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Abstract

Lustig, Roussanov, and Verdelhan (2011) have recently introduced the “dollar risk
factor’(DOL) and the “carry trade factor”(HML), and show that they can price carry
trade portfolios, in the cross-section. This new result is useful not just in the academic
literature on cross-sectional asset pricing, but also in risk management and portfolio
optimization, as the same factors are widely used in the industry.

In this paper, we test the relevance of these factors in contributing to a diversified
forex portfolio and risk management. It is surprising that very little has been done on
this important issue. We shall try to fill this gap. In contrast to the existing literature
we first consider a large and detailed study to investigate the effect of introducing
asymmetry and time-varying effects amongst the factors, thereafter we measure their
economic adds value to a forex portfolio in terms of fx investment allocation and risk
management.We show that modelling non-linear dependency is important and adds

value to a forex portfolio.
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1 Introduction

Lustig, Roussanov, and Verdelhan (2011) have recently proposed two forex factors, the “dollar
risk factor”(DOL) and the “carry trade factor”(HML) to explain the returns of a carry trade
portfolio as compensation for risk. They form two empirically motivated factors, the DOL
factor which is the cross-sectional average of currency excess return, and the HML factor
which is the return of high-yield currencies minus the return of low-yield currencies and they
show that these factors can price carry trade portfolios in the cross-section. Menkhoff et al.
(2012) investigate the profitability of momentum strategies and find that the excess return of
these strategies, in the cross-section, is impressive. Kroencke, Schindler, and Schrimpf (2014)
use forex VAL (Value factor), momentum and carry trade and show that investing in these
factors can enhance the risk-return profile of an international portfolio. The forex factors
discussed above have become so pervasive in the literature that practitioners (hedge funds)

have now started to consider them for forex portfolio risk management.

In this paper, in constrast to the papers cited above, we do not aim to explain the excess
returns (in the cross-section) of carry trade or momentum strategies. We focus on curren-
cies portfolios and model the dependence structure amongst the forex factors. We study
the economic benefit (cost), in terms of portfolio performance and risk, for a hedge fund
in using these factors for managing an forex portfolio and assuming different scenarios for
the portfolio’s dependence structure. We show strong empirical evidence of asymmetric and
time-varying correlation across the factors . We show that this result has important conse-
quences for portfolio management, and risk management as it implies that linear correlation
overstates the benefits of diversification. We stress that, unlike most of the literature in forex
which focuses on the determinants of expected currency returns, our contribution rests on
investigating the factor co-movement and its economic value to a forex portfolio. While the
popularity of the forex factors cited above has grown exponentially, not just in the academic
literature but also amongst practitioners, very little has been done to study them from the

perspective of forex asset allocation or risk management. We shall try to fill this gap.

What we do in this paper has been largely discussed in the equity field. For example,
there is extensive literature on how well the typical Fama and French (1993) pricing factors
capture expected stock returns (see for example Fama and French (1993)’s market, size and

value pricing factors and others). While most of these papers assume orthogonality across

'While we aknowledge that understanding the economic drivers of the dependence structure amongst the
factors is an interesting topic and indeed we have it on the agenda for future research, we do not address it
in this paper as we mainly focus here on portfolio analysis and risk management.



pricing factors,” Christoffersen and Langlois (2013) use a different approach and model the
co-movement across the three Fama and French (1993) factors using non-linear models. They
show that asymmetry and time-varying dependence across the factors is important and that
the utility gain for a risk-averse investor increases significantly. In contrast, very little has
been done in the forex market. In the first part of this paper, we consider a very large and
detailed analysis on the dependence structure of the forex factors and show that some of
the most widely used forex factors, VAL, DOL and HML for example, are not orthogonal
even in terms of linear dependence, and this has a crucial implication for forex portfolio
management. In the second part of the paper, we build on these results and show that a well
diversified currency portfolio should indeed take into account non-normality in returns. To
do this, we extend the dynamic copula models used in the equity market in Christoffersen
and Langlois (2013) to model the non-linear dynamic dependence structure of forex factors.
We find supportive empirical evidence in favour of the time-varying non-linear dependence
amongst the forex factors and we show that such a dependence structure can be properly

modelled by the dynamic skewed t copula model of Christoffersen and Langlois (2013).

An additional contribution of this paper is in assessing the economic value of modelling
the dependence amongst the forex factors in the context of portfolio management. To do
so, we discuss two examples: a portfolio approach and estimate optimal weights for a risk-
averse investor taking a position in the forex factors; we extend the model of Patton, Ziegel,
and R. Chen (2019) to capture joint dependence across the factors and forecast the VaR
and Expected short-fall of an forex portfolio. The linear correlation for the multivariate
normal distribution is used as a benchmark. We find significant utility gains when using
non-linearities. We believe that our large and detailed study on the dependence structure
of forex factors combined with the forex portfolio analysis and risk management are novel
contributions and the empirical results discussed are very relevant not only in academia but

also to central banks and hedge funds.

Our paper is similar in spirit to Barroso and Santa-Clara (2015b) although its main con-
tribution is on carry trade and momentum in optimizing a forex portfolio. They find that
carry, momentum and reversal all contribute to optimized portfolio performance. We show
that this is also the case for the factors considered in this paper, not only in enhancing
portfolio performance but also managing risk. Additionally to this, Barroso and Santa-Clara
(2015b) do not model the dependence amongst the factors. We show that asymmetry and the
time-varying dynamics amongst the forex factors is key, and neglecting it has a significant

economic cost.

2This is a well documented empirical fact induced by the linear correlation coefficients.



Jorda and Taylor (2012) show that the 2008 financial crisis impacted negatively on different
strategies, including the carry trade strategy. They combine carry trade momentum and
the real exchange rate and show that this strategy can generate positive in-sample and out-
of-sample returns. Our paper is also related to Jorda and Taylor (2012), but we study
extensively the dependence structure across the factors and the way this affects the fx asset

allocation and portfolio risk management.

Finally, our paper is also related to the extensive literature on the non-linear correlation in
forex. For example, Scotti and Benediktsdottir (2009) report strong evidence that foreign
and US recessions are important for explaining the joint dependence structure across the
tendency of currencies with higher interest rate differentials to move less closely together,
not only on average (correlation), but also when extreme events occur (tails). Patton (2006)
finds evidence that the mark-dollar and yen-dollar exchange rates are more correlated when
they are depreciating against the dollar than when they are appreciating. This asymmetry
could be induced by the asymmetric responses of central banks to exchange rate movements.
We show strong evidence of asymmetry and time-varying correlation across some recently
proposed forex factors and estimate the cost to portfolio management of ignoring it. To
achieve this goal, we rely on a parsimonious copula model which allows us to model the

dependence across the four factors cited above.

