
WORKING
PAPER
SERIES

Sign restrictions in high-dimensional vector
autoregressions

Paper no. 2020-21 
September 2020

Dimitris Korobilis



Sign restrictions in high-dimensional vector
autoregressions

Dimitris Korobilis
University of Glasgow

September 14, 2020

Abstract

This paper proposes a new Bayesian sampling scheme for inference in vector
autoregressions (VARs) using sign restrictions. I build on a factor model
decomposition of the reduced-form VAR disturbances, which are assumed to be driven
by a few common factors/shocks. The outcome is a computationally efficient algorithm
that allows to jointly sample VAR parameters as well as decompositions of the
covariance matrix satisfying desired sign restrictions. Using artificial and real data I
show that the new algorithm works well and is multiple times more efficient than
existing accept/reject algorithms for sign restrictions.

Keywords: high-dimensional VAR; structural inference; factor model; sign restriction;
Gibbs sampling

JEL Classification: C11, C13, C15, C22, C52, C53, C61

This paper is partial outcome of work I undertook as an external expert for the Monetary Analysis
Division of the European Central Bank (ECB). The views expressed in the paper are solely mine (as are any
remaining errors) and they do not necessarily reflect views of the ECB or the Eurosystem.

I would like to thank without implicating Christiane Baumeister, Martin Bruns, Fabio Canova, Filippo
Ferroni, Luca Gambetti, Gary Koop, Michele Lenza, Alberto Musso, Serena Ng, Michele Piffer, Davide
Pettenuzzo, John Tsoukalas and Harald Uhlig, as well as numerous seminar and conference participants, for
useful discussions and comments.

Correspondence: Professor of Econometrics, Department of Economics, University of Glasgow, 40
University Avenue, Glasgow, G12 8QQ, UK; email:dikorobilis@googlemail.com



1 Introduction

This paper proposes a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for joint

estimation of parameters of reduced-form vector autoregressions (VARs) and associated sign

restrictions for structural identification. The main idea is to allow the reduced-form VAR

disturbances to have a static factor model structure. By doing so, sign and other restrictions

can be incorporated via straightforward parametric prior distributions; the factors can be

interpreted as structural VAR disturbances; and the VAR likelihood can be used to test the

plausibility of identification restrictions as well as the general fit of the VAR. Most importantly,

the specific factor formulation of the VAR disturbance terms allows for the derivation of

a simple and highly efficient Gibbs sampling scheme that jointly samples VAR parameters

and sign restrictions. Consequently, the main contribution of this paper is to establish a

comprehensive methodology for estimation and identification in VARs that is computationally

efficient, to the extent that it can be used with an arbitrarily large number of endogenous

variables and/or shocks.

The sign restrictions approach to identification has become increasingly popular in applied

work relative to traditional identification methods, such as exclusion restrictions; see Kilian

and Lütkepohl (2017) for a detailed review of this literature. The main feature of existing

Bayesian algorithms for inference in sign restrictions, such as Rubio-Ramı́rez et al. (2010) and

Baumeister and Hamilton (2015), is that they rely on rejection sampling schemes (also known

as accept/reject algorithms) in order to search for matrices that satisfy the desired restrictions.

If restrictions are tight, as it would be the case in models with many variables and many

shocks, rejection sampling results in constantly rejecting draws. In contrast, the Gibbs sampler

proposed in this paper allows to sample sign-restricted matrices of contemporaneous structural

relations from their conditional posterior and these samples are always accepted. The benefits

of the new approach are demonstrated in a reasonably-large VAR using 15 variables for the

US. Using synthetic data I show that one can push the VAR dimension to much larger values,

as it takes only 11 minutes in a standard modern personal computer to estimate a 100-variable
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VAR(1) with 20 shocks and 200 time series observations.1 After establishing that the new

algorithm is very fast, the main purpose of this paper is to establish that the algorithm is

also numerically sensible. While the new algorithm is derived from a specific factor-VAR

methodology, it is shown that its output is qualitatively quite similar to the output of the

algorithms of Rubio-Ramı́rez et al. (2010) and Arias et al. (2018) that are based on traditional

reduced-form VARs.

The proposed factor-VAR methodology is related to previous attempts and efforts for

structural VAR identification.2 Gorodnichenko (2005) specified an identical VAR model with

reduced-rank decomposition of the disturbance terms. However, he used this specification in

order to replace standard block diagonal restrictions in VARs (Bernanke and Blinder, 1992),

with a more parsimonious identification scheme that imposes less (possibly unreasonable)

zero restrictions. More recently, Matthes and Schwartzman (2019) specify a closely related

VAR model in order to identify the structural impact of sectoral dynamics on GDP. Their

identification is via a factor structure on the residuals that has the additional assumption of

allowing for correlation within industries but no correlation across industries.

Similarly, Stock and Watson (2005a) specify a more general factor-augmented VAR

(FAVAR) and discuss in detail how various identification schemes fit in this setting. They

also note (Stock and Watson, 2005a, Section 3.5) that the sign restrictions identification

scheme proposed by Uhlig (2005) also fits the FAVAR framework. An application of this

idea can be found in Ahmadi and Uhlig (2015). From a modeling point of view, the factor

model I propose can be viewed as a special case of the Ahmadi and Uhlig (2015) FAVAR.

However, the specification proposed in this paper has completely different implications both

1Fair timing comparisons between the new algorithm and existing algorithms are hard to set up, as these
will be affected by many factors (starting from modeling choices, such as the number of restrictions imposed,
to other factors such as the programming language used). As a rough indication, I find in the empirical section
that obtaining 5,000 draws from the benchmark six-variable VAR of Furlanetto et al. (forthcoming) using the
new algorithm takes less than five minutes; using the original Rubio-Ramı́rez et al. (2010) algorithm that
Furlanetto et al. (forthcoming) adopted in order to produce their results, it takes roughly four hours to sample
2,000 models that satisfy the same restrictions.

2To be exact, the VAR with factor structure in the disturbances is inspired by the panel data literature,
and such structure has been used before in multi-country VARs; see Stock and Watson (2005b).
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algorithmically and in terms of inference. Ahmadi and Uhlig (2015) project a large vector of

observable macroeconomic variables into a smaller vector of factors and they model VAR

dynamics only on these factors. This means that there is some loss of information (not all

macro variables are explained well by the factors) and the statistical fit of the factors

determines the contribution of each structural shock on each macroeconomic variable.

Additionally, the autoregressive dynamics of the large macro dataset is represented only by

the autoregressive dynamics of the smaller vector of factors. This modeling choice means

that, inevitably, the FAVAR is unable to capture richer patterns of propagation of structural

shocks to observed macroeconomic variables. In contrast, in this paper all observable

macroeconomic variables are endogenous in the VAR and the sole role of the factors is to

represent structural shocks. Additionally, the proposed algorithm is computationally simpler

as it relies on posterior formulas for linear regression models, instead of building on more

demanding simulation smoothing techniques, as is the case with the FAVAR (see Ahmadi

and Uhlig (2015) and Bernanke et al. (2005)).

In the next Section I introduce the new methodology and associated Gibbs sampler

algorithm for inference, and I outline the key components that help speed up and stabilize

(numerically) posterior sampling in high dimensions. In Sections 3 and 4 I undertake several

important exercises using artificial and real datasets, in order to illustrate the excellent

numerical properties of the new algorithm. Section 5 concludes the paper.

2 VARs driven by a few, common shocks

The starting point is the following reduced-form vector autoregression

yt = Φxt + εt, (1)

where yt is a (n× 1) vector of observed variables, xt =
(
1,y′t−1, ...,y

′
t−p
)′

a (k × 1) vector

(with k = np+ 1) containing a constant and p lags of y, Φ is an (n×k) matrix of coefficients,

3



and ut a (n× 1) vector of structural disturbances assumed to be N (0n×1,Ω) with Ω an n×n

covariance matrix.

The most computationally efficient algorithm for sampling sign restrictions in medium-

large Bayesian VARs is developed by Rubio-Ramı́rez et al. (2010) and extended by Arias et al.

(2018).3 This algorithm can be summarized using the following steps (Kilian and Lütkepohl,

2017):

1. Use posterior sampling to obtain R samples from the joint posterior of (Φ,Ω).

2. Take a single draw (Φr,Ωr), r = 1, ..., R, and compute the Cholesky factor

Pr = chol (Ωr).

