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Abstract

Currency-speci�c pricing factors are pervasive in international asset pricing. How-

ever, portfolio and risk managements based on currency factors, instead of individual

currencies, are rarely discussed. This paper tries to �ll this gap by modelling dynamic

correlations and non-normality among currency factors. By considering the four most

popular currency factors: the dollar risk factor, the carry trade factor, the currency

momentum factor and the currency value factor, we �nd that a dynamic conditional

correlation copula (DCC-copula) model with skewed-t kernel �ts the joint distribution

well. For a risk-averse investor, attractive economic value is added by the DCC-copula

model in currency factor investing, while ignoring the correlation structure or assuming

naive distributions (such as joint normal distribution) brings signi�cant costs.
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1 Introduction

Currency anomalies are di�cult to �t into a stochastic discount factor (SDF) model with

traditional risk factors (e.g., Burnside et al. [2010], Burnside [2011] and Lustig et al. [2011])

which has led researchers to construct currency market-speci�c pricing factors.

Lustig et al. [2011] propose the dollar risk factor (DOL) and the carry trade factor (HML).

The DOL factor is the cross-sectional average of all currency excess returns. The HML

factor is the return of high interest rate currencies minus the return of low interest rate

currencies. Menkho� et al. [2012a] propose the currency volatility factor which is the cross-

sectional average of volatility innovations (volatility factor) of all currencies. Della Corte

et al. [2016] and Della Corte et al. [2021] introduce the currency volatility risk premia. They

�nd currencies that are cheap to insure (by using currency options) provide higher returns.

Asness et al. [2013], Menkho� et al. [2017] and Kroencke et al. [2014] discuss the currency

value strategy (VAL) which is the return di�erence between over-valued currencies and under-

valued currencies. Whether the currency is over- or under-valued depends on the consumer

price index (CPI) in a country other than the US. Menkho� et al. [2012b] �nd that the excess

return of currency momentum strategies (MOM), in cross-section, is impressive. Burnside

et al. [2011] �nd that the currency momentum is not correlated with other currency factors.

Among others, the forex factors cited above have became pervasive in the literature. An

SDF model that employs a DOL and another currency-speci�c factor capture substantial

cross-sectional carry trade returns.

Factor investing has been widely studied in the equity market. It involves using the �factors�1

instead of individual assets, as the basic unit in portfolio constructions and risk managements.

Given that a composite set of currency factors has been established, a straightforward ques-

tion arises: How should investors choose between currency factors in forming portfolios, or

put di�erently, what is the economic value of the factor when investing in the currency

market? Surprisingly little attention has been paid to this research question.

We try to �ll this gap focusing of the four most popular currency factors, namely, DOL,

HML, VAL, and MOM. Using factors, instead of individual currencies, as the basic unit

in forming optimal currency portfolios provides two advantages. First, the country-speci�c

risk can be averaged out. Second, factors are rebalanced every month so there is stable risk

property through time, whereas the risk property of individual currencies could change with

the economic fundamentals or government policies.

1Such as the market, value, size, and momentum factors in the equity market
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Modelling the correlation structure is of great importance in factor investing, especially for

currency factors. Unlike equity factors which are nearly orthogonal to each other, we �nd

the currency factors are correlated with each other. Menkho� et al. [2012a] show that the

mimicking portfolio of the currency volatility factor loads in a similar way as to a carry

trade strategy. The HML factor and VAL factor could also be correlated. Because of CPI

and interest rates, the sorting variables of HML and VAL, are highly correlated with each

other. We also show that the correlation has a time-variant property. Thus, the dynamic

conditional correlation (DCC) model of Engle [2002] is used.

We follow Christo�ersen and Langlois [2013] and Arnott et al. [2019] who suggest investors

should not ignore tail risk and joint non-normality in factor investing. In fact, currency

carry trades and momemtums carry negative skew and excess kurtosis (See, for example,

Brunnermeier et al. 2008 and Menkho� et al. 2012b). We report strong evidence of joint

non-normality between currency factors. We employ a battery of copula models to model

the joint distribution of currency factors.

In this paper, the dynamic conditional correlation copula (DCC-copula) model with normal,

student t, and skewed t kernels are employed. We show that there is non-linear correlation

structures among currency factors. Thus, the DCC-copula with skewed t kernel �ts the data

best in terms of the log-likelihood.

Based on the DCC-copula model, we build optimal currency portfolios with 24 years of weekly

out-of-sample returns. Under the setting of a constant relative risk aversion (CRRA) utility

investor, we �nd the signi�cant economic value of the model in forming optimal currency

portfolios. We consider two benchmark models: i) the orthogonal model which ignores the

correlation structure ii) the normal model which assumes linear correlation. The DCC-

copula with skewed t kernel outperforms two benchmark models in terms of Sharp ratios

and certainty equivalents. This result is robust across di�erent levels of risk aversion, the

sub-sample of developed or developing currencies and even stronger when transaction costs

are considered.

The �nal part of this paper focuses on risk management. We forecast the value-at-risk (Var)

and expected shortfalls (ES) of individual factors. The DCC-copula model still shows the

robustness compared with the benchmark models. We apply the Diebold-Mariano tests,

following Patton et al. [2019], to rank the performance of the models. The DCC-copula with

skewed t rank the best. Modelling the non-normality and the dynamic correlation improve

the ability to forecast the risk measures.
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As far as we are aware, this is one of the few papers to design optimal currency portfolios using

forex factors and to investigate the correlation structure and non-normality between currency

factors. Previous literature is limited in that it focuses on individual currency. For example,

Patton [2006] �rst introduces the copula model to discuss tail dependence for mark-dollar and

yen-dollar exchange rates. Bouyé and Salmon [2009] derive the implicit form of conditional

quantile relations of dollar-yen, dollar-sterling and dollar-DM. One of the few closely related

studies is Barroso and Santa-Clara [2015] who form optimal currency portfolios and detect

relevant variables by using the portfolio policies method [Brandt et al., 2009]. They show that

carry, momentum and value work better than fundamentals on designing optimal portfolios.

Our paper extends Barroso and Santa-Clara [2015] as we provide a detailed analysis of factor

correlations and introduce non-linearity.

As we mentioned, our paper is also related to the large literature in the equity arena focusing

on factor investing. Christo�ersen and Langlois [2013] apply the copula model to the market

factor, size factor, value factor and momentum factor in the out-of-sample data set and show

that correlations of the factors in the equity market are not orthogonal. Arnott et al. [2019]

also discuss the correlations between the factors in the equity market.