The paper is organized as follows: section 2 describes our data; section 3 introduces the
univariate modelling and pairwise correlation analysis among forex factors; section 4 presents
the joint distribution modelling of forex factors by using Copula models; section 5 introduces
the economic implication of the copula model by constructing optimal portfolios for risk-

averse investors; section 7 provides the conclusion.

2 Data

We use weekly forward and spot rates from January 1, 1989, to March 20, 2020, for 31 active
trading currencies. The data are all from DATASTEAM. The excess return of carry trade is
calculated using term ¢ log forward rate less term ¢ + 1 log spot rate for each currency. We
now discuss how the currency factors ( DOL,HML, MOM and VAL) have been constructed.
The DOL factor is the mean of the 31 currencies’ excess return. This is what we denote as
the dollar risk factor. In constructing the HML factor, we follow Lustig, Roussanov, and
Verdelhan (2014) and sort the currency returns from lowest to highest based on the forward

premium and allocate them into five portfolios. The HML factor is the difference between
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[Figure 1 of time series plot of factor values is about here|

the mean returns of the fifth portfolio (the largest forward premium) and the first portfolio
(the smallest forward premium). We denote it as the carry trade factor. For the momentum
(MOM) factor, we follow Menkhoff et al. (2012) and use the previous 6-week formation period
and 1-week holding period to sort the currencies into five portfolios based on their lagged
returns. The MOM factor is the difference between the mean returns of the lowest lagged
return portfolio and the highest lagged return portfolio. Finally, we compute the VAL factor
following Kroencke, Schindler, and Schrimpf (2014)

S' tP' +
Q = J’—*J’ ( 1)
J Pj,t
where P;; denotes the price level of consumer goods in country j at term ¢, and P}, the
corresponding foreign price level (here is USD). While the @);; denotes the real exchange rate

of country j at term t.

Fyapsn — (g— - 1) (1) @)

The VAL factor can be calculated using the average real exchange rate over 3 and 13 weeks.
We then sort the currency returns from lowest to highest based on the VAL factor and allocate

them into five portfolios to obtain the VAL portfolio.

3 Currency Market Factors

3.1 Descriptive statistics

In this section, we present some descriptive statistics for the 4 portfolios (DOL, HML, MOM
and VAL). Figure 1 graphs the time series plot of the factors. There is the clear presence of
a volatility cluster during the 2008 financial crisis period and this seems to be more evident
for MOM and VAL factors.

We report the descriptive statistics in Table 1. We include the annualized sample mean, the

Newey-West standard error adjusted test statistics, the annualized standard deviation, the



[Table 1 factor descriptive stats table is about here]

[Figure 2QQ plot is about here|

skewness, kurtosis, autocorrelation coefficient and linear correlation matrix. The annualized
mean return is the highest for the carry trade factor HML and is negative for the DOL factor.
It is interesting that for the full dataset all factors show excess kurtosis and the skewness
is negative for all factors but positive for VAL. The second panel shows the autocorrelation
coefficients. Most of the factors, apart from the DOL, have strong second-order and third-
order autocorrelation. This autocorrelation could cause the non-normality shape observed in

Figure 1.

We report the sample linear correlation matrix in the last panel. There are significant pairs
of correlations among all factors. We observe a negative correlation between MOM and
DOL. This result is also documented in equity momentum studies, (see for example Daniel
and Moskowitz (2016)). We surprisingly find that correlation between HML and MOM
is positive and HML and VAL is negative. Since most studies have reported a negative
correlation between HML and MOM factors, we investigate this issue further and split the
full sample into two: one part including the 2008 finnacial crisis and one not including it.
Table 2 shows the results. The financial crisis does not seem to be causing that result, (see
Table 1). However, when we split the sample into developed and developing countries, we
find a clear difference for correlations of HML and MOM or HML and VAL. In developed
countries, the factors HML and MOM have the expected negative correlation while the HML
and VAL are positively correlated.

Further evidence of non-normality can be seen in Table 1, while Figure 2 complements and
supports that evidence. In fact, factors’ empirical quantiles diverge significantly from a

normal distribution.

The empirical evidence above, although in a simple form, seems to support our main idea:
correlation amongst forex factors is not captured by a normal distribution. In the next

sections we shall investigate this issue in more detail and investigate its implications.

3.2 Modelling Dependence Amongst the forex Factors

In this section we conduct a more detailed analysis of the dependence amongst the forex

factors. We model the dependence structure for each pair of currency factors using threshold



correlations or quantile dependence, as in Christoffersen and Langlois (2013). * The idea
here is to characterise the dependence of two variables in the joint lower or joint upper
tails, respectively. Unlike linear correlation, this approach involves modelling the asymmetric
dependence structure between extreme events, which is appropriate in the presence of skew
and excess kurtosis observed in Table 1. We define the threshold correlation p; ;(u) for any

two factors 7 and j as follows:

5 (1) corr(ry,rilri < 7 Nu),ry < F; ' (w))  whenu < 0.5 )
Pi\u) =
’ corr(ry,rilri > 7N u),ry > F7 N u))  whenu > 0.5

Where u is a threshold between 0 and 1, and F; *(u) is the empirical quantile function of the

univariate distribution of r;.

Figure 3 shows, on the left, the scatter plot of two factors. Alongside we plot the empirical
threshold correlation against the threshold w for the same pair of factors.? As a compari-
son, we assume that the theoretical threshold correlation, given the factors pairs, follows a
bivariate normal distribution (see the dashed line). For bivariate normal distributions, the
threshold correlation will be symmetric around 0.5 and will gradually approach 0. Figure 3
shows that the bivariate normal assumption does not hold, as we observe increasing correla-
tions in extreme events. The empirical correlations show a significant degree of asymmetry,
especially in the tail. Correlations amongst factors appear to be, in general, positive and

5

large °. It is worth discussing, for example, the conditional correlation between the carry
and momentum factors in Figure 3. In fact, in the literature, it is standard that these two
factors are independent when an unconditional measure of correlation is used. Figure 3 shows
that these two factors might be very highly (positively) correlated instead. Consider now the
factors DOL and HML. Again, the (conditional) correlations are large and most of the times
positive. This result might be relevant for most of recent fx (cross sectional) asset pricing

studies that assume independence between the Dollar risk and carry risk factors.

