of the racial gap in life
expectancy at age 50, while the initial health distribution plays a minor role.

The racial life expectancy gap has substantial welfare implications even beyond the
mechanical effect of being able to enjoy a few additional years of life. We illustrate
this by showing that mortality alone creates disparities in Social Security wealth of

approximately 15% on average at the age of 50. Using model simulations, we show
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that this gap is substantial in welfare terms: at the age of retirement, it is on average
equivalent to a permanent increase in consumption of about 4% for black men, and

slightly lower for black women.
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A Detailed data description

A.1 HRS waves used for the analysis

The RAND HRS Longitudinal File 2018 (V1) consists of 14 waves administered over
the years 1992-2018. The first cohort included in the survey was between 51 and 61
years old in 1992, and thereafter new (older and younger) cohorts have been added, as
illustrated in Figure 1 in the main text. Figure A.1 shows the number of respondents
with positive sampling weights by wave and cohort. At the time of this writing, the
sampling weights for wave 14 are not yet publicly available.

Wave

Cohorts
AHEAD
1890-1923

CODA
1924-1930

HRS
1931-1941
WB
1942-1947
EBB
1948-1953
MBB
1954-1959

LBB
1960-1965
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Year

Figure A.1: Number of observations by wave and cohort. Only observations with positive weight
are included. Sampling weights for wave 14 are not available in RAND HRS 2018
(V1). AHEAD was initially a separate survey conducted in 1993 and 1995.

Figure A.2 shows the fraction of respondents in each wave who are marked as non-
respondents in all subsequent waves but do not have a death date on record. For
example, in wave 11 (administered in 2012), approximately four percent of participants
did not respond to any of the later waves 12-14. Since no death date is recorded for
these individuals, we cannot use these observations to estimate survival probabilities.
However, since death dates are sometimes recorded with considerable lag, we suspect
that some of these individuals are already deceased, but their death dates will be updated
only in future waves. So as to not bias our survival probability estimates, we opt to
drop the last two waves from the estimation sample, since these exhibit unusually high
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Figure A.2: HRS attrition by wave: fraction of participants who do not respond to any of the
subsequent survey waves. Dark green indicates best (“excellent”) while red indicates
worst (“poor”) health. Error bars indicate bootstrapped 95% confidence intervals.

nonresponse rates compared to the historical averages.

A.2 Description of main variables

We list the central variables used in our analysis in Table A.1. Some of them are computed

from several variables in the RAND HRS version, a process we detail below.

Race.  The variable RARACEM takes on three values: White/Caucasian, Black/African-
American or Other. For our purposes, we combine the first and third groups to obtain the
indicator variable black € {0,1}.

Education. The HRS variable RAEDUC records five categories: less than high school, GED,
high school graduate, some college and college and above. We combine the three middle
groups into one and use the classification less than high school, high school and college.
Table A.2 shows the distribution of individuals and person-year observations by
education. As can be seen, only 10.9% of the black males and 12.6% of the black females
have a college degree in our sample, while the corresponding figures for the nonblack

population is 23.5% (males) and 16.2% (females).



Variable Description RAND HRS
variable(s)
Health Self-reported health with possible answers (1) excellent, (2) RwSHLT
very good, (3) good, (4) fair, or (4) poor
Age Respondent’s age at time of interview end date RWAGEY_E
Birth date Respondent’s date of birth (year, month) RABYEAR, RABMONTH
Death date Respondent’s date of death, if applicable (year, month) RADYEAR, RADMONTH
Race Respondent’s race, recoded to black indicator variable RARACEM
Sex Respondent’s sex, recoded to male indicator variable RAGENDER

Interview date

Interview end date (year, month)

RwIWENDY, RwIWENDM

Education Educational attainment, recoded to three groups RAEDUC
Income Respondent’s income computed as the sum of several non- RwIEARN, RwIUNWC,
financial income and transfer variables RwIPENA, RwISRET,
RwISSDI, RwIGXFR
Weight Respondent-level sampling weights RwWTREP, RuWTR_NH,
RwWTCRNH
Stratum ID Stratum identifier used for stratified cluster bootstrapping of = RAESTRAT
confidence intervals
PSU ID Primary stage unit (cluster) identifier used for stratified clus- RAEHSAMP

ter bootstrapping of confidence intervals

Table A.1: Variables from RAND HRS version 2018v1 used in the analysis

Income.

Following Pijoan-Mas and Rios-Rull (2014), we compute a respondent’s non-

financial income as the sum of several variables: earnings (RwIEARN), unemployment

benefits and worker’s compensation (RwIUNWC), pension and annuity income (RwIPENA),

Social Security retirement income (RwISRET), income from Social Security disability (SDI)

and Supplemental Security income (SSI) (RwISSDI), and any other government transfers
(RWIGXFR). All variables are deflated to year 2000 dollars using the CPI.
In the analysis, we assign households into household-level permanent income terciles

which are computed as follows:

1. We aggregate the individual incomes defined above to the household level and

assign each respondent the corresponding share of this pooled income (i.e., for

couple household each individual gets one half of the household income). The

motivation behind this is intra-household risk sharing: to the extent that health

outcomes depend on financial resources, the relevant measure of such resources is
at the household level.

2. To obtain a proxy for permanent income, we then compute the average income

over a window of 3 waves (approximately six years).

3. Using this income measure, we find a respondent’s position in the income distri-



bution of a reference population defined in terms of age in order to control for the
life cycle effects. For example, for a 50-year-old respondent, “permanent” income
is computed as the average income reported at ages 50-55 (three waves), and the
individual’s income rank is determined by comparing his or her income against

the permanent income of other 50-year-olds.

4. Since we do not want to model transitions between income terciles, we assign each
respondent a fixed income tercile based on the first tercile computed with the above
method. For example, a 50-year-old individual from the HRS cohort who enters
the survey in 1992 will be assigned the income tercile we computed at age 50. A
75-year-old who enters the survey as part of the AHEAD cohort in 1994 will be
assigned the income tercile we observed for this person at age 75.

Table A.2 reports the fraction of individuals and person-year observations in each
income bin. Note that the above procedure does not guarantee that individuals are
evenly spread across terciles, mainly because the table shows the unweighted shares,
but also because the reference population is age-dependent and thus different across
individuals. A larger fraction of the nonblack population are classified as belonging to
third tercile.

Sampling weights. We use the HRS respondent-level sampling weights. These weights
are time varying, so for each transition we use a respondent’s weight at transition start.
Prior to wave 5, the HRS did not provide weights for individuals who moved to nursing
homes, in which case the variable RWWTRESP was zero. From wave 5 onward, nursing
home weights are provided in RwWTR_NR, and the combined weight is stored in RwWTCRNH
(only one of RWWTRESP or RWWTR_NR is non-zero, depending on the nursing home status).
For individuals who moved to nursing homes prior to wave 5, we back-fill their nursing-
home weight from wave 5 to earlier waves if they were alive in wave 5. For respondents
who moved to nursing homes prior to wave 5 but died before wave 5 and thus were
never assigned a nursing-home weight, we forward-fill any missing weights using the

last non-zero value of RWWTRESP as long as the respondent is alive.

Transition length. For each transition, we compute the transition length as the differ-
ence between two consecutive interview dates (if the respondent is alive at transition
end), or the difference between the last interview date and the date of death. We round
the transition length to the nearest full year. The resulting distribution of transition
lengths is shown in Table A.3.