Our paper is also related to the literature using copula models to manage tail behavior in the

joint distributions of �nancial time series. Patton [2006] uses normal copula and student-t

copula to model the bivariate distribution of individual currencies. Patton [2006] shows that,

compared with the normal copula, the student t can handle the kurtosis. Christo�ersen

et al. [2012] propose the constant and dynamic copula models to focus on the multivariate

joint distribution. The skewed t copula model proposed by Christo�ersen et al. [2012] shows

that accounting for asymmetry is also important. Furthermore, the dynamic conditional

correlation copula model can also handle the time-varying changes of the correlations between

the variables.

The paper is organized as follows: section 2 describes our data and relevant statistic de-

scription; section 3 presents asymmetry tail dependence modelling of forex factors; section 4

introduces the economic implications of the copula model by constructing optimal portfolios

for risk-averse investors; section 5 shows the application of the copula in risk management;

section 6 provides the conclusion.
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2 Data and Currency Factors

2.1 Data

We use weekly forward and spot rates and price level of consumer goods from January 1, 1989,

to March 20, 2020, for 31 active trading currencies.2 The data are all from DATASTREAM.

2.2 Currency Factors

The excess return of carry trade is calculated using term t log forward rate less term t + 1

log spot rate for each currency.

ERj,t = fj,t − sj,t+1

Where the fj,t denotes the term t log forward rate of currency j. The sj,t+1 denotes the term

t+ 1 log spot rate of currency j. ERj,t is the excess return at term t of currency j.

The dollar risk factor (DOL) is simply the mean of 31 currencies' excess return.

DOLt = mean (ERj,t)

In constructing the high minus low carry trade factor (HML), we follow Lustig et al. [2014] and

sort the currency returns from lowest to highest based on the forward premium and allocate

them into �ve portfolios. The HML factor is the di�erence between the mean returns of

the �fth portfolio (the largest forward premium) and the �rst portfolio (the smallest forward

premium). We denote it as the carry trade factor.

HMLt = PortH,t − PortL,t
2List of currencies: 10 important developed countries' currencies (AUDUSD, CADUSD, CHFUSD,

DKKUSD, EURUSD, GBPUSD, JPYUSD, NOKUSD, NZDUSD and SEKUSD); 8 important emerging coun-
tries' currencies (CZKUSD, HUFUSD, ILSUSD, ISKUSD, PLNUSD, RUBUSD, TRYUSD and ZARUSD); 6
Asian currencies (HKDUSD, KRWUSD, MYRUSD, PHPUSD, SGDUSD and THBUSD); 5 Latin American
currencies (BRLUSD, CLPUSD, COPUSD, MXNUSD and PENUSD); 2 Middle East currencies (JODUSD
and KWDUSD). Note that the developed countries' dataset, which we apply in the later section, just includes
the 10 important developed countries. The developing countries' dataset include the rest of 21 countries'
currencies.
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Where PortH,t = mean (ERj,t,largest forward premium) and PortL,t = mean (ERj,t,smallest forward premium).

For the currency momentum (MOM) factor, we follow Menkho� et al. [2012b] and use the

previous 6-week formation period and 1-week holding period to sort the currencies into �ve

portfolios based on their lagged returns. The MOM factor is the di�erence between the mean

returns of the lowest lagged return portfolio and the highest lagged return portfolio.

MOMt = PortHM,t − PortLM,t

Where PortHM,t = mean (ERj,t,highest lagged return) and PortLM,t = mean (ERj,t,lowest lagged return).

We follow Kroencke et al. [2014] to construct the currency value factor (VAL) factor. For

currency j, we �rst determine the real exchange rate Qj,t at time t:

Qj,t =
Sj,tPj,t
P ∗j,t

where Pj,t denotes the price level of consumer goods in country j at term t; P ∗j,t the corre-

sponding foreign price level (here USD); Sj,t is the spot exchange rate.

FV AL,j,t =

(
Qj,t−3

Qj,t−13
− 1

)
(−1)

The VAL factor can be calculated as the above equation by the real exchange rate with 3 and

13 weeks. Since we want the factor portfolio returns, we then sort the currency returns from

lowest to highest based on the VAL factor and allocate them into �ve portfolios to obtain

the VAL portfolio as follows:

V ALt = PortHV,t − PortLV,t

Where PortHM,t = mean (ERj,t,highest V ALfactor) and PortLM,t = mean (ERj,t,lowest V ALfactor).

2.3 Descriptive statistics

In Table 1 we report descriptive statistics for 4 currency factors. The table shows annual-

ized mean returns, Newey-West t-statistics, standard deviations, skewness, kurtosis, auto-

correlation coe�cient and linear correlation matrix. The annualized mean return is the
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highest for the carry trade factor HML and is negative for the DOL factor. All factors show

excess kurtosis. The skewness is negative for most factors but positive for VAL. The second

panel shows the auto-correlation coe�cients. Most of the factors, apart from the DOL, have

strong second-order and third-order auto-correlation.

We report the sample linear correlation matrix in the last panel. There are signi�cant pairs

of correlations among all factors. We observe a negative correlation between MOM and DOL

which is consistent with Daniel and Moskowitz [2016]. Surprisingly, we �nd that correlation

between HML and MOM is positive and HML and VAL is negative. Since most studies have

reported a negative correlation between HML and MOM factors (see, for example, Burnside

et al. 2011 ), we investigate this issue further by splitting the full sample into two: one

including the 2008 �nancial crisis and one not including it. Table 2 shows the results. The

�nancial crisis does not seem to be driving that result (see Table 1). However, when we split

the sample into developed and developing countries, we �nd a clear di�erence for correlations

of HML and MOM or HML and VAL. In developed countries, the factors HML and MOM

have the expected negative correlation while HML and VAL are positively correlated. For

developing countries, HML and VAL are also positively correlated.

[Table 1 factor descriptive stats table is about here]

The empirical evidence above, although in a simple form, does support our view: correlation

among forex factors is not captured by a normal distribution.

3 Modelling Asymmetry Between Currency Factors

In this section, we model asymmetry between currency factors. First, we apply the threshold

correlation to test the non-linear correlation between factors. We apply the AR-GARCH

model to mitigate auto-correlation (evidence from table 1) and we introduce univariate

volatility focusing on the joint distribution between factors.3 Finally, we introduce the copula

model and present the results of the asymmetry.

3The AR-GARCH model and the results are presented in the Appendix A
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3.1 Modelling Dependence Between Currency Factors

In this section, we present a detailed analysis of the dependence structure between forex

factors. We model the dependence structure for each pair of currency factors using threshold

correlations or quantile dependence, as in Christo�ersen and Langlois [2013]. 4 The idea

here is to characterize the dependence of two variables in the joint lower or joint upper tails,

respectively. Unlike linear correlation, this approach involves modelling the asymmetric de-

pendence structure between extreme events, which is appropriate in the presence of skewness

and excess kurtosis. We de�ne the threshold correlation ρi,j(u) for any two factors i and j

as follows:

ρi,j(u) =

corr(ri, rj|ri < F−1i (u), rj < F−1j (u)) whenu ≤ 0.5

corr(ri, rj|ri ≥ F−1i (u), rj ≥ F−1j (u)) whenu ≥ 0.5

Where u is a threshold between 0 and 1, and F−1i (u) is the empirical quantile function of the

univariate distribution of ri.