In sum, our results show that assuming linear dependency amongst the factors will lead

to underestimating portfolio risk, in extreme event scenarios, and so diversification, in this

3The same method was used by Longin and Solnik (2001), Ang and J. Chen (2002), Ang and Bekaert
(2002) and Patton (2004)

4We follow Christoffersen and Langlois (2013) who compute the threshold correlation when at least 20
pairs of values are available.

5Although these results appear rather interesting and worthy of further investigation, this is not the
objective of this paper and we leave this question for future research



[Figure 3 Threshold correlation graph about here|

[Figure 4 Autocorrelation graph about here|

case, will not work in reducing the overall risk exposure. The empirical results above are
important and new as they shed new light on the literature (see for example Kroencke et
al, 2014; Brandt et al , 2009) and show that dependence amongst the forex fatcors is very

significant.

3.3 Univariate Modelling

The empirical results in Table 1 also show that autocorrelation could be an important issue
for factors’ returns. In Figure 4, the autocorrelation function is plotted by a dashed line for
all the factors up to 100 lags, a 95% confidence boundary included. Financial time series are
generally subject to heteroscedasticity and volatility clustering. We plot the autocorrelation
function for the absolute value of the factors on the same graph. We find a strong and

persistent serial correlation.

We model the dynamics of our factors by using a univariate autoregressive-non-linear general-
ized autoregressive conditional heteroscedasiticity (AR-NGARCH) process. The conditional

mean is estimated by an AR(1) process as follows:

Tit = Goj + PijTjt—1+ 0j i€ (4)

Where r;,is the factor value of factor j at time ¢. The conditional volatility is governed by
an NGARCH (R. F. Engle and Ng 1993)

02y =wj+ Bi05, 1 + o, (€4-1 — 0;)° (5)

The NGARCH model allows for the asymmetric influence of past return innovations €;;_1.
Since financial time series generally show a “leverage effect”, an unexpected drop in return
may have a bigger impact on conditional volatility than an unexpected increase (i.e. 6;is
positive). Under this circumstance, the NGARCH model is expected to mitigate the skewness
and excess kurtosis. We use the maximum likelihood method under the assumption of i.i.d.

normal innovations of €;;.



[Table 3 Estimation table of normal residuals about here]

[Table 4 Estimation table of skewed t residuals about here]

Table 3 reports the coefficient estimates and diagnostic tests under the normal assumption
for €;;. In the first panel, we report the estimated coefficients and standard errors of an
AR(1)-NGARCH model ¢g,¢1,a,8 and 0. The parameters (¢g) are all significant except for
the DOL. Most parameters of the NGARCH model are also significant. The coefficient 6 of
the VAL and the MOM factors have large positive values which are statistically significant
while the DOL factors have insignificant negative . The log-likelihoods are all significant

and positive.

The divergence between model skewness/kurtosis points towards strong non-normality of
¢;. To better model the factor dynamics, we employ the skewed t distribution of Hansen (1994)
for error term €;;, where the coefficients x;and v;govern the skewness and the kurtosis. We
use the maximum likelihood method under the assumption of skewed t distribution of ¢;to
estimate the AR(1)-NGARCH model. The results are reported in Table 4 which shows that
the kurtosis parameters (v) are all significant and the skewness factors (k) of HML are not

significant.’

Figure 5 graphs the autocorrelation function for the residual and its absolute value. After
adjusting the skewness and excess kurtosis by assuming a normal distribution, the serial
correlation in absolute value is highly reduced. Figure 6 is the QQ plot of the residuals from
skewed t AR(1)-NGARCH. When comparing these results with Figure 2, we see that most
of the skewedness and kurtosis have been modelled after using the AR(1)-NGARCH.

4 Modelling Asymmetry Amongst the Forex Factors

The empirical evidence above supports the presence of non-normality and asymmetry in the
threshold correlation. To account for these features, we use copula models as in Patton
(2006). We use this methodology as it is a flexible framework to characterise multivariate
distributions. The joint probability density function f;(rq 441, ..., 7N ¢+1) of the N forex pricing

factors can be decomposed as follow:

5By comparing the significance for the whole AR(1)-NGARCH model in Table 4, we find that the AR(1)-
NGARCH model with the normal distribution fits the data well.

[Autocorrelation graph of residual series about here]



|QQ plot of residuals about here|

N
Sty oo rves1) = (M, s MNe1) Hf], Tji+1) (6)

Where f;¢(7;4+1) is the univariate marginal probability density function for factor j and
time t; ¢ (N1441, -, Mnve41) 1S the conditional density copula function;n;.yq is the marginal

probability density for factor j.

Tj,t+1

N1 = Fja(rjeen) = / fie(r)dr (7)

—00

We follow the univariate skewed t AR(1)-NGARCH model given in Section 3.3. The F}; is
the cumulative distribution function (CDF) of the skewed t distribution of Hansen (1994).

4.1 Copula Models

Patton (2006) discusses the flexibility of copula models and shows that this methodology
can capture observed empirical facts in the forex market, for example correlation structure
for currencies against the US Dollar is stronger when the currency depreciates than when
it appreciates. Therefore, in our case, copula models help us to estimate the joint dynamic

distribution of the factors.

We shall introduce the copula model in this section. The most common functional forms
of copula models in financial time series are normal copula and student t copula. However,
these two copula models can only generate symmetric multivariate distributions and fail to
account for the asymmetry in threshold correlations that we have empirically shown above
for the factors. Copulas from the Archimedean family (The Clayton, the Gumbel and Joe-
Clayton specifications) can be used for asymmetric bivariate distributions, but they are not

easily generalized to high dimensional cases.

Demarta and McNeil (2005) propose the skewed t distribution and the skewed t copula

which have been widely used in financial modelling.” The skewed t distribution belongs to

"The skewed t copula is used by Christoffersen, Errunza, et al. (2012) for the analysis of international
equity diversification and Christoffersen and Langlois (2013) for equity market factor modelling. Cerrato
et al. (2017b) use this model for joint credit risk analysis of UK banks. Cerrato et al. (2017a) model the
higher-order components of equity portfolios.

10



the multivariate normal variance mixtures class. An N-dimensional skewed t random variable

X has the following representation:

X =VWZ+\W (8)

Where W follows an inverse Gamma IG(v/2,v/2) distribution; Z is a N-dimensional normal
distribution with mean 0 and correlation matrix ¥; A is a N x 1 asymmetry parameter vector.