3. Obtain S draws of an orthogonal rotation matrix Qs, s = 1, ..., S, and compute Ã =

PrQs, where Ã satisfies ÃÃ′ = Ωr.

4. If Ã satisfies the desired sign restrictions retain and store this draw, otherwise discard

it.

5. Repeat steps 2,3,4 above R times.

Regarding step 1, there is a large recent literature on how to obtain samples from the

posterior of high-dimensional Bayesian VARs. Step 2 relies on simply taking the Cholesky

decomposition, while for step 3 Rubio-Ramı́rez et al. (2010) show that one can generate a

matrix W from N(0, I) distribution and then use its QR decomposition to obtain Q. Both

the Cholesky and QR factorizations have O(n3) algorithmic complexity (number of floating

points), such that these operations could only become computationally cumbersome in the

improbable scenario that a researcher wants to estimate a VAR with thousands of

endogenous variables. The basic algorithm above can be further improved by noting that it

is trivial to parallelize (hence, use modern processing capabilities), and that the same S

rotation matrices Q can be used for each of the R samples of (Φ,Ω).

3Other algorithms exist, such as the Metropolis-Hastings algorithm for SVARs of Baumeister and Hamilton
(2015), the penalty-function approach (PFA) of Mountford and Uhlig (2009) and the accept-reject algorithm of
Ouliaris and Pagan (2016). As Arias et al. (2018) note, the Metropolis-Hastings algorithm of Baumeister and
Hamilton (2015) becomes inefficient even in VARs of medium size. The Ouliaris and Pagan (2016) algorithm
was developed for inference partially identified VAR models estimated with least squares, and it is not clear
how it would generalize to VARs with thousands of parameters. Finally, the PFA approach has been shown
to imply additional unintended sign restrictions; see the discussion in Arias et al. (2018) and (Kilian and
Lütkepohl, 2017, Section 13.6.4).
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Nonetheless, the real culprit that leads this algorithm to fail in high dimensions is the

accept/reject step 4. Rejection sampling has been very popular for sampling from distributions

since the early work of von Neumann (1951), and it is a well-established that such sampling

scheme will fail if the function that is sampled is highly concentrated in a certain region of its

support. An intuitive example why this will be the case in large dimensions is the following:

Assume that we are interested in a VAR with 50 variables and we want to identify using sign

restrictions 20 shocks that we believe they describe our economy of interest. Without loss of

generality, assume we impose sign restrictions in all 50 variables over these 20 shocks. What

is the probability that we can obtain a sample from the posterior of P, generate randomly a

rotation matrix Q, and find that all 1000 restrictions in Ã = PrQs are satisfied? The answer

is that this probability becomes virtually zero. It becomes apparent that in high dimensions

the desired restrictions will be so tight that no sample of Ã will be accepted, see also the

discussion in Section 13.6.4 of Kilian and Lütkepohl (2017).

The solution proposed here is to generate a matrix Ã that satisfies the required sign

restrictions by using a scheme where every proposed sample is accepted. In order to achieve

this aim, the formulation of the VAR has to be modified in order to consider inference on(
Φ,Ω, Ã

)
as a joint estimation problem, rather than first estimate a VAR and then try to

identify sign restrictions in two steps.

The proposed solution builds on fundamental ideas in the factor model literature, as applied

to empirical problems in macroeconomics: a few common forces (which in a structural setting

we desire to identify as “primitive shocks”; see Ramey, 2016) are driving the set of shocks to

a system of n endogenous variables. In order to materialize this idea, the reduced-form VAR

disturbances in equation (1) are decomposed using the following static factor form

εt = Λft + vt, (2)

where Λ is an n × r matrix of factor loadings, ft is an r × 1 vector of factors, and vt is an
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n × 1 vector of idiosyncratic shocks. The crucial assumption here is that n is large and that

r < n (and not necessarily r � n, as is typically assumed in the factor literature). In line

with the “exact factor model” literature, let vt
i.i.d∼ N (0n×1,Σ), with Σ a diagonal matrix.

Additionally, let ft ∼ N (0r×1, Ir), which means that the conditional covariance matrix of εt

is now of the form

cov (εt|Λ,Σ) = ΛΛ′ + Σ. (3)

This factor model decomposition of Ω shows that, as long as Σ is diagonal, identification

via sign restrictions can be achieved by imposing the desired signs on Λ. To see this consider

again a reduced-rank structural VAR representation of this model, which can be obtained by

multiplying the reduced-form VAR model implied by equations (1) - (2) with the generalized

inverse of Λ, as follows:

yt = Φxt + Λft + vt (4)

(Λ′Λ)
−1

Λ′yt = (Λ′Λ)
−1

Λ′Φxt + ft + (Λ′Λ)
−1

Λ′vt (5)

A1yt = B1xt + ft + (Λ′Λ)
−1

Λ′vt. (6)

In the equation above, the structural VAR matrix A1 is equivalent to the generalized inverse

(Λ′Λ)−1 Λ′. While Λ is not observed, assume for a moment that a consistent estimator of this

parameter exists. Given that in the exact factor model formulation the vt are uncorrelated,

the CLT in Bai (2003) suggests that for each t and for n→∞ we have that (Λ′Λ)−1 Λ′vt → 0

making this term asymptotically negligible.4 Therefore, ft in the SVAR equation (6) can be

seen as a projection of the structural disturbances ut into a lower dimensional space IRr.

Finally, it should be noted that the proposed specification has a drawback, as it only allows

to impose sign restrictions upon impact of a shock, and not carry on the sign restrictions into

subsequent periods. In practice, there is little consensus in economic theory about the signs of

4Note that in the proposed algorithm the impact of vt is not neglected, since I work exclusively with the
reduced VAR form. This result is here only to demonstrate that, as the dimension of the VAR increases, the
factors can be viewed as being structural disturbances.
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structural impulse responses at longer horizons (see for example Canova and Paustian, 2011),

and for that reason the vast majority of empirical papers do impose restrictions on impact

(Kilian and Lütkepohl, 2017). Nevertheless, as Uhlig (2017) notes, it can be quite useful

to have the option to impose sign restrictions in the long-run response of macroeconomic

variables to shocks. Within the context of the proposed methodology, this issue can be

addressed if equation (2) is specified as a dynamic factor model instead of a static factor

model. However, this more general assumption would require to rely on filtering and smoothing

sampling steps that would lead to a completely different algorithm overall compared to the

algorithm presented in this paper. As a result, I exclusively focus here on the problem of

how to impose impact sign restrictions in high-dimensional VARs. Extending to the case of

long-horizon sign restrictions is feasible, but it is left for future research.

2.1 A new Gibbs sampler for sign restrictions in reduced-form

VARs

Before deriving a Gibbs sampler algorithm for the high-dimensional VAR with factor structure

in the residuals, identification issues have to be clarified. Following Anderson and Rubin

(1956), notice that Ω has n(n+1)/2 free parameters while the factor decomposition in equation

(3) has nr+n free parameters. Therefore, the first condition for estimation is that n(n+1)/2 ≥

nr + n or that r ≤ (n− 1)/2. This condition implies that – not taking into account any zero

or sign restrictions on Λ – in a 19-variable VAR a reasonable number of nine factors/shocks

can be estimated. In practice, any zero or sign restrictions we impose on Λ (depending on the

empirical application) will allow to lift, to a large extent, this upper bound on the number of

factors. Another issue in the factor decomposition is how Λ and ft can be identified jointly

from the likelihood. As both these matrices are latent, an estimate Λ̃f̃t can be rotated to an

observationally equivalent solution using any r× r orthogonal matrix. Lopes and West (2004)

discuss this issue in detail and they follow the typical approach in identification of Bayesian

factor models, which is to impose zero restrictions on the upper r × r block of Λ. Such
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restrictions are driven from the desire for statistical – not structural – identification, and are

usually suboptimal since they hardly ever fit real data precisely.5 Instead, in the factor-VAR

model the factors ft are equivalent to structural shocks that are uncorrelated. Therefore, I

restrict their posterior to be N (0r, Ir). Under the assumption that Λ will also have additional

sign or zero restrictions, the structural shocks (factors) will be identified. However, even in

cases where we do not have enough sign restrictions for identification of the factors, we can

still fully identify the common component Λft as well as the decomposition of Ω in equation

(3). That is, we are always able to sample a decomposition of Ω that embeds the desired sign

restrictions, even when the structural shocks are not fully identified (as long as the structural

shocks are uncorrelated and normalized to have variances equal to one).