Figure 2 plots the empirical threshold correlation against the threshold u for the each pair

of factors.5 As a comparison, we assume that the theoretical threshold correlation, given

the factors pairs, follows a bivariate normal distribution (see the dashed line). For bivariate

normal distributions, the threshold correlation will be symmetric around 0.5 and will gradu-

ally approach 0. Figure 2 shows that the bivariate normal assumption does not hold, as we

observe increasing correlations in extreme events. The empirical correlations show a signi�-

cant degree of asymmetry, especially in the tail. Correlations between factors appear to be,

in general, positive and large.6 Our results show that assuming linear dependency between

factors will underestimate portfolio risk in extreme event scenarios, and so diversi�cation, in

this case, will not work in reducing the overall risk exposure. The empirical results above are

important and new as they shed new light on the literature (see for example Kroencke et al.

2014; Brandt et al. 2009) and show that dependence between forex factors is very signi�cant.

[Figure 2 Threshold correlation graph about here]

4The same method was used by Longin and Solnik [2001], Ang and Chen [2002], Ang and Bekaert [2002]
and Patton [2004]

5We follow Christo�ersen and Langlois [2013] who compute the threshold correlation when at least 20
pairs of values are available.

6Although these results appear rather interesting and worthy of further investigation, this is not the
objective of this paper and we leave this question for future research
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3.2 Copula Models

To model non-normality, we use copula models as in Patton [2006]. Before modelling tail

dependence, we apply the univariate autoregressive-non-linear generalized autoregressive con-

ditional heteroscedasiticity (AR-NGARCH) model to get the residuals for the factors.7 We

then use copula as it is a �exible framework to characterize multivariate distributions. The

joint probability density function ft(r1,t+1, ..., rN,t+1) of the N forex pricing factors can be

decomposed as follows:

ft(r1,t+1, ..., rN,t+1) = ct(η1,t+1, ..., ηN,t+1)
N∏
j=1

fj,t(rj,t+1),

Where fj,t(rj,t+1) is the univariate marginal probability density function for factor j and

time t; ct(η1,t+1, ..., ηN,t+1) is the conditional density copula function;ηj,t+1 is the marginal

probability density for factor j.

ηj,t+1 = Fj,t(rj,t+1) ≡
rj,t+1�

−∞

fj,t(r)dr

The Fj,t is the cumulative distribution function (CDF) of the skewed t distribution of Hansen

[1994].

The most common functional forms of copula models in �nancial time series are the nor-

mal copula and the student t copula. However, these two copula models can only generate

symmetric multivariate distributions and fail to account for the asymmetry in threshold corre-

lations that we have empirically shown above for the factors. Copulas from the Archimedean

family (The Clayton, the Gumbel and Joe-Clayton speci�cations) can be used for asymmetric

bivariate distributions, but they are not easily generalized to high dimensional cases.

Demarta and McNeil [2005] propose the skewed t distribution and the skewed t copula which

have been widely used in �nancial modelling.8 The skewed t distribution belongs to the

7The detailed model and results of the univaraite model are shown in Appendix A
8The skewed t copula is used by Christo�ersen et al. [2012] for the analysis of international equity diver-

si�cation and Christo�ersen and Langlois [2013] for equity market factor modelling. Cerrato et al. [2017a]
use this model for joint credit risk analysis of UK banks. Cerrato et al. [2017b] model the higher-order
components of equity portfolios.
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multivariate normal variance mixtures class. An N -dimensional skewed t random variable X

has the following representation:

X =
√
WZ + λW (1)

WhereW follows an inverse Gamma IG(υ/2, υ/2) distribution; Z is a N -dimensional normal

distribution with mean 0 and correlation matrix Ψ; λ is a N×1 asymmetry parameter vector.

The multivariate probability density function of the skewed t distribution is:

ft(r; v, λ,Ψ) =
2

2−(v+N)
2 K v+N

2

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)
ez
∗>Ψ−1λ

Γ
(
v
2

)
(πv)

N
2 | Ψ | 12

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)− v+N
2
(

1 + z∗>Ψ−1z∗

v

) v+N
2

The copula density function derived from the above probability density function is:

ct(η;λ, v,Ψ) =
2

(v−2)(N−1)
2 K v+N

2

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)
ez
∗>Ψ−1λ

Γ
(
v
2

)1−N | Ψ | 12 (√(v + z∗>Ψ−1z∗)λ>Ψ−1λ
)− v+N

2
(

1 + z∗>Ψ−1z∗

v

) v+N
2

×
N∏
j=1

(√(
v +

(
z∗j
)2)

λ2j

)− v+1
2
(

1 +
(z∗j )

2

v

) v+1
2

K v+1
2

(√(
v +

(
z∗j
)2)

λ2j

)
ez
∗
j λj

Where K(·) denotes the modi�ed Bessel function of the second kind, and z∗ = t−1λ,v (ηi) denotes

the copula shocks where tλ,v(ηi) is the univariate skewed t distribution:

tλ,v (ηi) =

ηi�

−∞

21− v+1
2 K v+1

2

(√
(v + x2)λ2i

)
exλi

Γ
(
v
2

)√
πv
(√

(v + x2)λ2i

)− v+1
2 (

1 + x2

v

) v+1
2

dx

However, a closed-form solution for skewed t quantile function is not available. We use

simulation to de�ne the quantile function and employ 1,000,000 replications of equation 1.
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3.3 Modelling Dynamic Dependence Between forex Factors

Another interesting feature of the results above is that correlations change over time. We

account for this feature following Engle [2002] and use a dynamic conditional correlation

(DCC) model, where the correlation matrix dynamic is generated as 2

Qt = Q(1− βc − αc) + βcQt−1 + αczt−1z
T
t−t (2)

In the case of N pricing factors, Qtis a N×N positive semi-de�nite matrix for time t;αcand βc

are scalars; ztis a N × 1 row vector of standardized residuals with jth entry zj,t = F−1c (ηj,t),

where F−1c is the inverse CDF from copula estimation; Q is a constant matrix which is a

full-sample correlation matrix. The dynamic conditional correlation between factor i and j

for time t is de�ned as

Ψij,t =
Qij,t√
Qii,tQjj,t

Coe�cient βcand αc are estimated to allow the dynamic correlation. Note that the dynamic

copula mean-reverts to the full sample correlation matrix Q. The estimates of coe�cient

βcand αc are shown in Table 3.