The multivariate probability density function of the skewed t distribution is:

2—(v+N)

QfK# <\/(U + z*TWflz*))\wal)\) e T

fi(ryo, \,¥) =

_vtN v+ N (9>

(%) (mj)% | |z (\/(v + Z*TLD_IZ*))\TLD_I/\> ’ (1 + —Z*Tgﬁlz*) ’

v

The copula density function derived from the above probability density function is:

2%](# (\/(v + z*TLI'/—lz*))\TLI'/—lx\> eI
_ v+N v+ N

r (%)I_N | v ’% (\/(U + z*TW*lz*))\Tgpfl)O T2 (1 i Z*Ti—lz*) 2

) " )
L K <\/<v +(2)") )\?) Y

Where K(-) denotes the modified Bessel function of the second kind, and z* = tﬁ) (n;) denotes

the copula shocks where ty ,(7;) is the univariate skewed t distribution:

(10)

v+

K 1= 21Kv42-1 ( (U + 33'2) )\?) 636)”'
o () = | —da (11)

fer (@) v (VoraR) T (1+2)

However, a closed-form solution for skewed t quantile function is not available. We use

simulation to define the quantile function and employ 1,000,000 replications of equation 8.

11



4.2 Modelling Dynamic Dependence Amongst the forex Factors

Another interesting feature of the results above is that correlations change over time. We now
discuss how we account for this feature. The difference between dynamic model and constant
model whether the correlation of factors are constant or not. Following Christoffersen, Fr-
runza, et al. (2012) and Christoffersen and Langlois (2013), we use R. Engle (2002)’s dynamic

conditional correlation (DCC), where the correlation matrix dynamic is generated as 12

Qt = Q(l - Bc - ac) + ﬁcQt—l + Olczt—lth_t (12)

In the case of N pricing factors, Qyis a N X N positive semi-definite matrix for time ¢;a.and [,
are scalars; z;is a N x 1 row vector of standardized residuals with jth entry z;, = F. ' (n;.),
where F ! is the inverse CDF from copula estimation; @ is a constant matrix which is a
full-sample correlation matrix. The dynamic conditional correlation between factor ¢ and j

for time ¢ is defined as

Qijt
V Qii,tij,t

Coefficient S.and «. are estimated to allow the dynamic correlation. Note that the dynamic

\Ijij,t - (13)

copula mean-reverts to the full sample correlation matrix (). The estimates of coefficient

fG.and a, are showed in Table 5.

4.3 Estimation Method

We use a composite log-likelihood estimation inspired by R. Engle, Shephard, and Sheppard
(2009) and Christoffersen, Errunza, et al. (2012).* The composite likelihood function in our

case is defined as :

CLO) =) ) > ey (34, mjai 0:) (14)

t=1i=1 j>i

8R. Engle, Shephard, and Sheppard (2009) find that in the large-scale DCC model, the traditional likeli-
hood method yields biased estimates.

12



[Table 5 Copula results about here|

Where 0is the parameter set; ¢ (1,7, 6;;) is the bivariate copula distribution of factor
pair ¢ and j. We maximize the composite loglikelihood function C'L(#) to get the Copula
coefficient estimates 6, ; for each factor pair. We then average 0; ;to obtain an estimator of
the parameter set . The standard errors are based on R. Engle, Shephard, and Sheppard
(2009). Following Christoffersen, Errunza, et al. (2012), all the copula models are estimated
by this method. We also report the parameter estimates from maximizing the conventional
likelihood function along with parameter standard error based on X. Chen and Fan (2006)
in the Appendix.

4.4 Empirical Results

The first panel of Table 5 shows the composite likelihood estimates for static/dynamic pa-
rameters of normal, student t and skewed t copula. The degree of freedom v and most of
skewedness parameter \ in skewed t copular are all significant. This is consistent with the
non-normal and asymmetric dependence of currency factors. For the static copula models,
the full sample correlation estimates are reported. For dynamic copula models, we report
DCC parameter estimates «., S.and long-term mean-reverting correlation matrix ) as in
equation 12. The estimates of () are about the same as for the full sample correlation of
the static copula models. DCC parameters a.and S.are significant in all three models. This

result supports the time-varying correlation.

In the lower panel of Table 5, we report the model diagnostic statistics. We report the log-
likelihood and the PLR test statistic test. The dynamic copula models display the best fit.
This is consistent with the presence of time-varying correlation and asymmetric dependence.
Following X. Chen and Fan (2006), we perform the pseudo-likelihood ratio (PLR) test to show
that the skewed t copula model outperforms the student t copula. The null hypothesis is that
the asymmetry parameters (A) in the skewed t copula are all zero. The pseudo-likelihood
ratio (PLR) test cannot reject the null hypothesis. Thus, the skewed t copula models are

significantly asymmetric and different from the student t copula.

Figure 7 shows the dynamic correlation implied by the skewed t dynamic copula during the
period from January 1 1989, to March 20 2020. We consider the most difficult period of the
recent financial crisis. The correlations of pairs HML& VAL and HML&MOM move around
the value of @) (in equation 12). During 2008, all pairs of correlation fluctuate considerably.

The financial crisis hugely impacted on the forex market, invalidating models.

13



[Figure 7 Dynamic correlations of residuals about here|

|[Figure 8 Threshold Correlations for Factor Residuals and Copula Models|

To reinforce our empirical results pointing towards non-normality and checking their ro-
bustness, in Figure 8 we plot the empirical threshold correlation of residuals z*from the
AR-NGARCH model along with the standard bivariate normal implied threshold correla-
tion, student t copula and skewed t copula implied threshold correlations. It is evident that
the empirical threshold correlations are far from a bivariate normal distribution. In what

follows we use the skewed t copula to model the dependency structure of the fx factors.

5 Economic Implication

The empirical evidence above suggests that the forex factors have significant time-varying
asymmetric dependence. What is the economic cost for a forex trader to ignore this depen-
dence structure? We shall consider two examples: forex portfolio management and forex
portfolio risk management. We assess the economic value of considering this type of de-
pendence structure in a forex portfolio. As in Kroencke, Schindler, and Schrimpf (2014) we
use a real time strategy. We show first that once we implement an forex optimised strat-
egy and consider asymmetry and time-varying, in the dependence structure, the benefit in
terms of utility for the investor is largely improved and second that portolio Value at Risk
and Expected Short-Fall are highly reduced. We compare a battery of models accounting
for different dependence structures. For portfolio analysis, we assume that at each time t,
investors allocate their wealth, based on the weighting vector w;, across the 4 currency fac-
tors to maximize their expected utility. We compare the return characteristics of alternative
strategies by using different dependence structure models and a large real time out-of-sample

analysis.