Posterior sampling in the reduced-form VAR with factor structure in the residuals is

straightforward using the Gibbs sampler. This is because posterior conditional distributions

have very standard forms and are trivial to sample from. To see this, write the model using

a single equation for convenience

yt = Φxt + Λft + vt. (7)

Assume that all sign and zero restrictions on Λ are collected into a matrix S, with entries

+1 for positive signs, −1 for negative signs, 0 for zero restrictions, and a missing value for no

restriction (we denote this case in this paper using the symbol NA, and in the code using the

5For example, one issue with restrictions used in Bayesian factor models, such as Lopes and West (2004)
or Bernanke et al. (2005), is that the ordering of the variables in y plays a role in estimation of the factors.
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MATLAB value NaN). The priors for the VAR parameters are of the form

φi ≡ vec (Φi) ∼ Nk (0,Vi) , (8)

ft ∼ Nr (0, I) , (9)

Λij ∼



N
(
0, hij

)
I(Λij > 0), if Sij = 1,

N
(
0, hij

)
I(Λij < 0), if Sij = −1,

δ0 (Λij) , if Sij = 0,

N
(
0, hij

)
, otherwise,

(10)

σ2
i ∼ inv −Gamma

(
ρ
i
, κi

)
, (11)

for i = 1, ..., n, j = 1, ..., r, where Φi is the ith row of Φ, σ2
i is the ith diagonal element of the

matrix Σ, and δ0 (Λij) is the Dirac delta function for Λij at zero (i.e. a point mass function

with all mass concentrated at zero).

The joint posterior of these parameters is intractable, but it is trivial to devise a Gibbs

sampler that samples sequentially from conditional posteriors that are of simple form:

Factor-based sign restrictions (FSR) algorithm

1. Sample φi for i = 1, ..., n from

φi|Σ,Λ, f ,y ∼ Nk

(
Vi

(
T∑
t=1

σ−2
i x′tỹit

)
,Vi

)
, (12)

where ỹit = yit −Λift and V
−1

i =
(
V−1
i +

∑T
t=1 σ

−2
i x′txt

)
.

2. Sample Λi for i = 1, ..., n from

Λi|Φ,Σ, f ,y ∼MTNa<vec(Λ)<b

(
Hi

(
T∑
t=1

σ−2
i f ′tŷit

)
,Hi

)
, (13)

where ŷit ≡ εit = yit− φixt, H
−1

i =
(
Hi
−1 +

∑T
t=1 σ

−2
i f ′tft

)
, and Hi = diag (hi1, ..., hir).

Here we define MTN (•) to be the multivariate truncated Normal distribution, and a,b
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are the vectors indicating the truncation points, with ijth element:

(aij,bij) =


(−∞, 0) if Sij = −1,

(0,∞) if Sij = 1,

(0, 0) if Sij = 0,

(−∞,∞) otherwise,

(14)

for i = 1, ..., n, j = 1, ..., r.

3. Sample ft for t = 1, ..., T from

ft|Λ,Σ,Φ,y ∼ N
(
G
(
ΛΣ−1ŷt

)
,G
)
, (15)

where G
−1

= (Ir + Λ′ΣΛ). Post-process the draws of the T × r matrix f = (f1, ..., fT )′

such that its r columns (corresponding to structural shocks) are uncorrelated and

standardized to unit variance. This is done by applying first the Gram-Schmidt

procedure and subsequently dividing each column of f with its standard deviation.

4. Sample σ2
i for i = 1, ..., n from

σ2
i |Λ, f ,Φ,y ∼ inv −Gamma

T
2

+ ρ
i
,

[
κ−1i +

T∑
t=1

(yit − φixt −Λift)
′
(yit − φixt −Λift)

]−1 (16)

A major aspect of the proposed Gibbs sampler algorithm for structural VAR inference is that

all draws from the space of sign restricted reduced-rank matrices Λ are accepted.

2.2 Priors and efficient sampling

While the Gibbs sampler presented above is based on standard sampling steps for Bayesian

VARs and static factor models (Lopes and West, 2004), I discuss here how to build an even

more reliable algorithm that can handle larger models with the same ease it can estimate

smaller models. The main computational concerns with the core algorithm presented above

stem from the high dimensions of Φ6 and the fact that Λ is both latent and has to be sampled

from a restricted (truncated) Normal distribution.

6For example, in a 50 variable VAR with 4 lags and an intercept this matrix has 10,000+ elements.
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First, overall the proposed factor-VAR had disturbances that have a diagonal covariance

matrix. Therefore, the parameters Φ can be sampled equation-by-equation (which is what

Baumeister and Hamilton, 2015 also do in the SVAR setting) using (12). Instead of having

to sample one large vector of nk parameters, n independent univariate autoregressions with

k parameters each can be estimated – a step that is also trivial to parallelize using modern

computers. This point has been established recently in Carriero et al. (2019).

Second, I additionally follow ideas in Bhattacharya et al. (2016) and use an efficient sampler

for the Normal distribution, which makes full use of the Woodbury identity in order to sample

from equation (12)efficiently. The idea is that during sampling from the Normal distribution

one has to obtain the Cholesky of a large matrix (Vi) which requires O (k3) algorithmic

operations. The transformation of Bhattacharya et al. (2016) allows sampling with worst case

algorithmic complexity of O (T 2k) operations. Therefore, gains from replacing this step with

the Bhattacharya et al. (2016) approach can be very substantial as either the dimension n of

the VAR or the number of lags p increase. In particular, as k = np+1 becomes larger than T ,

a significantly smaller number of algorithmic operations will be required in order to sample

from the posterior of Φ.

Third, as the dimension of Φ increases polynomially in n and p, computation is not

the sole concern; regularization also becomes an important aspect of statistical inference.

Traditionally, empirical Bayes priors such as the Minnesota prior, have been used both in

reduced-form and structural VARs; see Giannone et al. (2015) and Baumeister and Hamilton

(2015), respectively. However, little theory exists on the high-dimensional shrinkage properties

and posterior consistency of such empirical Bayes rules. In contrast, the horseshoe prior for

sparse signals proposed by Carvalho et al. (2010) has been shown to lead to Bayes estimates

that are consistent a-posteriori, and that attain a risk equivalent to the (Bayes) oracle; see

Armagan et al. (2013) and Ghosh et al. (2016) and references therein.7 Using equation (8), I

7van der Pas et al. (2014) also show that the horseshoe has good frequentist properties and can attain
minimax-adaptive risk up to a constant, for squared error (l2) loss. Recently, Kowal et al. (2019) also
establish the excellent shrinkage properties of the horseshoe in a dynamic linear model for time-series data.
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specify the prior covariance matrix to have the following hierarchical structure

φi|σ2
i τ

2
i Ψi ∼ Nk (0,Vi) , (17)

Vi,(jj) = σ2
i τ

2
i ψ

2
i,j, (18)

ψi,j ∼ Cauchy+ (0, 1) , (19)

τi ∼ Cauchy+ (0, 1) , (20)

where Vi,(jj) denotes the jth diagonal element of prior covariance matrix Vi,

Ψi = diag
(
ψ2
i,1, ..., ψ

2
i,k

)
, and Cauchy+ denotes the half-Cauchy distribution with support on

the set of positive real numbers IR+.8 The most important aspect of the horseshoe prior is

that it requires absolutely no input from the researcher, while retaining at the same time its

excellent shrinkage properties. There are various reparametrizations of this prior and

associated MCMC sampling schemes. Here I follow Neal (2003) and use a slice sampler

(within the Gibbs sampler algorithm) that allows to update ψi,(jj) and τi efficiently in

high-dimensions.

Fourth, a major challenge in the proposed algorithm is that in Step 2, Λij has to be

sampled from a multivariate truncated Normal distribution which is notoriously hard to

simulate from (Geweke, 1996). In order to deal with this significant computational challenge,

I follow Geweke (1996) and sample each Λij conditional on all remaining Λ−ij elements.

Most importantly, I adopt the exact minimax tilting method for generating i.i.d. data from

a truncated normal distribution that was recently proposed by Botev (2017). This method

allows orders of magnitude computational improvements relative to the truncated normal

sampler proposed by Geweke (1996) and others; see Botev (2017) for a review of this

literature. Given absence of prior information on the variance of Λ (above and beyond the

information we have on the sign restrictions) I set hij = 4 in the remainder of the paper,

8Note that the prior covariance matrix of φi is a function of the VAR variance σ2
i . This is done in order to

enhance numerical stability when the endogenous variables in the VAR are measured in different units, even
though in practice it is trivial to specify this prior to be independent of σ2

i (which would be essential in case
we want to specify σ2

i to be time-varying using, for instance, a stochastic volatility specification.
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which is a noninformative choice for the parameters of a loadings matrix.