All Nonblack Black

Male Female Male Female

Distribution of individuals
By education

No high school  27.2% 24.6% 25.5%  39.0% 36.1%
High school 54.6%  51.9% 58.3%  50.1% 51.3%

College 182% 235%  162% 109%  12.6%
By income tercile

1st tercile 39.9% 33.7%  40.8% 45.6%  54.0%

2nd tercile 35.0% 357%  35.8% 332%  30.6%

3rd tercile 251% 30.5%  23.5% 212%  154%

Distribution of observations
By education

No high school 259% 22.7% 24.0% 41.8% 37.8%
High school 55.6%  52.5% 60.0%  48.0% 50.3%

College 18.5% 24.8%  16.0% 10.1%  12.0%
By income tercile

1st tercile 372%  30.7% 38.7%  42.2% 51.8%

2nd tercile 36.6% 37.0%  373% 352%  32.5%

3rd tercile 262% 32.3%  241% 226% @ 15.8%

Table A.2: Distribution of individuals and person-year observations by education and permanent
income tercile in the estimation sample (unweighted).



B Details on the maximum-likelihood estimator

In this section, we describe the MLE approach that jointly estimates the parameters

governing both health-to-health and survival transitions.

B.1 An illustrative example

Before deriving the probabilities that enter the log-likelihood function, it is worthwhile
to work through an illustrative example. We consider a simplified setup with only two

health states and assume a two-year transition, as illustrated in Figure A.3.

observed unobserved observed

t t+1 t+2
| | |

v

Good health (1)

Bad health (2)

Death

Figure A.3: Simplified transition paths

At t + 2 there are three possible outcomes, but seven distinct paths via which these
outcomes can be realized. The probability distribution that should enter the likelihood
function is one over paths, not outcomes. To make this point, first consider a PMF over

outcomes in t + 2, which is given by the three probabilities

Pr(ht+2:1|ht)
Pr(ht+2:2|ht)
Pr(st+2:0|ht)

where h; 5 is the future health state, and s;, ; is an indicator which is one if the individual
is alive at t + 2. For either health state j = 1,2 these can be computed as follows:

2
Pr(hip2=jlhe) =Y Pr(hia=jlher = 6he ) Pr( by = €] hy)
=



On the other hand, the probability of observing death in t + 2 can be written as

2
Pr(spp=0[h) =) Pr(spa|hg="0h)Pr(hq=10|h)
=1

+Pr(st+1 :0|ht>

The issue with this formulation is that whenever death in t 4- 2 is observed, the proba-
bility of this outcome includes the case that the individual already died in ¢t + 1, which
corresponds to path 7 in Figure A.3. However, due to how the transition data is con-
structed this is impossible, as a one-period observation would have been recorded if
an individual had already died in t + 1 (the date of death is recorded independently of
the wave structure in the HRS). Hence, the probability associated with path 7 should
never enter the likelihood function. This issue becomes even more pronounced for
longer transitions, since the probability of ending up in the absorbing death state in the
penultimate period is strictly increasing in the transition length.

To properly address this issue, the distribution that enters the likelihood needs to
be over paths, not outcomes at transition end. Naturally, in the above example we do
not know whether path 1 or 2 was realized when we observe the outcome /> = 1, so
the probabilities of both will have to be included in that case, and analogously for the
remaining outcomes.

To shut down all paths leading to “premature” death before the terminal period
(which is only path 7 in the above example), we want to evaluate the probabilities of the

events

PI'(I’ZH_Q:l/\SH_l :1“’”)
Pr(ht+2:2/\st+1 :1‘ht)
Pr (st =0Asi1 =1|h)

For either health outcome j = 1,2 we find that

Pr(ht+2:j/\st+1 :1|ht) :Pr(stH :1|ht+2:j,ht) xPr(ht+2:j|ht)
=Pr (2 =jlht)

which follows since
Pr(St+1 = 1‘ht+2 :j,]’lt) =1

An individual who is in health state j at ¢ + 2 must have been alive at t + 1, so the



additional restriction that s; ;1 = 1 is redundant for health outcomes. However, this is

not the case for the probability of being dead in t + 2:

2
Pr(siro =0ASs1 =1|h) = ZPr(st+2:0/\st+1 =1|h1=4,hy)
(=1

XPI'(”[H_l:g“’lt)

2
= ZPI(St+2:0|ht+1 :E,hf>Pr(ht+1 :€|ht)
(=1

The second line follows since conditional on ;1 = ¢, we necessarily have s;1 = 1. This
formulation shuts down any paths with s;; = 0.

B.2 Full model

We refer to a transition’s starting date as t, to its length (in years) as T, and to its end
date as t = t + T. We denote by the tuple (I, x;) the information available at time f,
ted{t,...,t+T}, where hy € H = {1,...,H} is an individual’s self-reported health
state, with 1 representing the best and H the worst realization. The vector x; contains any
other variables of interest, in particular age. We allow for time-invariant characteristics
such as birth year, sex, race or education level to be included in x;, but restrict the
time-varying variables to age and potentially calendar year. This restriction is necessary
as we need to compute the evolution of x; over t +1,t +2,... for multi-year transitions,
which is not possible in general except for variables that follow a deterministic path
(such as age and calendar year).!

Our goal is to characterize the one-year-ahead survival probability
Pipi =Pr(sppn=1h,x)

defined in (2) in the main text and the health-to-health transition probabilities conditional

on survival,
nj o _ )
Piias = Pr (ht—H =] } St41 = 1/ht/xt>

which were defined in (3). Here we use the notation p}:|5 to indicate that this probability

is conditional on survival. We can then compute the unconditional probability of being

!We could of course incorporate a time-varying discrete variable z € Z by extending the state space from
‘H to Z x H as in Pijoan-Mas and Rios-Rull (2014). However, this introduces too many new parameters
(parameters are outcome specific) to estimate such a model on the small black subsample.

10



in health state j in the next period as

h,j h,j
Vtil = Ptil\s X Pii1 (A1)

Below we will frequently want to emphasize that we condition on a particular health
state h; = k, and hence we will use the expressions

Piap =Pr(sea =11 =k x) (A.2)
ni .
pt+]1\k,s =Pr (ht+1 =] ‘ siv1 = 1, =k, xt) (A.3)

In the remainder of this section, we lay out the estimation strategy to determine the
parameter vectors y and B; for all outcomes j, which we collect in the vector 6,

0

(B2 Bjs--- BH,Y) e RX

where K = (H — 1)K, + K, B; € R%: for each j and 7y € R*:. We omit the normalized
base outcome parameter vector 81 = 0 for health state 1. From any transition bracketed
by the dates t and f we obtain one observation, a PMF over health states “augmented”
by the state of death. We call this vector p#; € RH 1. In t we impose the degenerate initial
distribution

w=(0,...,0,1,0,...,0,0) " (A.4)

H elements

with unity in the position corresponding to the initial health state ;.

The one-year health-to-health transition matrix conditional on survival is given by

h1 hH
Pevaps 7 Prrapgs
M(xlp)=| - (A5)
na hH
Pevaps " Prrimgs

where the conditional probabilities pfil‘kls are defined in the same way as in (A.3). This
transition matrix is a function of the covariate vector x; but not of the current health
state h; as it contains transitions for all ;.