5.1 The Investor’s Optimization Problem

We assume that investors follow a constant relative risk aversion (CRRA) utility function:

(1- 7)_1 <P0 (1 + w;rrt—i-l)l_V) ifvy#1
log (Pg (1—|—thTt+1)) ify=1

14



Where P, is the initial wealth which we set at $1 here, r;is the vector 4 currency factor returns
at time ¢, w, is the weighting vector, v denotes the degree of relative risk aversion (RRA).
We consider 3 levels of RRA: v = 3,7,10. The weighting vector for each time t is obtained
by maximizing the expected utility function given different assumptions for the factors’ joint

distribution.

wy = argmax Ey (U (1 + thrtH))
weW
1+ w, rg =
= argmax / ( 1t ) fera (regn) driga (16)
weW -7

Where f; 11 (r441) denotes the joint distribution of 4 factors. We assume that investors face in-
vestment constraints in that the risk exposure to any single factor and the four factors in total
is less than $1. Thus the weighting matrix w = { (w1, wa, w3, w4) € [—1, ' fwy |+ | wy |+ | ws | + | wy |<
Due to the complexity of the joint distribution f; 1 (r,.1), solution for wy is generally not given
analytically. We solved 16 by simulating 10,000 Monte Carlo replications for the four factors

using a multivariate distribution fiyq (r441).

5.2 Forex Portfolio

Our weekly investment strategy is implemented in two stages: the first stage consists of
modelling the dependence structure or joint distribution for the expected return fi,q (7441);
the second stage involves the estimation of the factor weighting vector by maximizing the
investors’ utility function 16 given the estimated joint distribution in the first stage. To begin
with, we estimate the skewed t AR-NGARCH model (equation 45) for the four factors using
the previous data sample. Thereafter, we estimate the dependence structure among the four
residuals from the AR-NGARCH by using copula models.” Each time ¢, the expected factor

return for factor j is generated by equation 17:

Tittl = Qo + Q14754 + Oj 14165141 (17)

Whereg, ; and ¢ jare the AR coefficients; 0;;,1 is the 1-step-ahead forecasted conditional

volatility in the NGARCH model; €; ;1 is simulated from the joint distribution function which

9We also used a multivariate standard normal distribution as a benchmark for comparison with copula
models.
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is characterized by the copula model. Note that the parameter estimates in the AR-NGARCH
and copula models are updated once a year using the whole previous data sample. For
dynamic copula models, where DCC is used to model the time-varying correlation coefficient,
the factor correlation is updated weekly. We start our investment from April 1, 1994, giving

us an investment period of over 25 years.

In the second stage, we use the simulated 10,000 draws from f;yq (r441) to value the integral

in 16. Thus maximising 16 is equivalent to maximising 18

wi = argmaxn Z U ( ey (w)) (18)
weW i=1
where
Rt+1,i (w) =1+ thrtH (19)
e =2.2204 x 10716
and

:+1,¢(w) = (1_ 1 ) ) ’ (20)

U=n"'> U(R;, (w;,)) (21)

. 100
U* (Rps1, (w)) = WU (Ris1i (w)) (22)
The cut-off 2.2204 x 10716 was chosen as the machine epsilon. We use the function U* instead
of U directly, since the numerical maximization routine does not work well with extremely
small or large values. The Udoes not affect the ranking of alternatives, and the 100 value is

the reverting mean of the U.

By maximizing equation 18, we obtain the optimal weighting vector w; for time ¢. Each time

t, investors liquidate the previous position and rebalance their portfolios according to wy.
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The real-time investment results about here]

5.3 Performance of Different Strategies

The empirical results based on a large battery of dependence structure models are reported
in Table 6. We consider three levels for the RRA, namely v = 3 in Panel A, v = 7 in Panel
B, and 7 = 10 in Panel C. We follow Christoffersen and Langlois (2013) and Patton (2004).
As the value of 7 increases the risk-averse level would also increase and the turnover would
decrease. The portfolio mean, volatility, skewness and kurtosis of returns for the 5 different
models are given in Table 6. Following Christoffersen and Langlois (2013), we use the average
return of the previous two years as the expected return of the factors. This helps us to focus
on the impact of higher moments on portfolio selection. We start with the full dataset (i.e.

developed and developing countries).

To assess whether allowing for asymmetry and time dependence lead to better portfolio’s

performance by generating better trading signasl, we also report the average turnover

100
Average turnover (%) = ZZ| Wi — Wip—1 | (23)

t=1 i=1

The estimates are all around 12%-21%, depending on the risk aversion. These values are
similar within each of the panels. This shows that the improvement in realized utility across

the models is not driven by the difference in trading turnover.

We compute the certainty equivalent (CE) of the average realized utility for each strategy as

follows
1

CE=U" (% > %) = (% ; (1+ rp,t)l‘v> _ (24)

t=1

where U~ is the inverse of utility function and where

are the out-of-sample portfolio returns.
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We use the multivariate standard normal model as our benchmark. For completeness we also
include the performance of an equal weighted portfolio. There is clear empirical evidence
that asymmetry is economically relevant (i.e. the skewed t copula out-performs the other
models). Thus, by considering asymmetry one can add value to a forex portfolio. The equally

weighted forex strategy produces a very different performance from the copula strategies.

To assess whether the difference between the benchmark portfolio and skew t copula portfolio
is economically significant, we apply bootstrap methods under the null hypothesis that the
difference is significantly different from zero. In this way, we can infer if the actual difference
shown in Table 6 is economically relevant. In each case, 1000 bootstrap draws were used
to calculate the p — values. The copula models always out-perform the benchmark model
and the equal weighted portfolio. Furthermore, the p — values show that the performace of
skewed t copula portfolio is robust. To better understand the results, consider an investor
with a relative risk aversion of 3. This investor is gaining 0.02375% , that is 2.375bp per
week if she uses the skew t copula instead of the benchmark model. Overall, there is a robust
evidence that tail dependence of the forex factors is highly affected by asymmatry and time
varying dynamics. These results help to shed some lights on the modeling approach used in

the literature resting mainly on normality assumptions, for example, Kroencke et al (2014).