3.4 Estimation Method

We use a composite log-likelihood estimation introduced by Engle et al. [2009] and Christof-

fersen et al. [2012].9 The composite likelihood function in our case is de�ned as :

CL(θ) =
T∑
t=1

N∑
i=1

∑
j>i

ln ct (ηi,t, ηj,t; θi,j)

Where θ is the parameter set; ct(ηi,t, ηj,t; θi,j) is the bivariate copula distribution of factor

pair i and j. We maximize the composite log-likelihood function CL(θ) to get the Copula

coe�cient estimates θi,j for each factor pair. We then average θi,jto obtain an estimator of the

9Engle et al. [2009] �nd that in the large-scale DCC model, the traditional likelihood method yields biased
estimates.

11



[Table 3 Copula results about here]

[Figure 3 Dynamic correlations of residuals about here]

parameter set θ. The standard errors are based on Engle et al. [2009]. Following Christo�ersen

et al. [2012], all the copula models are estimated by this method. In the Appendix, we also

report the parameter estimates from maximizing the conventional likelihood function along

with parameter standard error based on Chen and Fan [2006].

3.5 Empirical Results

The �rst panel of Table 3 shows the composite likelihood estimates for constant/dynamic

parameters of normal, student t and skewed t copula. The degree of freedom ν and most

of skewness parameter λ in skewed t copula are all signi�cant. This is consistent with

non-normal and asymmetric dependence between currency factors. For the constant cop-

ula models where the constant correlation structure is assumed, the full sample correlation

estimates are reported. For dynamic copula models, we report DCC parameter estimates

αc, βcand long-term mean-reverting correlation matrix Q as in equation 2. The estimates of

Q are about the same as for the full sample correlation of the static copula models. DCC

parameters αcand βcare signi�cant in all three models. This result supports the time-varying

correlation.

In the lower panel of Table 3, we report the model diagnostic statistics. The results are con-

sistent with the presence of time-varying correlation and asymmetric dependence. Following

Chen and Fan [2006], we perform the pseudo-likelihood ratio (PLR) test to show that the

skewed t copula model outperforms the student t copula. The null hypothesis is that the

asymmetry parameters (λ) in the skewed t copula are all zero. The pseudo-likelihood ratio

(PLR) test rejects the null hypothesis. Thus, there is robust evidence of asymetry.

Figure 3 shows the dynamic correlation implied by the skewed t dynamic copula during the

period from January 1 1989, to March 20 2020. The correlations of pairs HML&VAL and

HML&MOM move around the value of Q (in equation 2). We consider the most di�cult pe-

riod of the recent �nancial crisis. During 2008, all pairs of correlations �uctuate considerably.

The �nancial crisis hugely impacted on the forex market, invalidating models.

To reinforce our empirical results pointing towards non-normality and checking their ro-

bustness, in Figure 4 we plot the empirical threshold correlation of residuals z∗from the
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[Figure 4Threshold Correlations for Factor Residuals and Copula Models]

AR-NGARCH model along with the standard bivariate normal implied threshold correla-

tion, student t copula and skewed t copula implied threshold correlations. It is evident that

the empirical threshold correlations are far from a bivariate normal distribution. In what

follows we rely on the skewed t copula to model the dependency structure across factors in

the forex market.

4 Portfolio Optimization

The empirical evidence above suggests that forex factors have signi�cant time-varying asym-

metric dependence. What is the economic cost of a forex trader ignoring this dependence

structure? In the next sections, we shall consider forming optimal currency portfolios. We

shall assess the economic value of considering this type of dependence structure in a forex

portfolio. As in Kroencke et al. [2014], we use a real-time strategy. We show that once

we implement a forex optimized strategy and consider asymmetry and time-varying in the

dependence structure, the bene�t in terms of utility is signi�cant. For portfolio analysis, we

assume that at each time t, investors allocate their wealth, based on the weighting vector

wt, across the 4 currency factors to maximize their expected utility. We compare the return

characteristics of alternative strategies by using di�erent dependence structure models and a

large real time out-of-sample analysis. Note that following Christo�ersen and Langlois [2013],

we use the average return of the previous two years as a proxy for the expected return of the

factors. This helps us focusing on the impact of higher moments on the portfolio selection.

4.1 The Investor's Optimization Problem

We assume that investors follow a constant relative risk aversion (CRRA) utility function:

U(γ) =

(1− γ)−1
(
P0

(
1 + w>t rt+1

)1−γ)
if γ 6= 1

log
(
P0

(
1 + w>t rt+1

))
if γ = 1

Where P0 is the initial wealth which we set at $1 here, rt is the vector 4 currency factor

returns at time t, wt is the weighting vector, γ denotes the degree of relative risk aversion
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(RRA). We consider 3 levels of RRA: γ = 3, 7, 10. The weighting vector for each time t is

obtained by maximizing the expected utility function which gives di�erent assumptions for

the factors' joint distribution.

w∗t ≡ arg max
w∈W

Ef̂t+1

(
U
(
1 + w>t rt+1

))
= arg max

w∈W

� (
1 + w>t rt+1

)1−γ
1− γ

ft+1 (rt+1) drt+1 (3)

Where ft+1 (rt+1) denotes the joint distribution of the four factors. We assume that investors

face investment constraints in that the risk exposure to any single factor and the four factors in

total is less than $1. Thus the weighting matrix w =
{

(w1, w2, w3, w4) ∈ [−1, 1]4 :| w1 | + | w2 | + | w3 | + | w4 |≤ 1
}
.

Due to the complexity of the joint distributionft+1 (rt+1), solution for wt is generally not given

analytically. We solved 3 by simulating 10,000 Monte Carlo replications for the four factors

using a multivariate distribution ft+1 (rt+1).

4.2 Forex Portfolio

Our weekly investment strategy is implemented in two stages: the �rst stage consists of

modelling joint distribution for the expected return ft+1 (rt+1); the second stage involves the

estimation of the factor weighting vector by maximizing the investors' utility function 3. To

begin with, we estimate the skewed t AR-NGARCH model for the four factors using the

previous data sample following Cerrato et al. [2020]. Thereafter, we estimate the dependence

structure between four residuals from the AR-NGARCH by using copula models.10 Each

time t, the expected factor return for factor j is generated by equation 4:

rj,t+1 = φ0,j + φ1,jrj,t + σj,t+1εj,t+1 (4)

Whereφo,j and φ1,jare the AR coe�cients; σj,t+1 is the 1-step-ahead forecasted conditional

volatility in the NGARCH model; εj,t+1 is simulated from the joint distribution function

which is characterized by the copula model. Note that the parameter estimates in the AR-

NGARCH and copula models are updated once a year using the whole of the data sample. For

10We also used a multivariate standard normal distribution as a benchmark for comparison with copula
models.
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dynamic copula models, where DCC is used to model the time-varying correlation coe�cient,

the factor correlation is updated weekly. We start our investment from April 1, 1994, giving

us an investment period of over 25 years.