Let 7t} be the vector of survival probabilities between periods t and t 4 1 for each
health state k € {1, ..., H} today,

.
i (xe]y) = <p§+1\1""'p§+1|k""'P?+1|H> (A.6)

11



where any element p; ik is obtained as stated in (2). Given the distribution over health

states conditional on being alive in ¢, yi’, the probability of being alive in t + 1 is therefore

pia(y) =mi(y) " uf (A7)

We can now write down the joint health /survival transition matrix, given by

B h1 s h,H s .S T
PiiapsPivin -0 PihapsPiap (1 pt+1|1)
M(xl0) = |, s LH s s
pt+1\H,spt+1\H pt+1|H,spt+1|H (1 o pt+1|H>
i 0 0 1 |

We can then generate the distribution y; over health/death states for any f by repeatedly
applying the transition matrix, starting with the degenerate initial distribution (A.4).
The law of motion for y; is therefore

pi1(0) " = e (0) T (x¢]6) (A.8)

In line with the initial discussion on computing PMFs over outcomes versus real-
izations of complete paths, we need to discard any paths that pass through the state
s;_1 = 0. This can be achieved by computing the PMF pu;_; according to (A.8) and then
defining the “pseudo” PMF

P = (F‘l}qr - MEE-1, 0)

Note that Y; iz 1 = Pr (s;_; = 1|l x; ), the probability of being alive in  — 1. The
terminal distribution of interest can then be computed as before, i.e.,

p(0) = iz 1(0) 'TI;_y(x;4(6) (A9)

Log-likelihood. We are now ready to write down the likelihood function for observa-
tion i. Let (5?’] be an indicator variable defined as

. 1 ifh =g
5 = L= (A.10)
0 else

12



and s; be the indicator for being alive in f, analogous to (1). Then the likelihood function

for transition i is given by

J

H .
Li(6) = s; ( ‘5?/] log Vj,t(9)> + (1 —sg) logppy41,4(6) (A.11)
=1

The estimated parameter vector 8 is the vector that maximizes the weighted sum of

the log-likelihoods over all observations.?

B.3 Confidence intervals

We compute confidence intervals nonparametrically using the Rao-Wu rescaling boot-
strap method proposed for stratified cluster sampling survey designs (see Rao and Wu
(1988), and Rust and Rao (1996) and Heeringa, West, and Berglund (2017) for textbook-
style treatments).

The RAND HRS variable RAESTRAT records the stratum IDs, and within each stratum,
RAEHSAMP identifies exactly two primary stage units (PSU) or clusters. The HRS is
divided into 56 strata and thus contains a total of 112 distinct clusters.

A bootstrap algorithm which takes into account this stratified cluster sampling is
implemented as follows:

1. Strata are held fixed, so each bootstrapped sample contains all strata. Within
each stratum, one of the two PSUs is randomly (and independently) selected for

inclusion in the bootstrap sample b =1, 2,..., B.

2. Letk, j, i and t index strata, clusters, respondents and time, respectively. Then each
respondent-level sampling weight in bootstrap sample b is rescaled according to
the following formula:

b 2wy if cluster jis included in b
Wijir =
else
This rescaling formula is a simplification of the general case in Rao and Wu (1988)

for a setting in which each stratum has exactly two clusters.

Note that the assignment of households to strata and clusters does not change over
time, so if a PSU is selected to be in the sample, a household, its respondents and

2Even though it is conceptually a standard log-likelihood estimation, the implementation is non-standard
and not included in any existing software, but specifically implemented for the problem at hand.

13



all of their transitions are selected.
. The model is re-estimated for all race/sex groups on the bootstrapped sample.

. Any statistics of interest are computed, e.g., the life expectancy of a particular
subpopulation, the difference in life expectancies between black and nonblack
groups, the probability of survival at age 50 for a black women in poor health, etc.
Denote such a statistic by 0.

. The procedure is repeated forallb = 1,2, ..., B bootstrap samples, where we set
B = 1,001 for computational reasons (estimating the main specification with five
health states for all four demographic groups 1,001 times takes almost 2 hours on
a 12-core machine).

. We obtain the (1 — «) confidence interval for 6 using the empirical CDF Fy con-
structed from {(31, 52, ees, (33} and applying the percentile method. Thus the confi-
dence interval is

Ch_q = [ﬁgl(a/z),ﬁglu - a/z)}
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C Alternative MLE specifications

In this section, we compare our main specification which uses a linear age term in (4)
and (5) to two alternative models: one with a quadratic term in age, and one which
imposes a fixed two-year transition length and discards all transitions that occur between
non-consecutive waves. Under the first alternative, the transitions are governed by the

functions

2
g (hig, mi, bi, @i | ¥) = Youmb + Y1jmb - At + Y2, pmb - T

fi (hit, mi, by, aie | ¥) = Bojmp + B jumb - @it + Bojumy - 0 j=2,...,5,

which is a straightforward extension of the main model. The second variant merits a

more detailed discussion.

C.1 Fixed two-year transition length

Table A.3 shows the relative frequencies of transition lengths observed in our HRS data.
In the pooled sample, 84% of transitions are best characterized as two-year transitions
(after rounding the number of months between consecutive interviews or between the
last interview and a recorded death date). Treating the remainder as two-year transitions

therefore potentially introduces measurement error.

All Nonblack Black

Male Female Male Female

1 6.8% 71% 6.3% 8.7% 7.3%

2 840% 83.9% 84.6%  80.7% 83.3%

3 6.4% 6.2% 6.6% 6.0% 6.2%
>4  28% 2.8% 26%  4.6% 3.3%

1

2

3

N. of years

96.9%  97.0% 97.2%  95.0% 96.4%
2.1% 2.0% 1.9%  3.3% 2.4%
1.0% 1.0% 0.9% 1.7% 1.2%

N. of waves

Table A.3: Transition lengths in the HRS. Table reports the fraction of transitions in each category.
The number of years are computed as the number of months between consecutive
interviews (or a recorded death date), rounded to the nearest full year.

Moreover, the bottom part of the table reports the fraction of transitions which span
one, two, and three or more survey waves.

Figure A .4 illustrates how such differences in transitions lengths arise. First, consider
person 1 who does not respond in survey wave 7: this gives rise to a 4-year transition
from wave 6 to wave 8, an observation which cannot be used when requiring transitions
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W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Wil

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

person 1 . . . . . . ...................... . . . .
Age 50 52 54 5 58 60 64 66 68 70
Person 2 ® ® ® ® ® ® ® ®
Age 50 52 54 56 58 60 61 64
Person 3 [ S S —— ) T
Age 70 72 74 84

Figure A.4: Illustration of irregular and missing observations in the HRS. Waves and calendar
years represent the survey’s biennial structure, and a respondent’s age is recorded at
the date of an interview or death.

to be at 2-year frequencies between adjacent waves. Next, person 2 illustrates that even if
a respondent is present in consecutive waves, due to randomness of when an interview
is administered in the field, the transition between waves 9 and 10 is best described as a
1-year transition between ages 60 and 61, whereas the next transition occurs over three
years. Lastly, person 3 shows a case where an individual permanently stops responding
to the survey from wave 5 onward, but the death at age 84 is nevertheless recorded in
the HRS. This gives rise to a 10-year transition that ends in death.

One approach (e.g., the one used in Pijoan-Mas and Rios-Rull (2014)) is to drop all
transitions over two or more waves, which amounts to five percent of the sample for
black men, a group which already has relatively few observations in the HRS. An
estimator using all the transitions is therefore more efficient in the sense that it does not
discard these data points.

In the remainder of this section, we compare the differences between the main specifi-
cation (linear in age and flexible transition length) with the alternative of either imposing
a fixed two-year transition length, or employing a specification that is quadratic in age.
First, Figure A.8 plots the life expectancy at ages 50 and 70 when we collapse health into
a single state, thus eliminating any health heterogeneity. As shown, all models have
very similar predictions. The exact life expectancies are also listed in Table A .4, and
they never differ by more than half a year, which is usually within the 95% confidence
interval of the main estimates. The table additionally includes the differences in race
and sex, which are again very similar across the three specifications.