5.4 Transaction Costs

Transaction costs can significantly reduce the performance of a trading strategy. There is
empirical evidence (Menkhoff et al. 2012), for example, that the performance of a momen-
tum strategy is highly reduced after considering transaction costs. In Table 7, we consider
transaction costs to check the robustness of the results presented in the previous table. To

compute the cost, we follow Barroso and Santa-Clara (2015a) and write it as:

ask bid
Fz’,t,t+1 - Fz‘,t,t+1

= as % (26)
F;,t,l;+1 + Fil?tflt+1

Cit

Where ¢;; is the transaction cost of currency i at time t. F5% , and F%_, denote the bid and

ask price of the forward exchange rate of currency ¢ at time t. To convert currency transaction
costs into factor transaction costs, we use the same method and parameters to calculate the
factor transaction cost by simply changing currency excess return to the currency transaction

cost.
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We consider transaction costs for combined strategies and not a “stand alone” strategy as
it may well be that when we consider transaction costs for a momentum strategy, the cost
offsets the return for that strategy, but when it is combined with other strategies (for example
carry trade) the higher profit of this combined strategy offsets the transaction costs. Clearly

transaction costs are important but, overall, the main results remain unchanged.

5.5 Performance in Developed and Developing Countries

We now split the data into developing and developed countries. We do this for several reasons:
first, we aim to check whether our results are driven by country-specific factors affecting the
exchange rates. Second, the benefits are known of diversifying forex portfolios by including
developing countries’ exchange rates. For the developed countries the p-values reject the
null hypothesis only at the 10% significance level. Thus, the rejection is weaker than in
the previous tables. The annualized mean return is, generally higher for the t skew copula
model while annualized volatility and skewness are unchanged across the models. The large
negative skew may be an indication of crash risk. As before, if we consider an investor with
a relative risk aversion of 3, she would gain 0.011% , this is 1.15bp per week using the skew

t copula instead of the benchmark model.

The results for developing countries also point towards an economic gain when using a skew
t copula, in general, they are weaker than the ones presented for all the countries: the benefit
for our investor from using a skew t copula model in this case is only 1.94bp per week. There
is an economic benefit in diversifying an forex portfolio between developed and developing
markets. The annualized mean return for developing countries is higher then the one for
developed countries, and the annualized volatility is also higher. Overall, the CE measure
for developing countries is the highest. The equal weighted strategy shows always the worst

performance, see Table 8 9.

6 Risk Management

We now consider forex portfolio risk management when asymmetry and time-varying depen-
dence structure is accounted for. It is standard in the industry to hedge an forex portfolio via
forex factors, and the results of the next sections should therefore be quite informative for

hedge funds managing an forex portfolio. The idea is to hedge an forex portfolio via proxies
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that are easier to trade. For our specific risk factors, these can easily be easly traded via
investment banks with very low transaction costs. This approach is becoming more popular

in the industry and it is likely to become even more so in the near future.

We compute two risk measures: Value at Risk(VaR), which is the tail quantile of the con-
ditional distribution of the portfolio returns; We also compute the expected short (ES) fall,
which is the conditional expectation of exceeding the VaR. We use both VaR and ES to
measure the risk of our portfolio. In the next sections, we shall follow Patton, Ziegel, and
R. Chen (2019). We consider 9 different models. The first three correspond to a univariate
distribution forecast, the next three correspond to dynamic copula forecasts, the last three
show the forecasting results from NAGARCH dynamic copula models. We discuss these

models in the next section.

6.1 Copula VaR and ES Forecasting

We build upon the model of Patton, Ziegel, and R. Chen (2019) and use the joint distribution
of factors to forecast VaR and ES. The value at risk is a conficence level o which is opposite

in sign to the value of the (1 — «) quantile:

VaR, = —FY (1 - a)

where the F(-1 denotes the inverse cumulative distribution function.

We apply the distribution of the asset returns, the mean and variance, to forecast the VaR
and ES. We use GARCH dynamics for the conditional mean and variance to build our models,

using the standardized residual. The copula forecasting model is:

Y, = p + oy (27)
o =w+ Boi_; + vy (28)
m ~ tid F,,(0, 1) (29)
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We use the NGARCH model discussed above to consider leverage effects in forecasting:

UtQ =w+ 5‘7152—1 + ’70152—1(7%—1 - 9)2 (30)

Y; denotes the portfolios’ return, where y; is specified to the ARMA model and o2 is specified
to the GARCH model. F,(0,1) denotes the distribution of 7. Given F), the forecasting of
VaR and ES can be estimated as:

vy = iy + aoy, wherea = Fn_l(a) (31)

er = g + boy, whereb=E[n, | n, < a (32)

We consider three choices for F;, to describe the distributions of n;:

N ~ ttd Normal copula (33)
ne ~ tid Student t copula (34)
ne ~ tid Skewedt copula (35)

To estimate the parameters (a,b), we use the Monte Carlo simulation. We use simulation
to define the quantile function and employ 1,000,000 replications using the equation below.

Thereafter, we sort the replications to obtain the quantile value a and apply equation (31).

X=7 (36)

where Z is the multi-normal distribution simulated by the correlation matrix from the normal

copula.

X =VWZz (37)
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where Wtollows an inverse Gamma [G(v/2,v/2) distribution, and v is from the student t

copula model.

X =VWZ+\W (38)

where A denotes a N x 1 asymmetry parameter vector, and (v, \) are all from the skewed t

copula model.

Here p; is the mean value of Y;and the oyis estimated by using the GARCH or NAGARCH
model. Hence, we obtain the new forecasting values using the copula model. As for the
univariate models, we apply the same GARCH model to esitmate the paramters. The main

different between univariate model and copula model is in the estimation of parameters (a, b).

The NAGARCH models work very well. These models can help to accommodate extreme
changes. The factors MOM and VAL carry the highest risk, this is consistent with what we

observe in Figure 1.

Table 10 shows the fit of copula models. The first section presents the average loss using the

FZ-loss function following Fissler (2017). The loss function is shown below:

Lrz(Y,v,e,G1,Ga) = arg7(727z'67)1 (1{Y <v} —a) <G1 (v) =G (Y)+ éGg (e) v) (39)

G (e) 61 (Y <o}y — e) — Gy (e)

where (G; denotes the weakly increasing and G5 denotes the strictly increasing and strictly
positive. (G5 is the differential coefficient function of G, g; = (5. Parameters v, e denote the
VaR and ES.