In the second stage, we use the simulated 10,000 draws from ft+1 (rt+1) to value the integral

in 3. Thus maximizing 3 is equivalent to maximizing 5

w∗t ≡ arg max
w∈W

n−1
n∑
i=1

U∗
(
R∗t+1,i (w)

)
(5)

where

Rt+1,i (w) = 1 + w>t rt+1

ε = 2.2204× 10−16

and

R∗t+1,i (w) =

Rt+1,i (w) if Rt+1,i (w) > ε

2ε
(

1− 1

1+eRt,i(w)−ε

)
if Rt+1,i (w) ≤ ε

Ū = n−1
n∑
i=1

U
(
R∗t,i

(
w∗t−1

))

U∗ (Rt+1,i (w)) =
100

| Ū |
U (Rt+1,i (w))

The cut-o� 2.2204×10−16 was chosen as the machine epsilon. We use the function U∗ instead

of U directly, since the numerical maximization routine does not work well with extremely

small or large values. The Ūdoes not a�ect the ranking of alternatives, and the 100 value is

the reverting mean of the Ū .

By maximizing equation 5, we obtain the optimal weighting vector wt for time t. Each time

t, investors liquidate the previous position and rebalance their portfolios according to wt.
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[The real-time investment results about here]

4.3 Performance of Di�erent Strategies

The empirical results based on a large battery of dependence structure models are reported

in Table 4. We consider three levels for the CRRA, namely γ = 3 in Panel A, γ = 7 in Panel

B, and γ = 10 in Panel C. We follow Christo�ersen and Langlois [2013], Patton [2004]. As

the value of γ increases the risk-averse level also increases and the turnover decreases. The

portfolio mean, volatility, skewness and kurtosis of returns for the 5 di�erent models are given

in Table 4. We start with the full dataset (i.e. developed and developing countries). Since

we apply the average return, we apply the certainty equivalent to measure the performance

of the portfolios.

We compute the certainty equivalent (CE) of the average realized utility for each strategy as

follows

CE = U−1

(
1

T

T∑
t=1

(1 + rp,t)
1−γ

1− γ

)
=

(
1

T

T∑
t=1

(1 + rp,t)
1−γ

) 1
1−γ

where U−1 is the inverse of the utility function and where

rp,t = w>t−1rt

are the out-of-sample portfolio returns.

To �nd out whether richer models lead to better performance by generating a better trading

signal, we also report the average turnover

Average turnover (%) =
100

4T

T∑
t=1

4∑
i=1

| wi,t − wi,t−1 |

The estimates are all around 12%-21%, depending on risk aversion. These values are similar

within each of the panels. This indicates that the improvement in realized utility across the

models is not driven by the di�erence in trading turnover.
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[Table 5 Out-of-sample investment with transaction about here]

We use the multivariate standard normal model as our benchmark. Risk factors are assumed

to be orthogonal with each other. Hence, we show the portfolios with the orthogonal as-

sumption. There is clear empirical evidence that asymmetry is economically relevant (i.e.

the skewed t copula out-performs the other models). Thus, by considering asymmetry one

can add value to a forex portfolio.

To assess whether the di�erence between the benchmark portfolio and skew t-copula portfolio

is economically signi�cant, we apply bootstrap methods under the null hypothesis that the

di�erence is signi�cantly di�erent from zero. In this way, we can infer if the actual di�erence

shown in Table 4 is economically relevant.

4.4 Transaction Costs

Transaction costs can signi�cantly reduce the performance of a trading strategy. There is

empirical evidence [Menkho� et al., 2012b], that the performance of a momentum strategy is

highly reduced after considering transaction costs. In Table 5, we consider transaction costs

to check the robustness of the results presented in the previous table. To compute the cost,

we follow Barroso and Santa-Clara [2015]:

ci,t =
F ask
i,t,t+1 − F bid

i,t,t+1

F ask
i,t,t+1 + F bid

i,t,t+1

Where ci,t is the transaction cost of currency i at time t. F ask
i,t,t+1 and F

bid
i,t,t+1 denote the bid and

ask price of the forward exchange rate of currency i at time t. To convert currency transaction

costs into factor transaction costs, we use the same method and parameters to calculate the

factor transaction cost by simply changing currency excess return to the currency transaction

cost.

We consider transaction costs for combined strategies and not a �stand alone� strategy as it

may will be that when we consider transaction costs for a momentum strategy, the cost o�sets

the return for that strategy, but when it is combined with other strategies (for example carry

trade) the higher pro�t of this combined strategy o�sets the transaction costs. Clearly trans-

action costs are important. However, overall the main results remain unchanged. Moreover,

the skewed t copula model shows stronger advantages.
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[Table 6 Out-of-sample investment in developed currencies about here]

[Table 7 Out-of-sample investment in developing currencies about here]

4.5 Performance in Developed and Developing Countries

In this section, we split the data into developing and developed countries. Information

on the dataset can be found in the footnote 1. We do this for several reasons: �rst, we

aim to check whether our results are driven by country-speci�c factors a�ecting exchange

rates. Second, the bene�ts of diversifying forex portfolios between developing and developed

countries' exchange rates are well known. Table 6 shows that for the developed countries

the p-values reject the null hypothesis only at the 10% signi�cance level. Thus, the rejection

is weaker than in the previous tables. The annualized mean return is generally higher for

the t-skew copula model while annualized volatility and skewness stay unchanged across the

models. The large negative skew may signal the presence of crash risk. As before, if we

consider an investor with a relative risk aversion of 3, they would now gain 0.011% , this is

1.15bp per month if using the skew t-copula instead of our benchmark model.

The results for developing countries also point towards an economic gain when using a skew

t-copula as opposed to our benchmark one, but they are weaker than those presented for all

countries: the bene�t for our investor of using a skew t-copula model, in this case, is only

1.94bp per month. There is an economic bene�t in diversifying an forex portfolio between

developed and developing markets. The annualized mean return for developing countries is

higher than that for developed countries, but annualized volatility is also higher. Overall,

the CE measure for developing countries is the highest.

5 Risk Management

In this section, we consider the implications for risk management when we fail to correctly

specify the relevant risk measeres. We compute two risk measures for each factor: the Value

at Risk (VaR), which is the tail quantile of the conditional distribution of the portfolio

returns; and the expected short (ES) fall, which is the conditional expectation of exceeding

the VaR. If there is a loss function which could calculate the risk measure by minimizing the

expected loss of the function, the risk measure is elicited [Patton et al., 2019]. Note that the

risk measure from loss function is the exact risk of the variable. For instance, the mean value

could be obtained using the quadratic loss function, and the VaR value could be obtained

using the piecewise linear function.
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Fissler [2017] shows the joint elicitation of the VaR and ES in the loss function. We follow the

loss function from Fissler [2017] to forecast the VaR and ES and evaluate the performance of

the forecasting models. In this section, we follow Patton et al. [2019] univariate distribution

model and extend it to a multivariate setting by using copula models.