Next, we reintroduce health heterogeneity and repeat the above exercise. In Figure A.6
and Figure A.7, we compare the transition probabilities across the three specifications for
the nonblack and black subsamples, respectively, and also contrast the model predictions

with the raw data. To facilitate this comparison, we use two-year transition and survival
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Figure A.5: Life expectancy by race and sex for alternative model specifications without health
heterogeneity. Error bars indicate bootstrapped 95% confidence intervals.

probabilities since these are most frequently observed in the HRS, and since it’s not
possible to back out one-year probabilities from the fixed two-year model (see section D).
As in the main text, we restrict the figures to three health states, even though all models
are estimated on the full set of five self-reported health states. The transition proba-
bilities are very similar across models in most cases, with some differences emerging
predominantly for the black subsample that arise due to the smaller sample size.

Turning to life expectancies, Figure A.8 plots these values disaggregated by race, sex
and health, and Table A.5 reports the point estimates and confidence intervals as well
as race and sex differences. As before, the three specifications give similar estimates,
differing by at most 0.7 years for the black subsample.

To summarize, a parsimonious model with a linear age term for the most part yields
results that are quite close to a quadratic age specification with substantially more
parameters (more specifically, 100 = 2 x 2 x 5 x 5 additional parameters for a model that
includes race, sex and five health states). For most groups, the model with fixed two-year
transition periods comes very close to the more flexible but also more complex estimator
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Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black

Age 50
Linear age 78.2 82.2 74.4 78.0 3.8 4.1 —4.0 —-3.7
[77.8,785] [81.8,825] [735,753] [77.3,789] [28,48] [32,50]  [—44,—36] [-49, —23]
Linear age, 2 years 78.2 82.1 74.3 77.8 4.0 43 -39 —3.6
[77.9,78.6] [81.8,824] [734,753] [77.0,788] [29,50] [33,52] [-43,-35] [-48 —23]
Quadratic age 78.1 82.1 74.4 77.9 3.7 4.2 —4.0 —3.6
[77.7,785] [81.8,824] [735,753] [772,789] [26,47] [32,50]  [—44,—35] [-48, —22]
Age 70
Linear age 83.0 85.5 81.2 84.0 1.8 1.5 —25 —2.7
[82.9,832] [853,857] [80.7,81.7] [834,847] [13,24] [08,22] [-27,-22] [-3.7,-19]
Linear age, 2 years 82.9 85.3 81.0 83.6 19 1.7 —24 —2.6
[82.7,83.1] [85.1,855] [80.5,81.5] [83.0,843] [13,25] [1.0,24] [-26,-22] [-35 —17]
Quadratic age 83.2 85.6 81.2 84.1 1.9 1.5 —2.4 —-2.9
[83.0,83.3] [853,85.8] [80.6,81.8] [83.5,848] [13,26] [07,21] [-27,-22] [-4.0,—2.0]

Table A.4: Life expectancy by race and sex for alternative model specifications without health
heterogeneity. Right columns show differences in race (holding sex fixed) and sex
(holding race fixed). Brackets indicate bootstrapped 95% confidence intervals.

underlying our main results. However, the former exhibits a tendency to estimate lower
survival chances in old age, in particular among the black subpopulation, which is
also evident in the right-most column of Figure A.7, where the survival probability is
generally slightly below the other lines. This might be due to the fact that with a fixed
two-year transition length, it does not matter whether a person died in the first or second
year, whereas surviving the first year results in higher estimated survival probabilities
in the flexible model. This distinction can be particularly potent among the very old
who already have a low survival probability. Even though the fixed two-year approach
performs well for the most part, ultimately its usefulness comes down to whether one is
willing to calibrate an economic model where such estimates are to be incorporated to a

biennial frequency.
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Two-year transition probabilities for nonblack groups for alternative model specifi-
cations. Graphs show the best (“excellent”), middle (“good”) and worst (“poor”)
health states. Health transition probabilities are conditional on survival. Right-most
column shows survival probabilities. Missing dots indicate that some transitions are
not observed in the data.
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Figure A.7: Two-year transition probabilities for black groups for alternative model specifications.
Graphs show the best (“excellent”), middle (“good”) and worst (“poor”) health states.
Health transition probabilities are conditional on survival. Right-most column shows
survival probabilities. Missing dots indicate that some transitions are not observed
in the data.

20



male/nonblack B Linear age female/nonblack

@ Linear age, 2 years
BN Quadratic age

70 III III III III iii

male/black female/black

JmmmmﬂMMWMn

Exce;llent Verylgood Good Fair Poor Exce;llent Verylgood Gc;od FaI\ir Poor
Self-reported health Self-reported health

(a) Age 50

@©
o

Life expectancy
oo
=}

~
w
L

@©
o

Life expectancy
el
o

~
o
L

male/nonblack BN Linear age female/nonblack
mwm Linear age, 2 years

©
o

Life expectancy
[o2]
(=]

~
wu
L

- III III T III III III I I
70 : : III III III , : : I II

male/black female/black
>
g 85 b
a
3
8
80 1 b
g
o
5}
h=1 - B
70 h T T T T T h T T T T T
Excellent Very good Good Fair Poor Excellent Very good Good Fair Poor
Self-reported health Self-reported health
(b) Age 70

Figure A.8: Life expectancy by race, sex and health state for alternative model specifications.
Error bars indicate bootstrapped 95% confidence intervals.