Smaller average losses indicate a better fit of VaR and ES. The models that consider asym-
metry, generally, have the lowest average loss. The NAGARCH copula models carry always
the lowest average loss. This result may also suggest that, amongst the forex factors, leverage
is important. In sum, skewness and tail dependence do affect forex portfolio risk. Managing
the risk of a forex portfolio is complex and the models assuming normality may not fully
capture risk in the presence of shocks. Asymmetry amongst forex factors is an important

element and can help managing portfolio risk. Figure 9 shows the forecasted value at risk of
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three different skewed t models. The results suggests the VaR of NAGARCH skewed t model

can catch the extreme change of the risk.

7 Conclusion

We run a large and detailed study on the dependence structure amongst some of the most
widely used forex factors. These factors are also very relevant to the hedge fund industry
when designing forex trading strategies. We show that the dependence structure amongst the
forex factors is more complex than what has been assumed in the literature. Asymmetry and
time dependence are economically relevant. To evaluate the economic cost to a hedge fund
of ignoring these features, we have considered two examples: forex portfolio management
and forex portfolio risk management and show that adding asymmetry and time-varying
dependence amongst the factors improves portfolio performance and risk management. Our
results contribute to both the academic literature, for example cross sectional fx asset pricing
and fx portfolio analysis as we shed some new light on the dependence structure across widely

used forex factor, and it is also relevant to hedge funds when designing forex trading strategies.
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Table 1 — Description Statistics of Weekly Factor Return

We report the mean, volatility, skewness, kurtosis and autocorrelation and cross-correlation for logged weekly
return of four factors. The period of the sample is from January 1, 1989, to March 20, 2020. The significant
correlation is marked by * and ** denoting the 5% and 1% levels.

Sample Moments DOL HML MOM VAL
Annualized mean -0.0033 0.1817 0.0790 0.0336
Weekly mean -0.0001 0.0035 0.0015 0.0006
Annualized volatility — 0.0646 0.0826 0.0935 0.0964
Weekly volatility 0.0090 0.0114 0.0130 0.0134
skewness -0.3476 -0.3983 -0.1451 0.2589
Kurtosis 4.7311 5.1602 6.9311 6.8570
Autocorrelation

First-order 0.0410 -0.0055 -0.0101  0.0923**
Second-order 0.0354 0.0922*%*  0.0640*  0.1751**
Third-order 0.0228 0.0781*%*  0.0870**  0.1436**
Cross Correlations

DOL 1.0000 0.3120%*  -0.0786* -0.1596**
HML 0.3120** 1.0000 0.0522*  -0.2655**
MOM -0.0786*  0.0522* 1.0000  0.5585%*
VAL -0.1596**  -0.2655**  0.5585** 1.0000

Table 2 — different group and period of four factors’ correlations

We present the different group and period correlations to understand the reason for the positive correlation
between HML and MOM or negative correlation between HML and VAL. The first section presents the
correlation of the group of developed country factors, while the second section show the correlations from
developing country factors. The last section is the cross-section data without the 2008 financial crrisis.

developed countries developing countries without financial

DOL HML | MOM VAL DOL | HML | MOM VAL DOL HML | M

DOL | 1.0000 | 0.2770 | -0.1377 | -0.0580 | 1.0000 | 0.4045 | -0.0462 | -0.0011 | 1.0000 | 0.2918 | -0.
HML | 0.2770 | 1.0000 | -0.1582 | 0.0106 | 0.4045 | 1.0000 | 0.2248 | 0.3090 | 0.2918 | 1.0000 | O.
MOM | -0.1377 | -0.1582 | 1.0000 | 0.1443 | -0.0462 | 0.2248 | 1.0000 | 0.3187 | -0.0604 | 0.0718 | 1.
VAL | -0.0580 | 0.0106 | 0.1443 | 1.0000 | -0.0011 | 0.3090 | 0.3187 | 1.0000 | -0.1755 | -0.3292 | O.:
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Table 3 — Estimation table of normal residuals

We report parameter estimates and model diagnostics for the AR-GARCH model with normal shocks.
Standard errors which are in parentheses are calculated from the outer product of the gradient at the
optimum parameter values. The model estimated is 7;; = ¢o; + @i 7jt—1 + 0j+€5:, Where 032-_’,5 =
wj + B]-U]%t_l + aja?7t_1(ej,t,1 — 0]-)2. Here w is fixed by variance targeting, and variance persistence denotes
the sum of parameters of the model.We also provide the p-value for Ljung-Box (L-B) tests of the residuals
and absolute residuals by 20 lags. The empirical skewness and excess kurtosis of the residuals are compared

to the model implied levels from the normal model.

Parameter Estimates DOL HML MOM VAL
oo -0.0003 0.0031 0.0012 0.0005
(0.0008) (0.0003) (0.0003) (0.0003)
01 0.0435 0.0152 0.0118 0.1075
(0.0407) (0.0306) (0.0279) (0.0315)
Q@ 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)
6] 0.9330 0.9519 0.9106 0.0022
(0.5577) (0.0189) (0.0942) (0.0023)
0 -0.3675 0.0842 0.4922 0.1167
(0.2199) (0.1203) (0.1116) (0.0160)
: / / / /
v / / / /
Diagnostics
Log-likelihood 5131.1000 4714.6000 4572.5000 4451.7000
Variance persistence 0.9330 0.9519 0.9106 0.0022
L-B(20) p-value 0.1366 0.0000 0.0000 0.0000
Absolute L-B(20) p-value 0.0000 0.0000 0.0000 0.0000
Empirical skewness -0.3305 -0.3874 -0.1572 0.1523
Model skewness 0.0000 0.0000 0.0000 0.0000
Empirical excess kurtosis 4.7064 5.1739 7.0292 6.9138
Model excess kurtosis 0.0000 0.0000 0.0000 0.0000
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Table 4 — Estimation table of skewed t residuals

We report parameter estimates and model diagnostics for the AR-GARCH model with skewed t shocks.
Standard errors which are in parentheses are calculated from the outer product of the gradient at the optimum
parameter values. The model estimated is 7+ = ¢o ; + @i j7jt—1 + 0j€5+, Where ait = w; + 5j0j2-,t71 +
ozjait_l(ej,t,l — Gj)Q. Here w is fixed by variance targeting, and variance persistence denotes the sum of
parameters of the model.We also provide the p-value for Ljung-Box (L-B) tests of the residuals and absolute
residuals by 20 lags. The empirical skewness and excess kurtosis of the residuals are compared to the model
implied levels from the asymmetric model.