In risk forecasting, we apply the in-sample data from 1 January 1989 to 10 March, 2005, and

out-of-sample data from 11 March, 2005 to 20 March 2020. Following Patton et al. [2019],

we estimate the model only once on 10 March, 2005. The future risk measures are forecast

from the updated data and the consistent model. We will apply the goodness-of-�t test and

Diebold-Mariano tests to evaluate the performance of the forecasting models.

5.1 Copula VaR and ES Forecasting

We apply the distribution of factor returns, the mean and variance, to forecast the VaR and

ES. We �rst use GARCH dynamics, following Patton et al. [2019], for the conditional mean

and variance to get the volatility item σt. The copula forecasting model is:

Yt = µt + σtηt

σ2
t = ω + βσ2

t−1 + γη2t−1

Yt denotes the factor portfolio's return, where µt is speci�ed to the ARMA model and σ2
t is

speci�ed to the GARCH model. ηt denotes the residual of the factor returns. Given Fη, the

forecasting of VaR and ES can be estimated as:

vt = µt + aσt, where a = F−1η (α)

et = µt + bσt, where b = E [ηt | ηt ≤ a]

In the univariate model, Patton et al. [2019] assume the residuals ηt follows the univariate

distribution. We, however, assume the ηt follows the joint distribution as indicated here. We

consider three choices for Fη to describe the distributions of ηt:
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ηt ∼ iidNormal linear

ηt ∼ iid orthoganal

ηt ∼ iidNormal copula

ηt ∼ iid Student t copula

ηt ∼ iid Skewed t copula

To estimate the parameters (a, b), we use the Monte Carlo simulation. We use simulation

to de�ne the quantile function and employ 1,000,000. Thereafter, we sort the replications to

obtain the quantile value a.

We apply the NGARCH model in Section 3.2 to get the residual of the factor portfolios. The

details of the univariate model are shown in the Appendix A. To keep consistency with the

previous model, we also use the NGARCH model to consider leverage e�ects in forecasting

σ2
t = ω + βσ2

t−1 + γσ2
t−1(ηt−1 − θ)2

In the next subsection, we shall discuss the goodness-of-�t and Diebold-Mariano tests as in

Patton et al. [2019].

5.2 Ranking from di�erent test

Table 8 shows the �t of the future risk measures for di�erent forecasting models. The good-

of-�t test using the FZ-loss function follows Fissler [2017]. That is, minimizing the expected

loss using any of these loss functions returns the true VaR and ES. The loss function is shown

below:
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LFZ(Y, v, e,G1, G2) = argmin
(v,e)

(1 {Y ≤ v} − α)

(
G1 (v)−G1 (Y ) +

1

α
G2 (e) v

)
−G2 (e)

(
1

α
1 {Y ≤ v}Y − e

)
− G2 (e)

where G1 denotes the weakly increasing and G2 denotes the strictly increasing and strictly

positive. To simplify the loss function, Patton et al. [2019] assume that the loss di�erences

from the loss function are homogeneous of degree zero. Thus, the G1 and G2 will be G1(x) =

0 andG2(x) = −1/x.11 G2 is the di�erential coe�cient function of G2, G
′
2 = G2. Parameters

v, e denote the VaR and ES.

Following Patton et al. [2019], the loss function can be rewritten in the following form:

LFZ0(Y, v, e;α) =
1

αe
1 {Y ≤ v} (v − Y ) +

v

e
+ log (−e)− 1

We carry out the goodness-of-�t test and Diebold-Mariano tests as in Patton et al. [2019].

The two tests are brie�y discussed below. The idea of testing is that the expected value at

time of the loss function partial derivative for VaR and ES should equal to zero:

Et−1

[
∂LFZ0 (Yt, vt, et;α) /∂vt

∂LFZ0 (Yt, vt, et;α) /∂et

]
= 0 (6)

When the partial derivatives equal to zero, it indicates a good results for the goodness-of-�t

test. To simplify the calculation, let λsv,t = ∂LFZ0 (Yt, vt, et;α) /∂vt and λ
s
e,t = ∂LFZ0 (Yt, vt, et;α) /∂et.

λsv,t ≡
λv,t
vt

= 1 {Yt ≤ vt} − α
λse,t ≡

λe,t
et

= 1
α

1 {Yt ≤ vt} Ytet − 1

Consequently, the standardized and generalized residuals also have the expected value zero,

Et−1
[
λsv,t
]

= Et−1
[
λse,t
]

= 0. Patton et al. [2019] uses the dynamic quantile (DQ) approach

employing a simple regression of the generalized residuals at each term t. To test E
[
λsv,t
]

=

Et−1
[
λse,t
]

= 0, we use the following regressions:

11The detailed proof for the choosing of G1 and G2 can be found in Patton et al. [2019].
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[Table 8: Rank of Diebold-Mariano tests and goodness-of-�t test of copula forecasting models]

λsv,t = a0 + a1λ
s
v,t−1 + a2vt + uv,t

λse,t = b0 + b1λ
s
e,t−1 + b2et + ue,t

If the parameters in the regression are all zero, the results show that the forecasting risk

measures pass the test. Following Patton et al. [2019], we set the hypothesis that all param-

eters in the regressions are not zero. In table8, we show the p-value of the goodness-of-�t.

The results which do not pass the test are in bold.

Diebold-Mariano tests compare the average loss of each model statistically to show which

achieves the best performance. The tables in the Appendix B, Appendix C and Appendix

D show the Diebold-Mariano tests results. A positive value indicates that the column model

outperforms the row model on the average loss using the loss function from Fissler [2017]12.

In the Appendix, we show that the t-statistics from Diebold-Mariano tests comparing the

average losses over an out-of-sample period from 11 March, 2005, to 20 March, 2020, for 10

di�erent forecasting models. We present a summary for the Diebold-Mariano tests in the

table 8.

As we are focusing on multivariate risk forecasting, we apply the average rank of the four

factors as the ratio to compare the performance of the models. The GARCH skewed t copula

model shows the best performance among the 10 models in the cross section (whole data set)

and the developed countries dataset, while the NGARCH skewed t copula model ranks �rst

among the models in the developing countries factors. Furthermore, the benchmark models

(orthogonal and normal linear distribution) always underperform the DCC-copula model in

forecasting risk.

The results con�rm our �ndings in the portfolio management section. These models can help

to accommodate extreme changes. The factors MOM and VAL carry the highest risk. The

models accounting for asymmetry generally carry the lowest average loss. Our results show

that asymmetry between forex factors is an important element and can help improving the

risk management of forex portfolios.