21



Nonblack Black Diff. in race Diff. in sex
Male Female @ Male  Female Male Female Nonblack Black
Age 50
Health: (1) Excellent
Linear age 79.5 83.3 76.1 79.8 34 35 —-3.8 -3.7
[79.2,79.8] [83.0,835] [75.2,77.0] [78.8,80.7]  [24,43]  [25,45] [-41,-35] [-5.1,-23]
Linear age, 2 years  79.5 83.2 75.9 79.6 3.6 3.6 -3.7 —3.7
[79.2,79.8] [829,835] [75.0,769] [78.7,80.6] [25,46]  [25,46]  [-41,-34] [-52,-22]
Quadratic age 79.5 83.2 76.6 79.8 29 3.3 -3.7 -3.3
[79.2,79.8] [829,834] [757,77.3] [78.7,807] [2.0,38]  [23,45]  [—40,-34] [-47,—-19]
Health: (3) Good
Linear age 78.3 82.3 75.3 79.0 3.0 33 —4.0 -3.7
[78.0,787) [820,826] [745,762] [782,799]  [2.0,40]  [24,41]  [—44,-36] [-5.0,-25]
Linear age, 2 years 78.4 82.3 75.3 78.9 3.1 3.4 -3.9 -3.6
[78.0,78.8]  [820,826] [744,762] [78.1,79.8]  [2.0,42]  [25,43]  [—43,-35] [-49, 23]
Quadratic age 78.2 82.2 754 78.8 2.8 34 —4.0 —-34
[77.8,78.6) [81.9,826] [746,762] [78.0,79.7] [19,38]  [24,43]  [-45,-35] [-47,—22]
Health: (5) Poor
Linear age 73.4 78.4 71.8 75.4 1.7 3.0 -5.0 -3.7
[72.7,744] [77.7,790] [705,732] [744,767] [—0.0,34] [15,42] [-6.0,—-37] [-53,—20]
Linear age, 2 years ~ 73.6 78.7 72.0 75.3 1.6 3.4 -5.1 -33
[72.8,745] [78.1,79.2] [70.8,73.3] [743,76.6] [—00,32] [20,46]  [—6.1,—39] [—4.8, —16]
Quadratic age 734 78.8 71.6 75.6 1.8 3.2 -53 -39
[723,747) [77.8,79.6] [69.7,73.4] [743,77.0] [-03,41] [15,47] [-68,—36] [-6.3,—18]
Age 70
Health: (1) Excellent
Linear age 84.9 87.1 82.8 85.5 2.2 1.6 22 -2.8
[84.7,852] [87.0,87.4] [82.0,83.6] [849,865] [14,29]  [0.7,23]  [-25,-20] [-43,—16]
Linear age, 2 years 84.7 86.9 82.5 85.0 2.3 19 —2.2 —2.6
[845,85.0] [86.7,87.1] [81.6,83.3] [843,86.01 [153.1]  [09,27] [-25-19] [-41,-13]
Quadratic age 85.1 87.4 82.4 85.7 2.7 1.8 —24 -3.3
[84.8,853] [87.2,87.7] [81.4,83.5] [842,866] [1.6,37]  [08,32]  [-27,—21] [-49,-13]
Health: (3) Good
Linear age 834 85.8 81.9 84.8 1.5 1.1 —24 -29
[832,83.6] [85.6,86.0] [81.3,824] [842,855] [09,21]  [03,1.7]  [-27,-22] [-4.0,-20]
Linear age, 2 years ~ 83.2 85.6 81.7 84.3 1.5 13 —24 —2.6
[83.0,83.4] [854,859] [81.1,823] [838,851] [09,22]  [05,19] [-27,-21] [-37 —17]
Quadratic age 83.6 86.0 81.9 85.0 1.7 1.0 —24 -3.1
[833,838] [85.8,862] [81.1,824] [844,856] [1.1,25]  [03,1.7]  [-27,—22] [—44, —22]
Health: (5) Poor
Linear age 78.6 81.5 78.8 81.5 -0.2 0.0 -3.0 —-2.7
[78.4,78.8] [81.3,81.8] [78.3,79.3] [809,823] [-08,03] [-0.7,08] [-3.3,—26] [-3.7,—18]
Linear age, 2 years 78.5 81.5 78.7 81.2 -0.2 0.2 -3.0 —25
[783,787) [81.2,81.7] [782,79.2] [80.6,820] [—08,04] [-0.6,09] [-3.4,—26] [-3.6,—16]
Quadratic age 78.7 814 78.9 81.5 -0.2 —-0.1 —2.8 —2.6
[783,79.0] [81.1,81.8] [78.1,79.5] [80.8,823] [-08,05] [-09,08 [-3.3,-23] [-38 —17]

Table A.5: Life expectancy by race, sex and health for alternative model specifications. Right
columns show differences in race (holding sex fixed) and sex (holding race fixed).
Brackets indicate bootstrapped 95% confidence intervals.
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D Alternative method to obtain one-year transitions

D.1 The general problem

In this section, we demonstrate that in general, it is not possible to recover correct
one-year transition probabilities from transition probabilities which were estimated over

a two-year horizon.

Survival. Take survival first, and assume that we have estimated
Pr(sgi2=1|hga),

the probability of surviving to the next wave for a respondent at age a in health state
ha, where s, is a dummy indicating survival at age 4. One simple approach to obtain
one-year survival probabilities is to assume that they are the same at a and a + 1, and

therefore

Pr(ss41=1|hga)=Pr(sspo=1|hgy1 =2,a+1)

_ \/pr( Ses2 = 1| haya) (A12)

Comparing this to the correct expression, given by

T

Pr(spo=1|hya) =Y Pr(soo=1|ho1 =ja+1)xPr( o1 =j| haa)
j=1

highlights two problems with this reasoning: first, because health itself does not nec-
essarily remain unchanged between a and a 4+ 1, there is no reason that the survival
probability between a and a + 1 should be the same. For example, an individual who
suffered from a severe health condition at age a but recovered within a year would likely
face a lower mortality risk at a + 1.

Second, even if we are willing to accept (A.12) and additionally assume that the health
state is fixed at h, = j for all periods, we could alternatively compute the one-year
survival probability Pr ( s,42 = 1| hs41 = j,a+ 1) atage a + 1 as the square root of the
estimated two-year probability between ages a +1 and a + 3,

Pr(sas2 = 1] hos1 = j,a+1) = \/Pr(sar3 = 1] hoyr = ja+1) (A.13)
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Combining (A.12) and (A.13) implies that

VPr (a2 =11 ho=j,a) = \/Pr(sar3=1] Iy = ja+1)

but there is no reason why this equality should hold in general. In fact, it will not hold if
survival chances are decreasing in age. To summarize, the assumption that mortality is
constant over two-year periods yields contradictory one-year survival probabilities, and
the fact that health itself can change every year makes this assumption unreasonable in
the first place.

Health transitions. The problem becomes even more severe with health transitions,
since for a five-state health process the option to “take the square root” disappears. Even
with only two health states there is not enough information in two-year transitions to
identify one-year transition probabilities.

To illustrate, assume that we have estimated the two-year transition matrix at age a
for a two-state health process which takes on the values good and bad:

g 1-&
SR S

where fé denotes the probability to remain in health state j over the next two years. Let

[11

7T} be the probability to stay in the same health state for one year, and let II, be the

Ha:[ ﬂf 1—7T§]

b b
1—m, i,

one-year transition matrix,

As argued above, one cannot assume that the transition probabilities are constant over
the two-year period, because one would get different transition probabilities depending
on whether the underlying two-year transition starts at 2 — 1 or a. Hence, two different

transition matrices Il, and I1,; are required, such that conditional on survival,
g, = 1,11, (A.14)
Writing out the nonlinear equation system explicitly,

& = n§n§+1 +(1—7f)(1- 7T2+1)

b b b_b
gu = (1 - na)(l - 7-[5—&-1) T T T
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we see that there are two equations but four unknowns (7T§ , 7TZ , 7T§ 1 Z 1

is no unique solution even for two health states, and with more health states, the number

7’ ;). Hence there

of unknowns increases considerably faster than the number of equations.

D.2 The approximation method of De Nardi, French, and Jones (2010)

De Nardi, French, and Jones (2010), henceforth DF], use the following approximation
to obtain one-year transition probabilities from two-year estimates.® First, they assume
that one-year survival probabilities are given by

Pron (sae1 =1 h,a) = /Pr(sa2 =1 ha) Va,h

ignoring the resulting inconsistencies discussed in the previous section. Second, for
health transitions conditional on survival, they assume that health transition probabilities

are constant over the two-year period. In this special case, (A.14) becomes
B, = ILIL, (A.15)

which gives rise to a a system of two equations and two unknowns (they only have a
good and bad health state).

We replicate their approximation using our fixed two-year estimates from section C.
With all five health states, (A.15) becomes a nonlinear equation system in 5 x 4 = 20
unknowns which needs to be solved using a numerical root-finder.*

We first contrast the two methods using the model without health heterogeneity, as
then any differences are due to mortality. In Figure A.9, we plot the survival probabilities
for all groups, and the DFJ approximation generates higher mortality rates at all ages.
While the magnitudes shown in the figure are not large, they accumulate to a drop in
life expectancy of about half a year, as shown in Table A.6.

The reason for this downward bias is straightforward: since the chances of survival

3The method is not explicitly discussed in their paper or the supplemental material available on the
journal website. However, details can be found in the code package provided on Eric French’s website.