All the considerations above ensure that the algorithm proposed in the previous subsection

is not only fast, but is also numerically stable and can scale up to much larger VAR dimensions

than ever considered before in the literature. Note that there are remaining prior settings

and algorithmic steps (those involving parameters ft and Σ), but these steps are already

computationally trivial and may not be made more efficient. Additionally, the prior for ft

is fixed by the required identification restrictions, and the Σ are integrated out with fairly

noninformative values (I set ρi = 1 and κi = 0.1 for all i, in all VARs estimated in this paper).

Exact details of the proposed algorithm, including the additional enhancements described in

this subsection, are provided in the online Appendix.

2.3 Likelihood-based testing of identifying assumptions in VARs

Our modeling assumption that the structural shocks ft are latent parameters that have to

be estimated from the likelihood, has an enormous implication: sign restrictions become part

of the model likelihood and can be explicitly tested the same way economists test other

parametric restrictions in regression models (e.g. inequality constraints as in Geweke, 1996).

This concept might not make sense for economic shocks that are indisputable such as the

effects of an aggregate demand/supply shock, however, there are cases of shocks where the

expected sign might not be known a-priori with certainty. Alternatively, a researcher might

want to statistically test the plausibility of certain zero restrictions, or simply compare the

performance of two different VAR models (e.g. with different number of lags and/or variables)

given the same set of identifying restrictions. In the context of the proposed VAR model with

factor structure, all these cases can be tested explicitly using marginal likelihoods or Bayes

factors. Parametric (i.e. zero or sign) restrictions on Λ that agree with the information in

the data will result in higher marginal data likelihood relative to restrictions that are not

supported by the data. Put differently, given the decomposition in equation (3), plausible

restrictions in Λ will result in estimation of a more precise unconditional VAR covariance
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matrix Ω.

Marginal likelihoods are not numerically stable in high-dimensional VARs (Giannone et al.,

2015) and they can be demanding to compute even in smaller VARs with many layers of

latent parameters (e.g. hierarchical priors like the horseshoe; stochastic variances; Markov-

switching coefficients). In order to deal with this computational aspect, I instead propose to

calculate the Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002) as a default

criterion for comparing parametric restrictions on Λ. For the matrix of VAR model parameters

Θ =
(
Φ,Λ, {ft}Tt=1,Λ

)
the DIC is defined as the quantity

DIC = −4Ep(Θ|y) (log f (y|Θ)) + 2 log f
(
y|Θ̂

)
, (21)

where log f (y|Θ) is the log of the likelihood function implied by the regression in (7). The

first term in the criterion above is the expectation of the likelihood w.r.t the parameter

posterior, and can be obtained numerically using Monte Carlo integration by simply

evaluating the likelihood at each MCMC draw from the posterior of the parameters Θ. The

second term is the likelihood function evaluated at an estimate Θ̂ of high posterior density

(typically posterior mean or mode). As with all other information criteria used in

statistics/econometrics, lower values signify better fit. The DIC is not a first-order

approximation to the marginal likelihood, in the same way that the Bayesian Information

Criterion (BIC) is. The marginal likelihood, also known as prior predictive distribution,

addresses the issue of how well the data are predicted by the priors. In this sense, the DIC is

a criterion that is closely related to measuring fit according to the posterior predictive

distribution, rather than marginal likelihoods. As a result, for the purpose of assessing the fit

of a VAR that is intended to be used for out-of-sample projections (impulse responses,

forecast error variance decompositions etc), the DIC can be considered as a more

appropriate predictive measure of fit compared to marginal likelihoods or alternative

in-sample measures of fit.
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3 Simulation study

In this section, the properties of the new algorithm are explored using artificially generated

data. The core exercise involves generating multivariate time series from a data generating

process (DGP) that fully matches equation (7), and estimating parameters and impulse

response functions based on time series generated from this DGP. I first implement this

experiment assuming that a correctly specified model is estimated using the artificial data.

Subsequently, various cases of misspecification errors during the estimation process are

considered – that is, I estimate models that do not perfectly match the correct DGP.

The DGP is of the form

yt = Φ̂xt + Λ̂ft + vt, for t = 1, ..., T̂ , (22)

vt ∼ N
(
0, Σ̂

)
, ft ∼ N (0, I) , (23)

y(−p+1):0 = 0, p = 12, r = 3. (24)

The DGP parameters Φ̂, Λ̂, Σ̂ are based on estimates of a VAR on real data. First, monthly

data on 14 monthly macroeconomic variables are collected9 for the US over the period 1965M1

- 2007M12, providing T̂ = 516 observations.10 At a second step, an estimate Φ̂ is obtained

by applying OLS to an unrestricted VAR(12) estimated with these 14 observed US variables.

The third step is to obtain the first r = 3 principal components of these OLS residuals, and

store the estimate Λ̂ using OLS in a regression between the VAR residuals and their principal

components. Finally, the residuals from this latter regression provide the elements of the

diagonal matrix Σ̂, by means of equation-by-equation application of the usual least squares

formula for the variance.

While it is not possible, or even interesting, to print all estimates Φ̂ used as input in

9The variables are: 1) real GDP, 2) GDP deflator, 3) federal funds rate, 4) commodity price index, 5) total
reserves, 6) nonborrowed reserves, 7) S&P 500, 8) M1 , 9) unemployment rate , 10) industrial production ,
11) employment , 12) CPI , 13) core CPI , 14) core PCE. More details on these variables is provided in the
online Appendix.

10In practice, I generate T̂ + 1000 observations and discard the first 1000 observations.
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the DGP, it is instead interesting to look at the estimates Λ̂ obtained using the procedure

described above. This is because both the signs and the magnitudes of the implied IRFs in the

true DGP will be affected by those estimates. Panel (A) of Table 1 shows the OLS estimates,

where the diagonal is normalized to be one, by dividing each element in the mth column of Λ̂

with the original value of its mth element, m = 1, 2, 3. While this matrix is the outcome of

using real data and applying simple principal components plus OLS estimation (which carry

no economic restrictions), the signs implied by it allow us to classify the three pseudo-shocks

as aggregate supply, aggregate demand, and monetary policy, respectively. The estimated

magnitudes of course are not necessarily economically meaningful. Nevertheless, this is an

exercise where the main aim is to check the numerical precision of the new algorithm, so the

estimates in panel (A) of Table 1 are perfectly valid inputs for a DGP. Finally, Panel (B) of

Table 1 shows the sign restrictions imposed on Λ. These comply with the signs imposed in

the DGP, and in 11 instances no sign restrictions are imposed (these entries are denoted as

NA).
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(a) True parameter values (b) Sign restrictions

Variable 1st shock 2nd shock 3rd shock 1st shock 2nd shock 3rd shock

real GDP growth 1.00 -1.39 -0.87 + – –

GDP deflator inflation 1.42 1.00 -0.71 + + –

Fed funds rate 0.49 -0.28 1.00 NA NA +

Commodity prices 0.16 0.16 -0.45 NA NA –

Total reserves -0.61 0.22 -3.48 NA NA NA

Nonborrowed reserves -0.91 0.25 -3.37 NA NA –

Stock prices -0.25 -0.30 -0.82 NA NA –

M1 -1.03 -0.48 -1.27 – – –

Unemployment -0.63 0.51 0.43 – + +

Industrial production 1.12 -1.34 -0.87 + – –

Employment 0.88 -1.00 -1.01 + – –

CPI inflation (total) 1.44 1.01 -0.75 + + –

CPI inflation (core) 1.05 0.49 -1.12 + + –

PCE inflation (core) 1.05 0.57 -0.80 + + –

Notes: Panel (A) shows true parameter values used as input in the data generating process (DGP), while

panel (B) shows the sign restrictions imposed during econometric estimation using each artificial dataset

from the DGP. Entries in panel (B) show the restrictions imposed: + for positive sign; – for negative sign;

NA for no restriction.

Table 1: OLS estimates Λ̂ used in the DGP, and sign restrictions used for estimation

For estimation purposes five different scenarios are assumed: one correctly specified case

and four misspecified cases. These are denoted as C1-C5, and are defined as follows:

C1 Correctly specified model with n = 14 dependent variables, p = 12 lags, r = 3 shocks.