12We follow Patton et al. [2019] to apply the average loss as the rank ratio
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6 Conclusion

We conduct a detailed study on the dependence structure among the most widely investigated

currency factors in the literature that are also very relevant to the hedge fund industry when

designing forex trading strategies. We show that the dependence structure between forex

factors is more complex than has been considered in the literature so far and asymmetry

and time dependence are very relevant. To evaluate the economic cost to a hedge fund of

neglecting these modelling features, we consider two examples: forex portfolio management

and forex portfolio risk management and show that adding asymmetry and time-varying

dependence among the factors improves portfolio performance and risk management. Our

results are very relevant for the academic literature in this area as we shed some new light

on the dependence structure between some popular forex factors, and they are also relevant

to hedge funds when designing forex trading strategies.
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Figure 1 � Quantile-Quantile Plots for 4 factors

For each observation, we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the standard normal distribution on the horizontal axis. If returns are normally distributed,
then the data points will fall randomly around the 45° line ,which is marked by dashes.
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Figure 2 � Threshold correlation for 4 factors

This �gure presents threshold correlations between the 4 factors . Our sample consists of weekly returns from
January 1, 1989, to March 20, 2020. The continuous line represents the correlations when both variables are
below (above), a threshold when this threshold is below (above) the median. The dashed line represents the
threshold function for a bivariate normal distribution using the linear correlation coe�cient from the data.
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Figure 3 � Skewed t copula dynamic correlations with composite method

We report dynamic conditional copula correlation for each pair of factors from January 1, 1989, to March 20,
2020. The correlations are obtained by estimating the dynamic skewed t copula model on the factor return
residuals from the AR-GARCH model. This sample is used in estimation of the models.
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Figure 4 � Threshold Correlations for Factor Residuals and Copula Models

We present threshold correlations computed on AR-GARCH residuals from January 1, 1989, to March 20,
2020. The thick continuous line represents the empirical correlation. The threshold correlation functions are
computed for thresholds for which there are at least 24 data points available. We compared the empirical
correlations to those implied by the normal copula and the constant t and skewed t copulas.
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Table 1 � Description Statistics of Weekly Factor Return

We report the annualized mean, annualized volatility, skewness, kurtosis and autocorrelation and cross-
correlation for logged weekly return of four factors. The period of the sample is from January 1, 1989, to
March 20, 2020. The signi�cant correlation is marked by * and ** denoting the 5% and 1% levels.

Sample Moments DOL HML MOM VAL
Mean 0.00 0.18 0.08 0.03
Volatility 0.06 0.08 0.09 0.10
skewness -0.35 -0.40 -0.15 0.26
Kurtosis 4.73 5.16 6.93 6.86
Autocorrelation
First-order 0.04 -0.01 -0.01 0.09**
Second-order 0.04 0.09** 0.06* 0.18**
Third-order 0.02 0.08** 0.09** 0.14**
Cross Correlations
DOL 1.00 0.31** -0.08* -0.16**
HML 0.31** 1.00 0.05* -0.27**
MOM -0.08* 0.05* 1.00 0.56**
VAL -0.16** -0.27** 0.56** 1.00
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Table 3 � Estimation results for copula models with composite method

This table presents parameter estimates for the dependence models of the residuals from the NAGARCH
model for the period January 1, 1989, to March 20, 2020. All models are estimated by maximum likelihood.
Standard errors (in parentheses) are computed using the methodology of Engle et al. [2009]. The last line
presents the pseudo-likelihood ratio test statistics. We followed Chen and Fan [2006] for the null hypothesis
that the asymmetry parameters in skewed t copula are all equal to 0. The * and ** denote the signi�cant
levels of 5% and 1%. The value and the standard errors of the λ are multiplied 100.

4 factors

constant dynamic

normal t skewed t normal t skewed t

υ 9.16 7.25 6.07 6.49
(2.26) (0.13) (0.94) (0.28)

λDOL -0.09 -0.25
(0.02) (0.13)

λHML 0.15 0.31
(0.05) (0.07)

λMOM -0.13 -0.22
(1.62) (0.51)

λV AL -0.95 -0.02
(0.26) (1.06)

βc 0.81 0.80 0.81
(0.03) (0.01) (0.02)

αc 0.02 0.04 0.03
(0.01) (0.00) (0.00)

ρ(DOL,HML) 0.16 0.15 0.15 0.21 0.21 0.21
ρ(DOL,MOM) 0.02 0.04 0.04 0.02 -0.00 -0.00
ρ(DOL,VAL) -0.05 -0.01 -0.00 -0.05 -0.10 -0.09
ρ(HML,MOM) 0.08 0.09 0.09 0.11 0.08 0.08
ρ(HML,VAL) -0.16 -0.16 -0.16 -0.18 -0.19 -0.19
ρ(MOM,VAL) 0.55 0.56 0.56 0.55 0.57 0.57

Model Properties

Correlation persistence 0.00 0.00 0.00 0.84 0.83 0.84
Log-likelihood 334.99 544.75 551.96 521.36 602.80 610.38
No. of parameters 6.00 7.00 11.00 8.00 9.00 13.00
Pseudo-likelihood 15.28** 12.47**

33



Table 4 � Out-of-sample investment results

The period of the out-of-sample is from April 1, 1994, to March 20, 2020. For each level of relative risk
aversion, the performance of the three copula models is compared to the benchmark normal distribution.
Panels A,B and C show the results for a relative risk aversion coe�cient of 3,7 and 10, respectively. We
report the realized moments of the portfolio returns, the average turnover, as well as the certainty equivalent.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. γ=3

Return(%) 18.58 18.60 18.59 18.60 18.89
Volatility(%) 12.90 12.89 12.90 12.89 12.74
skewness -0.14 -0.15 -0.15 -0.15 -0.03
Kurtosis 2.90 2.92 2.93 2.93 2.58

Average turnover(%) 1.37 1.81 1.88 1.93 1.71
CE(basis point) 35.47 35.70 35.67 35.70 36.25
Di� in CE(%) � � � � 0.28

Bootstrap p-value � � � � 0.01
Panel B. γ=7

Return(%) 18.23 18.45 18.43 18.53 18.69
Volatility(%) 12.92 12.91 12.92 12.91 12.72
skewness -0.07 -0.13 -0.13 -0.15 0.00
Kurtosis 2.90 2.95 2.95 2.95 2.66

Average turnover(%) 1.40 2.19 2.24 2.22 2.13
CE(basis point) 34.79 35.29 35.26 35.45 35.76
Di� in CE(%) � � � � 0.24