“There is no guarantee that this nonlinear equation system has a unique root, or that a numerical root
finder is able to find one in a reliable manner. We used the HYBR and LM methods from the Fortran
MINPACK library, which struggled to solve (A.15) for the smaller black samples and for high ages. We
view this as another reason to prefer our maximum likelihood estimation method.
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Figure A.9: One-year survival probabilities for model without health heterogeneity: main speci-
fication vs. the approximation from De Nardi, French, and Jones (2010).

Nonblack Black
Male Female Male Female
Age 50
Main spec. 78.2 82.2 74.4 78.0
[77.8, 78.5] [81.8, 82.5] [73.5,75.3] [77.3,78.9]
DFJ (2010) 77.8 81.7 73.8 77.4
Age 70
Main spec. 83.0 85.5 81.2 84.0
[82.9, 83.2] [85.3, 85.7] [80.7, 81.7] [83.4, 84.7]

DFJ (2010) 82.6 84.9 80.7 83.3

Table A.6: Life expectancy by race and sex for model without health heterogeneity: main spec-
ification vs. the approximation from De Nardi, French, and Jones (2010). Brackets
indicate bootstrapped 95% confidence intervals.
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drop with age, it follows that

Pron (Sar1=1]a) = \/Pr(sar2 = 1] a)
= \/Pr(sp2=1]a+1)Pr (5.1 =1]a)

< /Pr(sea=1]a)Pr(s;a=1]a)
:Pr(sa+1:1|a)

This effect carries over to the full model with health heterogeneity, but is additionally ac-
companied by changes in health transitions that don’t seem to follow any salient pattern.
In Table A.7, we contrast the life expectancies resulting from the DFJ approximation

7

with our main results (the rows labeled “main spec.” are the same as in Table 2). As
the table illustrates, the downward bias remains since almost all life expectancies are
(weakly) lower than our main estimates. For example, for a nonblack man at the age of
50, the approximation predicts a life expectancy that is 0.6 years lower. The disparities
are similar for other demographic groups as well as for the life expectancy at the age of
70. Note that most of these differences are statistically significant. The only exception
are individuals in poor health, where the point estimates are almost identical across both

methods.
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Nonblack Black

Male Female Male Female
Age 50
Health: (1) Excellent
Main spec. 79.5 83.3 76.1 79.8
[79.2,79.8] [83.0,83.5] [75.2,77.0] [78.8,80.7]
DFJ (2010) 78.9 82.6 75.4 79.0
Health: (3) Good
Main spec. 78.3 82.3 75.3 79.0
[78.0,78.7] [82.0,82.6] [74.5,76.2] [78.2,79.9]
DFJ (2010) 77.8 81.7 74.8 78.3
Health: (5) Poor
Main spec. 73.4 78.4 71.8 754
[72.7,744] [77.7,79.0] [70.5,732] [74.4,767]
DFJ (2010) 73.5 78.4 71.9 75.1
Age 70
Health: (1) Excellent
Main spec. 84.9 87.1 82.8 85.5
[84.7,85.2] [87.0,87.4] [82.0,83.6] [84.9,86.5]
DFJ (2010) 84.2 86.4 82.0 84.5
Health: (3) Good
Main spec. 83.4 85.8 81.9 84.8
[83.2,83.6] [85.6,86.0] [81.3,824] [84.2,855]
DFJ (2010) 82.8 85.1 81.3 83.9
Health: (5) Poor
Main spec. 78.6 81.5 78.8 81.5
[78.4,78.8] [81.3,81.8] [78.3,79.3] [80.9,82.3]

DFJ (2010) 78.6 81.5 78.7 81.2

Table A.7: Life expectancy by race, sex and health: main specification vs. the approximation from
De Nardji, French, and Jones (2010). Brackets indicate bootstrapped 95% confidence
intervals.
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E Additional estimation results

E.1 Predicted health distributions

In Figure A.10, we plot the predicted distribution over health states and death for the
remaining demographic groups: nonblack women, black men, and black women (the

corresponding Figure 3 can be found in the main text).

E.2 Transition matrices (one-year horizon)

The one-year health-to-health transition and survival probabilities are shown in Fig-
ure A.11 and Figure A.12 for the nonblack and black subpopulations, respectively.

E.3 Long-run survival outcomes

In Figure A.13, Figure A.14, Figure A.15 and Figure A.16, we show how the survival
predictions from the estimated model line up with actual fractions of survivors in the
HRS for all race and sex combinations. These graphs expand Figure 6 in the main text to
include the first ten waves of our sample and can thus be used to assess the quality of
short- and long-run predictions. See the main text for a detailed description of how the

graphs are constructed.
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Figure A.10: Predicted distribution over health states and death conditional on initial health
for a 50-year-old (upper row) and a 70-year-old (lower row). The colors indicate
probability per health state (dark green being the best health state, red the worst).
The white area represents the probability of being dead.
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Figure A.11: One-year transition probabilities for the nonblack subpopulation. Shaded areas indicate bootstrapped 95% confidence intervals.
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Figure A.13: Model-predicted survival probabilities (on the x-axis) against the fraction of sur-
vivors (on the y-axis) for nonblack men, plotted for ten different time periods. The
top left graph represents the time period between the first wave (1992) and the last
wave (2014). Each dot represents a two-year age bin.

33



1.0 { >
Population

0.2m
084 © 1.0m
@ 5.0m Age 50-51 Age 52-53 ;7

)

0.6

>—Age 60-61

0.4

Frac. of survivors
'

0.2

1992-2014 ) 1994-2014
0.0 Age 90-91

1.0

Age 50-51

0.8 Age 54-55 %

o

0.6

0.4

Frac. of survivors

0.2

1996-2014 1998-2014
0.0 Age 90-91 Age 90-91

1.0

Age 52-53 —& Age 54-55 ;

0.8 .

0.6

0.4 O

Frac. of survivors

0.2

2000-2014 © 2002-2014
0.0 12— Age 90-91 ©__Age 90-91

1.0
Age 50-51 % Age 52-

[,
[

0.8 G >
> )

0.6 g o

0.4

Frac. of survivors
@

0.2

=——Age 90-91
7 Age 90-91 2004-2014 2006-2014
0.0

1.0

Age 54-55 Age 50-51

0.8

o® °®

0.6
-Age 90-91

0.4 o

Frac. of survivors

Age 90-91
0.2

2008-2014 2010-2014
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob Model-predicted surv. prob

Figure A.14: Model-predicted survival probabilities (on the x-axis) against the fraction of sur-
vivors (on the y-axis) for nonblack women, plotted for ten different time periods. The
top left graph represents the time period between the first wave (1992) and the last
wave (2014). Each dot represents a two-year age bin.
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Figure A.15: Model-predicted survival probabilities (on the x-axis) against the fraction of sur-
vivors (on the y-axis) for black men, plotted for ten different time periods. The top
left graph represents the time period between the first wave (1992) and the last
wave (2014). Each dot represents a two-year age bin.
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Figure A.16: Model-predicted survival probabilities (on the x-axis) against the fraction of sur-
vivors (on the y-axis) for black women, plotted for ten different time periods. The
top left graph represents the time period between the first wave (1992) and the last
wave (2014). Each dot represents a two-year age bin.
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E.4 Life expectancies by age