C2 Misspecified model with n = 8, using the first eight variables in Table B1 in the online

Appendix. All other settings are correct, that is, p = 12 lags, r = 3 shocks.

C3 Misspecified model with p = 2 lags. All other settings are correct, that is, n = 14 and

r = 3.

C4 Misspecified model with r = 2 shocks, using only the restrictions on the first two shocks

in panel (B) of Table 1. All other settings are correct, that is, n = 14 and p = 12.

C5 Misspecified model with r = 4 shocks, using an additional shock.11 All other settings

11This fourth shock is identified using the randomly selected vector of restrictions s =
[+,+,+,−,+, NA,NA,−,+,+,+,+,+,+].
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are correct, that is, n = 14 and p = 12.

500 datasets of size T = 516 are generated and posterior mean estimates of all parameters,

IRFs and DICs from all five cases above are obtained. Results presented next are based on

the distribution of the posterior means over these 500 artificial datasets.

Before evaluating precision of estimates over the Monte Carlo iterations, it is important

to first evaluate general model fit using the DIC. Table 2 shows the value of the deviance

information criterion attained by each of the five cases. Because case C2 refers to a VAR with

n = 8, it is impossible to directly compare it with the other four cases that assume n = 14.12

For that reason I present two DIC metrics, a full one based on all n = 14 variables (with no

value available for C2) and a reduced DIC which is the same formula evaluated only on the

first eight VAR equations (which are common to all five cases). These are labelled in Table 2

as DIC14 and DIC8, respectively. According to both subsets of criteria, the correctly specified

estimated model case C1 is the best one as it attains the lowest DIC value. Interestingly, the

case where an additional fourth shock is incorrectly estimated (C5), doesn’t seem to harm

estimation accuracy; at least not as much as the case of estimating one less shock (C4). By

far the worst type of misspecification seems to be the one related to the lag-length. This is a

characteristic of the VAR model rather than a “problem” with the specific algorithm or prior.

As long as the true DGP has p = 12 important lags, estimating the VAR with p = 2 provides

a huge loss of information. In contrast, reducing the VAR from n = 14 (which is the truth in

the DGP) to n = 8 as in case C2, harms much less the fit of the VAR.

12Information criteria can only be used to compare models with the same dependent variable y.
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C1 C2 C3 C4 C5

DIC14 value 7393.14 n/a 27241.13 11859.45 9037.44

DIC8 value 15300.63 17094.28 28630.21 27981.48 19269.55

Notes: DIC14 is the deviance information criterion applied jointly to all 14 VAR

equations. DIC8 is the same criterion applied jointly only to the first 8 VAR

equations. Case C2 does not have a DIC14 value because it assumes that the

VAR has n = 8 variables.

Table 2: DIC values attained by the correctly specified and misspecified models estimated on
artificial data

Next, estimation accuracy of the proposed algorithm has to be evaluated. Since the main

focus of sign restrictions algorithms is on impulse response analysis, I compare precision of

the estimated impulse response functions using all generated datasets. IRFs are combinations

of all VAR parameters Φ,Λ, f ,Σ, therefore comparing their precision provides a convenient

summary of overall estimation precision in a VAR model. Figure 1 shows the responses of the

first three variables in the VAR to the three identified pseudo-shocks, in the correctly specified

case (C1). Green solid lines are medians over the posterior IRFs in the 500 estimated VARs

using an equal number of artificial datasets. Shaded areas show the 90% probability bands of

these IRFs. Finally, black dashed lines show the true IRFs implied by the parameters that are

fed into the DGP. The 90% bands always include the true IRF, which suggests that estimation

precision is satisfactory. The online Appendix shows identical graphs for the four misspecified

cases C2-C5. These graphs become a visual confirmation of the numerical results in Table 2,

that is, case C5 quite precisely captures the path of the true IRFs, while case C3 results in

the largest estimation errors.
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Figure 1: Impulse response functions of the first three artificially generated variables (denoted
as y1, y2, y3) in response to the three identified shocks (denoted as s1, s2, s3) in model C1
(correctly specified model). The green solid lines show the posterior median IRFs over the
500 Monte Carlo iterations, and the gray shaded areas their associated 90% bands. The true
IRFs based on the DGP are shown using the black dashed lines.

3.1 How fast is the new algorithm?

The next Section makes clear that in the context of the empirical application in Furlanetto

et al. (forthcoming), the new algorithm is multiple times faster than the algorithm of Rubio-

Ramı́rez et al. (2010) in a six-variable VAR with five identified shocks. Nevertheless, it would

be interesting to use artificial data in order to provide more thorough evidence on how fast

the factor sign restrictions algorithm is, and how large a VAR it can scale to. For that reason

artificial data are generated from the same DGP described in equations (22)-(23) for various

values of the key parameters that affect the dimensionality of the VAR, namely T , n and r.

Due to the fact that this exercise pushes the VAR dimension n to very large values, I fix p = 1

in order to be able to ensure that the VAR process in the DGP is always stationary, and

generation of explosive data is excluded. For the purposes of this exercise I set Φ = 0.9In,
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Λij ∼ U(−1, 1) and Σi ∼ U(0, 1), for all i = 1, ..., n and j = 1, ..., r. During estimation nk

sign restrictions are imposed, simply by obtaining the signs of the randomly generated matrix

Λ.13

T = 200 T = 500

n = 15 n = 50 n = 100 n = 15 n = 50 n = 100

r = 3 1 2 6 4 11 23

r = 10 1 4 8 4 12 23

r = 20 NA 6 11 NA 15 25

Table 3: Computer time in minutes (defined as (seconds/60), rounded to the nearest integer)
for obtaining 10, 000 post-burn-in draws (12, 000 in total) using various VAR sizes. Here T
is the number of observations, n the number of endogenous variables, and r the number of
shocks. All VARs have p = 1 lag.

Table 3 shows the average, over 10 Monte Carlo iterations, machine time in minutes

(defined as the total estimation time in seconds divided by 60 and then rounded to the nearest

integer) needed to obtain 10, 000 draws from the posterior of all parameters after discarding

2, 000 draws (hence, 12, 000 draws in total). These results show that in a huge-dimensional

VAR with n = 100 series, T = 500 observations, and r = 20 shocks, it only takes 25 minutes to

obtain 10, 000 draws from all parameter matrices, including the 1000 sign-restricted elements

in Λ. For the smaller model with n = 15 – which is already much larger than the vast majority

of models considered in the sign restrictions literature – it only takes less than five minutes to

obtain the same number of draws when T = 500, and only one minute when T = 200. These

fantastic timings justify the choice to focus on carefully developing a Gibbs sampler that is

computationally efficient.14

13The purpose of this exercise is not to estimate meaningful restrictions, rather just to measure times. In
this case, I impose the maximum number of restrictions possible on Λ in order to test the new algorithm in
a worst-case scenario where all nk of its elements are restricted and have to be generated from a truncated
Normal posterior.

14The Gibbs sampler typically loses efficiency when there is high correlation in the samples from the
posterior. In the online Appendix I show that, in order to draw Λij from univariate (instead of the intractable
multivariate) truncated Normal conditionals, we need to condition on Λ−ij , i.e. the set of all elements of
Λ excluding the ijth. This conditioning increases correlation relative to sampling directly the full matrix Λ.
However, inefficiency factors for the Gibbs sampler in the linear factor-VAR specification are still quite low
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The results above are based on code written in MATLAB2019b and run in a personal

computer with Intel Core i7 8700K, tuned at 4.9Ghz, and 32GB of RAM. Note that the Gibbs

sampler algorithm iterates over each VAR equation independently and, thus, significant speed

improvements can be achieved by taking advantage of parallel processing abilities of modern

computers and high-performance clusters (HPCs). In MATLAB this is as simple as replacing

for loops with parfor loops. Therefore, the algorithm indeed allows the estimation of arbitrarily

large VAR models, as it is claimed in the Introduction.

In practical situations, the only issue that might inhibit the performance of the algorithm

(and any Monte Carlo-based algorithm, to that effect) is the fact that in very large

dimensions we may be sampling parameters Φ in a region of the posterior that implies

nonstationarity of the VAR. In order to make sense out of impulse response functions,

forecast error variance decompositions, historical decompositions etc, we need to make sure

we maintain only samples from the posterior which are stationary. For that reason it is

important to stress that, throughout my experiments, the horseshoe prior does a great job

(especially relative to a subjectively chosen Minnesota prior) in shrinking the coefficients Φ

towards a more numerically stable region of their posterior, where the VAR model is

stationary.