Parameter Estimates DOL HML MOM VAL
oo 0.0086 0.0187 0.0127 0.0010
(4.4267) (39.8799) (19.0416) (0.0003

01 0.1205 -0.9963 -0.3788 0.0842
(21.1115)  (626.7629)  (95.5201)  (0.0290

o 0.1420 0.1426 0.1357 0.0000
(99.8384)  (2238.7000)  (10.3699) (0.0000

I6] 0.0487 0.0495 0.0872 0.9278
(0.7801)  (1001.0000)  (16.2953) (0.0310

0 0.0980 0.1031 0.1537 0.0326
(6.9545) (340.2772) (17.5421) (0.1055

K 0.6267 0.6386 0.7202 0.0294
(984.0096) (4693.0000)  (124.6940) (0.0393

v 8.5314 9.4683 6.6711 8.6676

(313.4826) (7898.4000) (1234.2000)  (1.6343

Diagnostics

Log-likelihood 3092.6000  2768.6000 2968.2000  4542.9000
Variance persistence 0.1907 0.1921 0.2229 0.9278
L-B(20) p-value 0.0188 0.0000 0.0000 0.0000
Absolute L-B(20) p-value 0.0000 0.0000 0.0000 0.0000
Empirical skewness -0.2970 -0.1663 0.1166 0.1773
Model skewness 1.3041 1.2484 1.6589 0.0770
Empirical excess kurtosis 4.6803 4.1084 4.9599 6.8957
Model excess kurtosis 6.2522 5.7910 8.9601 4.2916
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Table 5 — Estimation results for copula models with composite method

This table presents parameter estimates for the dependence models of the residuals from the NAGARCH
model for the period January 1, 1989, to March 20, 2020. All models are estimated by maximum likelihood.
Standard errors (in parentheses) are computed using the methodology of R. Engle, Shephard, and Sheppard
(2009). The last line presents the pseudo-likelihood ratio test statistics. We followed X. Chen and Fan (2006)
for the null hypothesis that the asymmetry parameters in skewed t copula are all equal to 0. The * and **

denote the significant levels of 5% and 1%.

4 factors
constant dynamic

normal t skewed t  normal t skewed t

v 9.1563 7.2539 6.0653 6.4937
(2.2558)  (0.1277) (0.9437)  (0.2823)

ADoOL -0.0009 -0.0025
(0.0002) (0.0013)

AHML 0.0015 0.0031
(0.0005) (0.0007)

AMom -0.0013 -0.0022
(0.0162) (0.0051)

AV AL -0.0095 -0.0002
(0.0026) (0.0106)

Be 0.8115 0.7951 0.8087
(0.0338) (0.0130)  (0.0212)

Qe 0.0247 0.0369 0.0304
(0.0069) (0.0016)  (0.0027)

p(DOL,HML) 0.1615 0.1489 0.1474 0.2058 0.2131 0.2129
p(DOL,MOM) 0.0184 0.0403 0.0403 0.0180 -0.0025 -0.0005
p(DOL,VAL) -0.0531  -0.0050 -0.0036 -0.0537  -0.0990 -0.0947

p(HML,MOM) 0.0814 0.0948 0.0946 0.1058 0.0800 0.0820
p(HML,VAL) -0.1598  -0.1605 -0.1584 -0.1822  -0.1904 -0.1896

p(MOM,VAL) 0.5533 0.5597 0.5575 0.5544 0.5683 0.5676

Model Properties

Correlation persistence  0.0000 0.0000 0.0000 0.8362 0.8320 0.8391
Log-likelihood 334.9903 544.7528 551.9646 521.3643 602.8038 610.3774
No. of parameters 6.0000 7.0000 11.0000 8.0000 9.0000 13.0000
Pseudo-likelihood 15.2801** 12.4748**
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Figure 1 — Time series plot for 4 factors

The figure below illustrates the time series of weekly returns of each factor for the period January 1, 1989,
to March 20, 2020.
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Figure 2 — Quantile-Quantile Plots for 4 factors

For each observation we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the standard normal distribution on the horizontal axis. If returns are normally distributed,
then the data points will fall randomly around the 45° line ;which is marked by dashes.
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Figure 3 — Threshold correlation for 4 factors

Figure 3 presents threshold correlations between the 4 factors . Our sample consists of weekly returns from
January 1, 1989, to March 20, 2020. The continuous line represents the correlations when both variables are
below (above) a threshold when this threshold is below (above) the median. The dashed line represents the
threshold function for a bivariate normal distribution using the linear correlation coefficient from the data.
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Figure 4 — Autocorrelation 4 factors and the absolute value of 4 factors

Autocorrelation of weekly returns (dashed line) and absolute returns (solid line) from January 1, 1989, to
March 20, 2020. The horizontal dotted lines provide a 95 confidence interval around 0.
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Figure 5 — Autocorrelation graph of residual series

Autocorrelation of AR-FARCH residuals (dashed line) and absolute residuals (solid line) from January 1,
1989, to March 20, 2020. The horizontal dotted lines provide a 95 confidence interval around 0.
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Figure 6 — QQ plot of residuals series

For each observation we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the skewed t distribution on the horizontal axis. If the AR-GARCH residuals adhere to the
skewed t distribution, then the data points will fall on the 45° line, which is marked by dashes. The parameters
for the skewed t distribution are from Table 3.
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Figure 7 — Skewed t copula dynamic correlations with composite method

We report dynamic conditional copula correlation for each pair of factors from January 1, 1989, to March 20,
2020. The correlations are obtained by estimating the dynamic skewed t copula model on the factor return
residuals from the AR-GARCH model. This sample is used in estimation of the models.
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Figure 8 — Threshold Correlations for Factor Residuals and Copula Models

We present threshold correlations computed on AR-GARCH residuals from January 1, 1989, to March 20,
2020. The thick continuous line represents the empirical correlation. The threshold correlation functions are
computed for thresholds for which there are at least 24 data points available. We compared the empirical
correlations to those implied by the normal copula and the constant t and skewed t copulas.
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Figure 9 — VaR of factors

We report the forecasted value at risk of four factors of three different forecasting model, simple skewed t,
multi skewed t and NAGARCH skewed t model. The blue line give the VaR of simple skewed t model. The

red line show the results of multi skewed t model. The yellow line denotes the VaR of NAGARCH skewed t
forecasting model.
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