In the main text, we report life expectancy at ages 50 and 70. Figure A.17 shows
life expectancy conditional on health for the whole age range of 50-90 for all four

demographic subgroups.
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Figure A.17: Life expectancy by age and health state. Dark green indicates best (“excellent”)
while red indicates worst (“poor”) health. Shaded areas indicate bootstrapped 95%
confidence intervals.
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E.5 Life expectancies by education group

Table A.8 shows life expectancy by race, sex and education for the model without health

heterogeneity.
Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black
Age 50
No high school 75.0 78.8 725 75.9 25 29 -3.8 —-34
[743,75.7] [783,794] [71.0,741] [75.1,77.0]  [0.7,4.1] [17,40]  [-49,-28] [-52,—-17]
High school 77.9 82.7 75.4 79.3 2.5 34 —4.8 -39
[774,783] [822,83.1] [742,766] [779,809] [1.2,38]  [1.7,48] [-54,—41] [-6.1,—-19]
College 81.7 84.9 77.4 81.6 4.3 3.3 -3.2 —4.2
[80.9,82.6] [839,859] [75.0,802] [79.5,839] [1.3,69]  [08,57] [-45,—-19] [-7.9,—03]
Age 70
No high school ~ 81.5 83.9 80.5 82.9 1.0 1.0 —-2.3 -2.3
[81.3,81.8] [83.5,842] [80.0,81.1] [823,835] [04,16]  [02,17] [-27,-19] [-34, —13]
High school 829 85.9 82.1 85.4 0.8 0.5 -3.0 -3.3
[82.6,832] [85.6,86.2] [80.9,83.3] [845,866] [-04,20] [-08,15] [-33,-26] [-5.1,—17]
College 85.3 87.0 82.5 85.6 29 1.3 -1.6 -3.1
[84.8,859] [86.2,87.7] [80.2,864] [837,880] [-10,51] [-1.1,34] [-26,-07] [-63,09]

Table A.8: Life expectancy by race, sex and education for model without health heterogeneity.
Right columns show differences in race (holding sex fixed) and sex (holding race
fixed). Brackets indicate bootstrapped 95% confidence intervals.
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E.6 Life expectancies by income group

Table A.9 shows life expectancies by race, sex and permanent income tercile for the

model without health heterogeneity.

Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black
Age 50
1st tercile 75.0 79.7 70.9 74.8 41 49 —4.7 -39
[744,758] [79.2,80.1] [69.5,72.4] [738,760] [2.3,57]  [3.6,6.1] [-54,-39] [-57 —19]
2nd tercile 78.1 82.6 75.9 81.3 2.2 1.3 —4.6 —5.4
[77.4,787] [82.1,832] [749,769] [79.9,829] [1.0,34] [-04,29] [-53,-38] [-7.3,-35]
3rd tercile 81.2 85.3 79.8 83.5 1.5 1.8 —4.1 -3.7
[80.6,81.8] [84.7,86.0] [77.6,819] [814,855] [-09,38] [-04,39] [-49,-32] [-63,—12]
Age 70
1st tercile 81.8 84.3 79.8 82.6 2.0 1.6 -2.5 —-29
[81.4,822] [84.0,846] [793,80.3] [819,835] [14,26]  [07,25]  [-29,-20] [—4.0,—18]
2nd tercile 83.0 85.8 81.3 85.5 1.7 0.3 2.7 —4.2
[82.8,833] [854,86.1] [80.5,82.1] [84.6,864] [1.0,25] [-08,13] [-3.1,-23] [-55 —29]
3rd tercile 84.3 87.2 84.4 86.7 —-0.0 0.4 -29 —-24
[83.9,847] [86.7,87.7] [82.2,86.4] [853,885] [-22,22] [-13,19] [-34,-23] [-48 —04]

Table A.9: Life expectancy by race, sex and permanent income tercile for model without health
heterogeneity. Right columns show differences in race (holding sex fixed) and sex
(holding race fixed). Brackets indicate bootstrapped 95% confidence intervals.

39



E.7 Life expectancies by calendar year

In this section, we document changes in life expectancy over the sample period of 1992—
2012. To this end we augment the main specification in (4) and (5) with a term that is

linear in the calendar year t:

g (hit, mi, bi, ai | v) = Yoo + Y1 hmb - @it + V2, hmb -
fi (hit, mi, by, aie | v) = Bopmy + B jumb - @it + Bojumy -t j=2,...,5,

In Table A.10, we report the estimated increase in life expectancies over the 20-year
period using the model without health heterogeneity. In Table A.12 we repeat the
exercise, now allowing for differences in health. To make the model manageable we
again re-categorize health into three groups instead of the five reported in the HRS. For
life expectancy at the age of 50, we report the results for the year 2010 as there were
hardly any 50-year-olds in the survey in 2012, and we therefore cannot compute the
distribution over health for this age group which is required for our estimates averaged
over all health states. For analogous reasons, we report the life expectancy at age 70 for
the year 1994 instead of 1992. In Table A.11, we contrast our estimates with the NVSS
tigures for the corresponding calendar years. As can be seen, the model with health
heterogeneity is generally slightly closer to the NVSS figures. The largest discrepancies
between the average estimates from the health model and the NVSS figures can be found

for 50-year-old black women.

Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black
Age 50
Year: 1992 76.6 81.4 72.6 77.0 4.0 44 —4.8 —44
[76.0,77.2] [80.8,82.0] [71.1,741] [759,782] [23,57] [32,56] [-56,—40] [—6.0,—29]
Year: 2012 79.2 82.7 75.5 78.7 3.7 4.0 -3.4 -3.1
[78.7,79.9] [82.1,832] [744,76.8] [775,80.01 [23,51] [2553] [-41,-27] [-5.0,—15]
Age 70
Year: 1992 81.9 84.9 80.1 83.2 1.8 1.7 -3.0 -3.2
[81.5,82.3] [845,854] [79.3,809] [825,84.0] [1.0,27] [0825] [-3.6, —24] [-41 —23]
Year: 2012 83.8 85.9 82.0 84.4 1.8 1.4 -2.1 -24
[83.4,842] [855,863] [81.1,829] [836,855] [08,27] [03,24] [-26,—-16] [-39, —1.1]

Table A.10: Life expectancy by race and sex at the beginning and end of the sample period
for model without health heterogeneity. Right columns show differences in race
(holding sex fixed) and sex (holding race fixed). Brackets indicate bootstrapped 95%
confidence intervals.
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Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black

Age 50
Year: 1992 771 81.9 73.0 78.5 4.1 3.4 —4.8 —55
Year: 1994 772 81.7 73.1 78.5 4.1 32 —4.5 —54
Year: 2010  79.7 83.3 76.6 81.1 3.1 22 —-34 —4.5
Year: 2012 79.9 83.4 77.0 81.5 29 1.9 -35 —4.5
Age 70
Year: 1992 824 85.6 81.0 84.3 1.4 1.3 -3.2 -3.3
Year: 1994 825 85.4 81.0 84.1 15 1.3 -29 -3.1
Year: 2010  84.2 86.4 82.9 85.8 13 0.6 —22 -29
Year: 2012 844 86.5 83.2 85.9 1.2 0.6 —2.1 —-2.7

Table A.11: Life expectancy by race and sex at the beginning and end of the sample period
taken from the NVSS. Right columns show differences in race (holding sex fixed)
and sex (holding race fixed). Data source: https://www.cdc.gov/nchs/products/
life_tables.htm

41


https://www.cdc.gov/nchs/products/life_tables.htm
https://www.cdc.gov/nchs/products/life_tables.htm