4 A (reasonably) large-scale VAR model for measuring

financial shocks

In this section I revisit the empirical exercise in Furlanetto et al. (forthcoming), who aim

to measure various financial shocks to the US economy.15 Given computational restrictions,

(MCMC diagnostic results are available upon request). Additionally, given the ability of the algorithm to
obtain quickly tens of thousands of draws from the posterior, concerns about possible correlation of draws can
be alleviated by doing “thinning” – i.e. the procedure of storing only every ρth sample from the posterior,
where is ρ is the order of the highest significant autocorrelation in the chain.

15The online Appendix provides the results of an additional numerical exercise (measuring optimism shocks)
that builds on Arias et al. (2018).
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due to their use of the Rubio-Ramı́rez et al. (2010) accept/reject algorithm, Furlanetto et al.

(forthcoming) end up estimating a series of smaller VARs in order to sequentially measure and

label interesting financial shocks, such as uncertainty, credit and housing. Before illustrating

how to use the new algorithm to collectively measure all these shocks in one high-dimensional

data setting, we first try to replicate their benchmark results. Among all VAR specifications,

Furlanetto et al. (forthcoming) specify a baseline VAR specification with p = 5 lags, using

data on real GDP, consumer prices, interest rate, investment-to-output ratio, stock prices,

and the external finance premium.16 All data are for the 1985Q1 - 2013Q2 period. The online

Appendix provides exact details of all series and transformations used, which in this case they

are identical to those reported in Furlanetto et al. (forthcoming, Table 11).

(a) Rubio-Ramı́rez et al. (2010) algorithm (b) Factor-based sign restrictions algorithm

Figure 2: This figure replicates the impulse response functions to a financial shock using the
baseline specification of Furlanetto et al. (forthcoming). Panel (a) shows results based on the
exact configuration of Furlanetto et al. (forthcoming, see Figure 1), using the algorithm of
Rubio-Ramı́rez et al. (2010). Panel (b) replicates the same financial shock using the new sign
restrictions algorithm.

Figure 2 shows the effects of a financial shock identified as a shock that causes GDP,

consumer prices, stock prices, interest rate and the investment/output ratio to react positively

contemporaneously. The sign of the spread is left unrestricted. Panel (a) replicates the impulse

responses also shown in Figure 1 of Furlanetto et al. (forthcoming). Panel (b) shows the same

16The external finance premium is defined as the spread between yields on Baa rated bonds and the federal
funds rate. Notice that the three variables that are not already expressed as rate, ratio, or spread (i.e. GDP,
consumer prices, and stock prices), are transformed only using logarithms of the levels and not growth rates –
see the online Appendix for exact definitions, transformations, and data sources. Also note that these authors
use a noninformative (uniform) prior, while I use the shrinkage horseshoe prior described in Section 2.
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responses produced by application of the new algorithm for sign restrictions. While there are

obvious differences in how wide the bands of the IRFs are (due to the underlying assumptions

about the VAR likelihood and the prior distributions), the results are qualitatively very similar

and assuring that the new algorithm produces sensible results. Following up on the discussion

in the previous section, it takes roughly four hours to obtain 2000 draws from the Furlanetto

et al. (forthcoming) using their MATLAB code and exact numerical settings based on the

Rubio-Ramı́rez et al. (2010) algorithm. In contrast, it takes less than five minutes to obtain

60, 000 draws from the proposed Gibbs sampler (where out of these 60, 000 draws we discard

10, 000 and then save every 10th draw, leading to 5, 000 draws from the posterior of VAR

parameters and impulse response functions).

We next proceed to demonstrate how the new algorithm can estimate one,

large-dimensional system in order to measure in one setting all the financial shocks that

Furlanetto et al. (forthcoming) identify. The larger VAR that these authors specify has

seven variables and six shocks: aggregate supply, aggregate demand, investment, housing,

uncertainty, and credit. These authors do not identify a monetary shock using this larger

VAR, possibly due to computational concerns. Here we attempt to use all available variables

in Furlanetto et al. (forthcoming) to identify seven shocks, that is, the six shocks just listed

plus a monetary shock. We also use additional measures of output, consumer prices, stock

prices, interest rate, and credit spread, in order to enhance identification. We end up with a

15-variable VAR with p = 5 on the following variables: 1) real GDP; 2) prices (GDP

deflator); 3) interest rate (3-month Tbill); 4) investment to output ratio; 5) stock prices (real

S&P500 prices); 6) credit spread (Baa minus Fed funds rate); 7) credit to real estate value

ratio; 8) excess bond premium (EBP); 9) EBP to VIX ratio; 10) mortgage rate (30-year

rates); 11) employment; 12) Federal funds rate; 13) core CPI; 14) stock prices 2 (real DJIA

prices); and 15) credit spread 2 (“GZ” spread). The online Appendix has detailed definitions

of these variables, transformations used, and sources.

Table 4 shows the signs imposed on each of the 15 variables in order to identify each of the
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seven structural shocks. This is a large matrix of restrictions, but the new algorithm can handle

computationally the task of drawing 60, 000 samples from the posterior of all parameters

(including the structural matrix of contemporaneous shocks) in a matter of minutes. As it

was the case with the baseline VAR above, out of these 60, 000 draws 10, 000 are discarded and

every 10th sample is stored, resulting in 5, 000 samples used to produce numerical results from

this large model. The horseshoe prior also has a crucial role in the estimation of this model,

as we have 1140 parameters in Φ and only 114 observations for each of the 15 endogenous

variables.

SHOCKS

Supply Demand Monetary Investment Housing Uncertainty Credit

Original variables in Furlanetto et al. (forthcoming):

GDP + + + + + + +

prices – + + + + + +

interest rate NA + – + + + +

investment/output NA – NA + + + +

stock prices + NA NA – + + +

spread NA NA NA NA NA NA NA

credit/real estate value NA NA NA NA – + +

EBP NA NA NA NA NA – –

EBP/VIX NA NA NA NA NA + –

mortgage rates NA NA NA NA NA NA –

Additional measures of output, prices etc.:

employment + + + + + + +

Federal funds rate NA + – + + + +

core prices – + + + + + +

stock prices 2 + NA NA – + + +

spread 2 NA NA NA NA NA NA NA

Notes: Entries in this table show the restrictions imposed: + positive sign; – negative sign; NA no restriction.

Table 4: Identified shocks and sign restrictions imposed on the matrix Λ in the large, 15-
variable VAR model

Figure 3 shows the impulse responses of the 15 endogenous variables to a credit shock.

The green lines are posterior medians, and the shaded areas 68% bands. The magnitudes and

shapes of the IRFs are consistent with the ones reported in Furlanetto et al. (forthcoming,

Figure 7), despite the fact that in the case of variables such as GDP the IRFs are strongly

different from zero. The most interesting feature of this figure is the effect of a credit shock

25



on the two credit spread variables we used in the same VAR. Furlanetto et al. (forthcoming)

use these spreads (plus an additional third spread we haven’t included here) one at a time

in their VAR in order to assess robustness of their results. These authors do not impose

sign restrictions on the credit spread and they find that in their baseline specification this

tends to be negative. In the large VAR case, the first credit spread variable has a strong

negative contemporaneous response before subsequently moving to positive territory, while

the second credit variable does not have a contemporaneous response different from zero and

in subsequent period reacts positively. Such results show the important avenues for identifying

various structural shocks that the new algorithm opens up: by using large information sets

we can have the ability to identify several structural shocks in one setting, thus, making

comparisons and testing of structural hypotheses more transparent. The online Appendix

provides figures of the impulse responses to the remaining identified six shocks in the large,

15-variable VAR setting.