Nonblack Black Diff. in race Diff. in sex
Male Female Male Female Male Female Nonblack Black
Age 50
Average over health
Year: 1992 76.9 81.6 73.0 77.1 3.9 4.5 —-4.7 —4.1
[76.3,77.5] [81.0,822] [714,747] [759,783] [22,5.7] [34,58]  [-55,-39] [-56, —24]
Year: 2010 79.1 82.7 75.5 79.1 3.6 3.6 —3.6 —3.6
[785,79.6] [822,83.1] [744,765] [78.0,804]  [2.3,49] [2.2,47]  [-42,-29] [-5.2,—2.0]
(1) Best health
Year: 1992 77.6 82.1 74.1 78.1 3.5 4.0 —4.6 —4.1
[77.0,78.1] [815,82.7] [72.6,75.6] [77.0,792]  [2.0,5.0] [29,52]  [-53,-38] [-55,-24]
Year: 2010 79.9 83.3 76.4 80.1 3.5 3.2 —-34 —3.7
[79.4,803] [82.8,83.8] [754,77.5] [79.0,814] [23,4.7] [19,45]  [-40,-29] [-54,—21]
(3) Worst health
Year: 1992 74.4 79.9 71.4 75.5 3.1 4.4 -5.5 —4.2
[73.7,75.2]  [79.2,80.6] [69.5,734] [744,76.8] [L0,5.2] [3.0,57]  [-64,—45] [-59,—22]
Year: 2010 76.6 80.9 73.9 77.7 2.7 3.1 —4.2 —3.8
[759,77.3] [80.3,81.4] [72.6,752] [76.6,792] [1.2,4.2] [1.7,43]  [-50,—34] [-5.6,—2.2]
Age 70
Average over health
Year: 1994 82.3 85.1 80.3 83.2 2.0 1.9 —2.8 —-29
[81.9,827] [847,855] [79.6,81.0] [82.6,839] [12,27] [1.1,26] [-33,-23] [-3.7,—2.0]
Year: 2012 83.8 86.0 82.3 84.8 1.6 1.2 —2.1 —2.5
[83.5,842] [85.6,864] [813,83.1] [83.8,859] [0.6,2.7] [01,22]  [-26,-16] [-40,-12]
(1) Best health
Year: 1994 83.4 86.1 81.7 84.5 1.8 1.7 -2.7 -2.8
[83.0,83.8] [85.8,86.6] [81.0,824] [83.7,852]  [L0,2.6] [08,25]  [-33,-22] [-3.7 —18]
Year: 2012 85.2 87.2 83.2 85.8 2.0 14 -1.9 -2.6
[849,85.6] [86.7,87.5] [822,842] [848,87.0] [0.9,3.1] [0.1,25]  [-24,—14] [-43,—1.1]
(3) Worst health
Year: 1994 80.2 83.2 79.3 82.2 0.8 1.0 -3.0 -29
[79.8,80.6] [82.8,83.6] [78.7,80.2] [815,83.0]  [0.0,16] [02,1.8] [-35,—26] [-3.7,—2.0]
Year: 2012 81.5 83.8 80.8 83.4 0.7 0.3 —2.3 —2.7
[81.1,81.9] [83.4,842] [799,81.6] [825,845] [-03,17] [-07,13] [-28 —1.8 [-40,—15]

Table A.12: Life expectancy by race and sex at the beginning and end of the sample period for
model with three health states. Right columns show differences in race (holding sex
fixed) and sex (holding race fixed). Brackets indicate bootstrapped 95% confidence

intervals.
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F Additional results from the OLG model

FE1 Effective discount rates

An individual’s effective discount rate (determined by the common discount factor
and future survival probabilities) is time-varying and depends on the planning horizon.
After a bad health shock, the discount rate immediately rises since it implies a shorter
expected life span, while the opposite happens in the event of a good health shock.

The fact that the effective discount rate depends on the whole sequence of future age-
and health-dependent transition and survival probabilities makes it difficult to compare
across different individuals. We therefore use the following measure of effective average
discounting to make such comparisons possible. For an individual of age a in health h,
we implicitly define the effective average discount rate ¢ at a horizon of T years as

T
ﬁT ‘Pr(sger=1|m,b,h,a) = <1j—g>

This measure additionally relates the discounting of future states in our framework to
the discount rate of a standard infinite-horizon model without survival risk, where the
geometric mean discount rate is simply given by 0 = B~ — 1 irrespective of the forecast
horizon.

Using a specific numerical example, in our OLG model the calibrated discount factor
is p = 0.9805, and the survival probability of a nonblack male in excellent health at the
age of 50 to age 100 is 1.12%. This implies that events 50 years in the future are effectively

discounted at an average geometric rate of
0="Pr(sper =1|mbha) VTp1—1~11.6%

per year. Figure A.18 plots these rates for different time horizons for black and nonblack
males. As the figure illustrates, the effective discount rate varies substantially in the
population. As individuals age, the discount rate generally increases (due to a lower
probability of survival), except for the worst health state which is associated with a
markedly lower chance of survival even at middle ages. Moreover, with the exception
of 70-year-olds in bad health, nonblack individuals have a higher effective discount rate

because of their lower life expectancy.
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Figure A.18: Effective discount rate as a function of current age (50 or 70) and forecast horizon.
The thin black line indicates the discount rate without survival risk, ~! — 1. Dark
green indicates best (“excellent”) while red indicates worst (“poor”) health.

FE.2 Social Security wealth
F.2.1 Social Security wealth in levels

Figure A.19 and Figure A.20 show the model-predicted Social Security wealth for non-
black and black males, respectively, for different interest rate scenarios (in rows), health,
and labor productivity. The columns show Social Security wealth computed at the age
of 50, 65 (the exogenous retirement age) and 70.

Unsurprisingly, the present value of Social Security benefits in levels is strongly in-
versely related to the interest rate, whereas the relative difference between black and
nonblack groups is not very sensitive to which interest rate is applied. Intuitively, Social
Security wealth increases with labor income (which is tied to labor productivity), except
at the very top of the income distribution due to the cap on earnings subject to payroll
taxes (the so-called contribution and benefit base), so that higher earnings do not trans-
late into higher Social Security entitlements. In this model, the gradient with respect to
health arises solely from the fact that less healthy individuals are less likely to receive

benefits for many years, thus decreasing their Social Security wealth.

F.2.2 Disaggregated welfare calculations

In Figure A.21, we show the CEV welfare measure disaggregated by pre-retirement
labor productivity which is directly tied to labor and retirement income. Higher labor
productivity translates into higher CEV values ceteris paribus since the amount of fore-

gone benefits increases compared to a nonblack individual with a longer life expectancy.
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Figure A.19: Discounted expected Social Security wealth for nonblack males. Values on the y-
axis are expressed in terms of average pre-tax annual earnings of working-age
individuals. Average labor productivity is normalized to unity.

The figure should not be interpreted as saying that the highest losses are incurred by

black individuals with the highest income and lowest cash-at-hand, since in equilibrium

the probability of observing such individuals is close to zero. This is taken into account

when computing the weighted average CEVs reported in the main text.
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Figure A.20: Discounted expected Social Security wealth for black males. Values on the y-axis are
expressed in terms of average pre-tax annual earnings of working-age individuals.
Average labor productivity is normalized to unity.
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Figure A.21: CEV implied by the difference in Social Security wealth between black and oth-
erwise identical nonblack individuals at the age of 65. CEVs are shown for the
lowest, middle and highest labor productivity, where productivities are obtained
by discretizing an AR(1) process into a Markov chain with nine states. The worst
health state for black men is not visible because the CEV is almost zero.
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