Figure 3: Impulses response functions to a credit shock in the large, 15-variable VAR with
seven shocks identified in total.
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5 Conclusions

This paper outlines a new algorithm based on a VAR methodology that fully utilizes the

interpretability and parsimony of factor models. In particular, the novel element of the

proposed approach is the formulation of reduced-form VAR disturbances using a common

factor structure, and the derivation of an algorithm that allows for efficient sampling of

sign-restricted decompositions of the VAR covariance matrix. The new algorithm can handle

VARs with possibly 100 or more variables and it provides sensible numerical results

compared to the algorithm of Rubio-Ramı́rez et al. (2010) – despite the fact that the two

algorithms rely on different modeling assumptions and are not directly comparable.17

Therefore, the new algorithm can be seen as a useful tool in the toolbox of modern

macroeconomists, that complements existing algorithms and that opens up new avenues for

empirical research using large-scale VAR models.
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high-dimensional vector autoregressions”

Dimitris Korobilis
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A Full Gibbs sampler for VARs with sign restrictions

The Gibbs sampler presented in the main paper is a quite accurate description of the core

algorithmic steps required in order to estimate the VAR model with factor structure in the

residuals. Nevertheless, in order to produce empirical and other results, we have relied on the

hierarchical horseshoe prior of Carvalho et al. (2010), two fast algorithms from drawing from

the Normal (Bhattacharya et al., 2016) and truncated Normal (Botev, 2017) distributions,

respectively, and the slice sampler of Neal (2003) in order to update the horseshoe prior

parameters. Therefore, it is important to rewrite the Gibbs sampling algorithm in full, and

give further explanations about the three enhancements that guarantee a fast and reliable

algorithm in high dimensions.

We repeat the full prior specification, which now includes the hierarchical horseshoe prior

1



on φi. The priors for the ith VAR equation, i = 1, ..., n is:

φi|σ2
i , τ

2
i ,Ψ

2
i ∼ Nk

(
0, σ2

i τ
2
i Ψ2

i

)
, Ψ2

i = diag
(
ψ2
i,1, ..., ψ

2
i,k

)
, (A.1)

ψi,j ∼ Cauchy+ (0, 1) , j = 1, ..., k, (A.2)

τi ∼ Cauchy+ (0, 1) , (A.3)

Λij ∼



N
(
0, hij

)
I(Λij > 0), if Sij = 1,

N
(
0, hij

)
I(Λij < 0), if Sij = −1,

δ0 (Λij) , if Sij = 0,

N
(
0, hij

)
, otherwise,

j = 1, ..., r, (A.4)

ft ∼ Nr (0, I) , (A.5)

σ2
i ∼ inv −Gamma

(
ρ
i
, κi

)
, (A.6)

where we set hij = 4, ρ
i

= 1 and κi = 0.01.

Under these priors, the full factor sign restrictions algorithm takes the following form

Factor sign restrictions (FSR) algorithm

1. Sample φi for i = 1, ..., n from

φi|Σ,Λ, f ,y ∼ Nk

(
Vi

(
T∑
t=1

σ−2
i x′tỹit

)
,Vi

)
, (A.7)

where ỹit = yit −Λift and V
−1

i =
(
V−1
i +

∑T
t=1 σ

−2
i x′txt

)
. We use the efficient sampler

of Bhattacharya et al. (2016) in order to sample these elements.

2. Sample ψij using slice sampling (Neal, 2003)

a. Set ηij = 1/ψ2
ij using the last available sample of ψ2

ij.

b. Sample a random variable u from

u|ηij ∼ Uniform

(
0,

1

1 + ηij

)
. (A.8)
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c. Sample ηij from

ηij ∼ e

φ2ij

2σ2
i

ηij
I

(
u

1− u
> ηij

)
(A.9)

and set ψij = 1/
√
ηij.

3. Sample τi using slice sampling (Neal, 2003)

a. Set ξi = 1/τ 2
i using the last available sample of τ 2

i .

b. Sample a random variable u from

v|ξij ∼ Uniform

(
0,

1

1 + ξij

)
. (A.10)

c. Sample ξi from

ξi ∼ γ

(k + 1)/2, v
2σ2∑(
φij
ψij

)2

 , (A.11)

where γ (•) is the lower incomplete gamma function, and set τi = 1/
√
ξi

4. Sample Λij from univariate conditional posteriors (Geweke, 1996) of the form

Λij|Λ−ijΦ,Σ, f ,y ∼ TN(aij ,bij)

(
λij − hij

∑
l 6=j

h
−1

il

(
Λil − λil

)
, hij

)
, (A.12)

where λij and hij denote the ijth elements of the joint posterior mean and variance,

respectively, of Λi. The joint posterior variance is H
−1

=
(
H−1 +

∑T
t=1 σ

−2
i f ′tft

)
and the

joint posterior mean is H
(∑T

t=1 σ
−2
i f ′tŷit

)
with ŷit ≡ εit = yit−φixt. Here TN(aij ,bij) (•)

denotes the univariate truncated Normal distribution with bounds:

(aij,bij) =



(−∞, 0) if Sij = −1,

(0,∞) if Sij = 1,

(0, 0) if Sij = 0,

(−∞,∞) otherwise,

(A.13)
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We use the efficient univariate truncated Normal generator provided by Botev (2017) in

order to sample these elements.

5. Sample ft for t = 1, ..., T from

ft|Λ,Σ,Φ,y ∼ N
(
G
(
ΛΣ−1ŷt

)
,G
)
, (A.14)

where G
−1

= (Ir + Λ′ΣΛ). Post-process the draws of the T × r matrix f = (f1, ..., fT )′

such that its r columns (corresponding to structural shocks) are uncorrelated and

standardized to unit variance. This is done by applying first the Gram-Schmidt

procedure and subsequently dividing each column of f with its standard deviation.

6. Sample σ2
i for i = 1, ..., n from

σ2
i |Λ, f ,Φ,y ∼ inv −Gamma

T
2

+ ρ
i
,

[
κ−1i +

T∑
t=1

(yit − φixt −Λift)
′
(yit − φixt −Λift)

]−1
(A.15)
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B Data Appendix

B.1 Data for the simulation study

The data used in the simulation exercise are an augmented version of the data used in Arias

et al. (2019). The measure of commodity prices they provide comes from Global Financial

Data, while all remaining variables come originally from St Louis’ Federal Reserve Economic

Data (FRED; https://fred.stlouisfed.org/). Monthly GDP and GDP deflator are constructed

using interpolation, and the reader is referred to the data supplement of Arias et al. (2019)

for more information. The variables these authors use are augmented with stock prices,

M1, unemployment rate, industrial production, employment, consumer prices (total), core

consumer prices (total, less food and energy) and personal consumption deflator.

All variable mnemonics, short descriptions, and sources are visible in Table B1. The last

column (Tcode) refers to the stationarity transformation used for each variable, namely 1:

levels, and 5: first differences of logarithm (growth rates).

5
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Table B1: Data used in Monte Carlo exercise

Mnemonic Description Source Tcode

GDPC1 Monthly real GDP Arias et al. (2019) 5

GDPDEFL Monthly GDP deflator Arias et al. (2019) 5

FEDFUNDS Fed funds rate Arias et al. (2019) 1

CPRINDEX Commodity price index Arias et al. (2019) 5

TRARR Total reserves Arias et al. (2019) 5

BOGNONBR Nonborrowed reserves Arias et al. (2019) 5

ˆGSPC S&P 500 prices Yahoo! Finance 5

M1REAL Real M1 money stock FRED 5

UNRATE Unemployment rate FRED 1

INDPRO Industrial production index, all industries FRED 5

PAYEMS Employment, total FRED 5

CPIAUSL Consumer price index, all items FRED 5

CPILFESL Core CPI FRED 5

PCEPILFE Core PCE deflator FRED 5

B.2 Data used for the large-scale VAR model for the US

The full list of variables is shown in Table B2 and they pertain to the sample 1985Q1 - 2013Q2.

The original mortgage rate used by Furlanetto et al. (forthcoming) was only available after

1990Q1, and for that reason it has been replaced by the 30-year mortgage rate provided by

FRED (contemporaneous correlation between the two series is 0.9967). All remaining series

used in the empirical exercise are exactly those described in Table 11 of Furlanetto et al.

(forthcoming), augmented with a few additional measures of output, consumer prices, and

stock prices. The fifteen variables used in the large VAR can be seen in the first column of

Table 4. In this list stock prices refers to S&P500 while stock prices 2 refers to Dow Jones

6



Industrial Average. Similarly, spread refers to the Baa minus fed funds rate spread, while

spread 2 refers to the GZ credit spread.

Table B2: Data used in the empirical exercise

Variable Description Source

GDP Log of real GNP/GDP Federal Reserve Bank of Philadelphia

GDP deflator Log of price index for GNP/GDP Federal Reserve Bank of Philadelphia

Interest rate 3-month treasury bill Federal Reserve Bank of St. Louis

Investment Log of real gross private domestic investment Federal Reserve Bank of St. Louis

Stock prices Log of real S&P 500 Yahoo! Finance

Total credit Log of loans to non-financial private sector Board of Governors of the Federal Reserve

System

Mortgages Log of home mortgages of households and non-

profit organizations

Board of Governors of the Federal Reserve

System

Real estate value Log of real estate at market value of households

and non-profit organizations

Board of Governors of the Federal Reserve

System

Corporate bond yield Moody’s baa corporate bond yield Federal Reserve Bank of St. Louis

Federal funds rate Federal funds rate Federal Reserve Bank of St. Louis

GZ credit spread Senior unsecured corporate bond spreads (non-

financial firms)

Gilchrist and Zakraǰsek (2012)a

EBP Excess bond premium Gilchrist and Zakraǰsek (2012)a

VIX Stock market volatility index Bloom (2009)b

Mortgage rates Home mortgages, fixed 30YR, Effective interest

rate

Federal Reserve Bank of St. Louis

Employment Log of total nonfarm employment Federal Reserve Bank of Philadelphia

Core prices Log of core consumer price index Federal Reserve Bank of Philadelphia

Stock prices 2 Log of real DJIA Yahoo! Finance

a Gilchrist, Simon, and Egon Zakraǰsek (2012), Credit Spreads and Business Cycle Fluctuations.

American Economic Review, 102 (4): 1692-1720.

b Bloom, Nicholas (2009), The Impact of Uncertainty Shocks. Econometrica, 77: 623-685.
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C Additional results

C.1 Additional results for the first Monte Carlo exercise

Figure C1: Impulse response functions of the first three artificially generated variables (denoted
as y1, y2, y3) in response to the three identified shocks (denoted as s1, s2, s3) in model C2
(misspecified VAR dimension). The green solid lines show the posterior median IRFs over
the 500 Monte Carlo iterations, and the gray shaded areas their associated 90% bands. The
true IRFs based on the DGP are shown using the black dashed lines.
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Figure C2: Impulse response functions of the first three artificially generated variables (denoted
as y1, y2, y3) in response to the three identified shocks (denoted as s1, s2, s3) in model C3
(misspecified number of lags). The green solid lines show the posterior median IRFs over
the 500 Monte Carlo iterations, and the gray shaded areas their associated 90% bands. The
true IRFs based on the DGP are shown using the black dashed lines.
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Figure C3: Impulse response functions of the first three artificially generated variables (denoted
as y1, y2, y3) in response to the three identified shocks (denoted as s1, s2, s3) in model C4
(misspecified number of shocks – one less). The green solid lines show the posterior median
IRFs over the 500 Monte Carlo iterations, and the gray shaded areas their associated 90%
bands. The true IRFs based on the DGP are shown using the black dashed lines.
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Figure C4: Impulse response functions of the first three artificially generated variables (denoted
as y1, y2, y3) in response to the three identified shocks (denoted as s1, s2, s3) in model C5
(misspecified number of shocks – one more). The green solid lines show the posterior median
IRFs over the 500 Monte Carlo iterations, and the gray shaded areas their associated 90%
bands. The true IRFs based on the DGP are shown using the black dashed lines.

C.2 Additional empirical exercise: Measuring optimism shocks

Here I undertake an additional empirical exercise that will help shed more light on the

performance of the new algorithm in real data. This empirical exercise is based on Section 6

of Arias et al. (2018). These authors use the example in Beaudry et al. (2011) in order to

compare their novel importance sampling algorithm to the penalty function approach (PFA)

of Mountford and Uhlig (2009). For the sake of comparability, we maintain their empirical

setting, and for that reason we estimate VAR(4) models using the following five dependent

variables: adjusted TFP, stock prices, consumption, the real interest rate, and hours worked.

We identify a single optimism shock by restricting contemporaneously TFP to have a zero

response, and stock prices to react positively. The signs in the remaining three variables are

not restricted. Panels (a) and (b) in Figure C5 show the estimated responses using the PFA

and importance sampling algorithms, respectively. These two panels are identical to panels
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(a) and (b) in Figure 1 of Arias et al. (2018). The main point these authors make in their

study is that the PFA algorithm ends up distorting the responses of stock prices,

consumption and hours. Once their proposed importance sampling algorithm is considered,

the significant responses found in Beaudry et al. (2011) disappear.

(a) Mountford and Uhlig (2009) algorithm (b) Arias et al. (2018) algorithm

(c) Factor sign restrictions algorithm (d) Factor sign restrictions algorithm, with
additional zero restrictions

Figure C5: This figure replicates the results in Beaudry et al. (2011), using a five variable
VAR for assessing the effects of an optimism shock. The sign-restricted impulse responses of
the five variables are estimated using (a) the PFA algorithm of Mountford and Uhlig (2009);
(b) the importance sampling approach of Arias et al. (2018); (c) the Gibbs sampler algorithm
proposed in this paper; and (d) the algorithm of this paper, with additional zero restrictions in
consumption and hours.

Panel (c) of Figure C5 shows the results from the factor sign restrictions algorithm using

the same zero restriction on TFP and positive sign restriction on stock prices. The response

of stock prices is not as pronounced as in Beaudry et al. (2011), and in general the responses

for TFP, stock prices and real interest rate are equivalent to Arias et al. (2018). However,

the responses of consumption and hours are still strongly different from zero, even though

12



they have error bands and shapes that look much closer to those produced by the algorithm

of Arias et al. (2018). Nevertheless, one aspect of the factor sign restrictions is that we can

explicitly derive the implied fit to the VAR of imposing various restrictions. Therefore, we can

explicitly test the premise of Arias et al. (2018) that consumption and hours are not affected

by optimism shocks. Panel (d) in Figure C5 repeats estimation of the VAR using factor sign

restrictions algorithm with additional zero restrictions in consumption and hours. The IRFs

now look quantitatively and qualitatively closer to those in panel (b). Most importantly, we

are able to test whether the model in panel (c) or (d) is supported by the data, that is, test

whether the zero restrictions in consumption and hours. The DIC for the model without

these restrictions is -13109.49 while the DIC for the model with the two zero restrictions is

-15267.64. Thus, data evidence (which is conditional, of course, on the specific parametric

likelihood specification and prior) suggests that the premise of Arias et al. (2018) – that

optimism shocks do not affect consumption and hours – is correct.

C.3 Additional results for the baseline VAR of Furlanetto et al.

(forthcoming)

(a) Furlanetto et al. (forthcoming) algorithm (b) Factor sign restrictions algorithm

Figure C6: This figure replicates the impulse response functions to an aggregate supply shock
using the baseline specification of Furlanetto et al. (forthcoming). Panel (a) shows results
based on the exact configuration of Furlanetto et al. (forthcoming, see Figure 1), using the
algorithm of Rubio-Ramı́rez et al. (2010). Panel (b) replicates the same financial shock using
the new sign restrictions algorithm.

13



(a) Furlanetto et al. (forthcoming) algorithm (b) Factor sign restrictions algorithm

Figure C7: This figure replicates the impulse response functions to an aggregate demand shock
using the baseline specification of Furlanetto et al. (forthcoming). Panel (a) shows results
based on the exact configuration of Furlanetto et al. (forthcoming, see Figure 1), using the
algorithm of Rubio-Ramı́rez et al. (2010). Panel (b) replicates the same financial shock using
the new sign restrictions algorithm.

(a) Furlanetto et al. (forthcoming) algorithm (b) Factor sign restrictions algorithm

Figure C8: This figure replicates the impulse response functions to a monetary policy shock
using the baseline specification of Furlanetto et al. (forthcoming). Panel (a) shows results
based on the exact configuration of Furlanetto et al. (forthcoming, see Figure 1), using the
algorithm of Rubio-Ramı́rez et al. (2010). Panel (b) replicates the same financial shock using
the new sign restrictions algorithm.
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(a) Furlanetto et al. (forthcoming) algorithm (b) Factor sign restrictions algorithm

Figure C9: This figure replicates the impulse response functions to an investment shock using
the baseline specification of Furlanetto et al. (forthcoming). Panel (a) shows results based on
the exact configuration of Furlanetto et al. (forthcoming, see Figure 1), using the algorithm of
Rubio-Ramı́rez et al. (2010). Panel (b) replicates the same financial shock using the new sign
restrictions algorithm.

C.4 Additional impulse responses from the large-scale, 15-variable

VAR
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