Bootstrap p-value � � � � 0.03
Panel C. γ=10

Return(%) 18.08 18.31 18.31 18.46 18.64
Volatility(%) 12.98 12.96 12.96 12.97 12.94
skewness -0.06 -0.13 -0.13 -0.16 -0.14
Kurtosis 2.85 2.92 2.92 2.91 2.85

Average turnover(%) 1.41 2.20 2.19 2.22 2.35
CE(basis point) 34.50 34.94 34.94 35.23 35.58
Di� in CE(%) � � � � 0.33

Bootstrap p-value � � � � 0.01
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Table 5 � Out-of-sample investment with transaction cost

This table has same structure as table 4. However, we show the out-of-sample investment with the transaction
cost.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. γ=3

Return(%) 17.75 17.74 17.70 17.69 18.07
Volatility(%) 13.21 13.19 13.20 13.21 12.98
skewness -0.22 -0.20 -0.20 -0.21 -0.06
Kurtosis 2.98 2.97 2.96 2.99 2.61

Average turnover(%) 1.72 1.81 1.88 1.93 1.71
CE(basis point) 33.93 34.02 33.95 33.94 34.67
Di� in CE(%) � � � � 0.33

Bootstrap p-value � � � � 0.01
Panel B. γ=7

Return(%) 17.38 17.35 17.31 17.40 17.60
Volatility(%) 13.20 13.26 13.28 13.24 13.01
skewness -0.13 -0.17 -0.17 -0.17 -0.01
Kurtosis 2.94 2.95 2.96 2.93 2.73

Average turnover(%) 1.75 2.19 2.24 2.22 2.13
CE(basis point) 33.23 33.16 33.08 33.25 33.64
Di� in CE(%) � � � � 0.25

Bootstrap p-value � � � � 0.01
Panel C. γ=10

Return(%) 17.23 17.19 17.19 17.32 17.44
Volatility(%) 13.24 13.30 13.30 13.29 13.28
skewness -0.11 -0.17 -0.16 -0.17 -0.16
Kurtosis 2.90 2.92 2.91 2.88 2.83

Average turnover(%) 1.76 2.20 2.19 2.22 2.35
CE(basis point) 32.93 32.76 32.75 33.01 33.24
Di� in CE(%) � � � � 0.25

Bootstrap p-value � � � � 0.02
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Table 6 � Out-of-sample investment in developed countries currencies

This table has the same structure as Table 4. This table shows the out-of-sample investment with the
developed countries' factor portfolios.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. γ=3

Return(%) 16.54 16.55 16.54 16.50 16.68
Volatility(%) 13.51 13.51 13.51 13.52 13.50
skewness -0.49 -0.49 -0.49 -0.49 -0.50
Kurtosis 2.90 2.90 2.90 2.89 2.90

Average turnover(%) 2.81 2.80 2.81 2.66 2.55
CE(basis point) 31.72 31.72 31.72 31.64 31.99
Di� in CE(%) � � � � 0.14

Bootstrap p-value � � � � 0.08
Panel B. γ=7

Return(%) 16.26 16.254 16.26 16.18 16.27
Volatility(%) 13.50 13.50 13.50 13.55 13.50
skewness -0.45 -0.44 -0.45 -0.45 -0.45
Kurtosis 2.88 2.88 2.88 2.84 2.87

Average turnover(%) 2.79 2.82 2.79 2.81 2.40
CE(basis point) 31.05 31.04 31.05 30.89 31.06
Di� in CE(%) � � � � 0.01

Bootstrap p-value � � � � 0.08
Panel C. γ=10

Return(%) 16.15 16.14 16.15 16.08 16.16
Volatility(%) 13.54 13.54 13.54 13.57 13.57
skewness -0.43 -0.43 -0.43 -0.42 -0.42
Kurtosis 2.83 2.83 2.83 2.80 2.80

Average turnover(%) 2.71 2.74 2.71 2.73 2.47
CE(basis point) 30.73 30.72 30.73 30.60 30.75
Di� in CE(%) � � � � 0.02

Bootstrap p-value � � � � 0.03
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Table 7 � Out-of-sample investment in developing countries currencies

This table has the same structure as Table 4. This table shows the out-of-sample investment with the
developing countries' factor portfolios.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. γ=3

Return(%) 23.78 23.87 23.87 23.86 23.92
Volatility(%) 15.08 15.10 15.09 15.10 15.09
skewness -0.02 -0.05 -0.04 -0.05 -0.05
Kurtosis 2.71 2.74 2.74 2.74 2.73

Average turnover(%) 1.61 1.95 2.00 2.03 1.88
CE(basis point) 45.59 45.40 45.76 45.74 45.85
Di� in CE(%) � � � � 0.23

Bootstrap p-value � � � � 0.01
Panel B. γ=7

Return(%) 23.71 23.78 23.78 23.80 23.84
Volatility(%) 15.23 15.23 15.23 15.22 15.21
skewness -0.09 -0.11 -0.11 -0.12 -0.11
Kurtosis 2.71 2.77 2.77 2.78 2.79

Average turnover(%) 1.70 2.39 2.38 2.46 2.38
CE(basis point) 45.24 45.37 45.37 45.40 45.49
Di� in CE(%) � � � � 0.03

Bootstrap p-value � � � � 0.06
Panel C. γ=10

Return(%) 23.83 23.91 23.91 23.92 24.00
Volatility(%) 15.22 15.18 15.18 15.18 15.17
skewness -0.12 -0.15 -0.15 -0.15 -0.16
Kurtosis 2.83 2.94 2.94 2.96 2.97

Average turnover(%) 1.69 2.60 2.61 2.68 2.64
CE(basis point) 45.31 45.47 45.47 45.48 45.64
Di� in CE(%) � � � � 0.09

Bootstrap p-value � � � � 0.07
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Appendix A Univariate model

The empirical results in Table 1 also show that autocorrelation could be an important issue

for factors' returns. In Figure 5, the autocorrelation function is plotted by a dashed line for

all the factors up to 100 lags, a 95% con�dence boundary included. Financial time series are

generally subject to heteroscedasticity and volatility clustering. We plot the autocorrelation

function for the absolute value of the factors on the same graph. We �nd a strong and

persistent serial correlation.

We model the dynamics of factors by using a univariate autoregressive-non-linear generalized

autoregressive conditional heteroscedasiticity (AR-NGARCH) process. The conditional mean

is estimated by an AR(1) process as follows:

rj,t = φ0,j + φi,jrj,t−1 + σj,tεj,t (7)

Where rj,tis the factor value of factor j at time t. The conditional volatility is governed by

an NGARCH [Engle and Ng, 1993]

σ2
j,t = ωj + βjσ

2
j,t−1 + αjσ

2
j,t−1(εj,t−1 − θj)2 (8)

The NGARCH model allows for the asymmetric in�uence of past return innovations εj,t−1.

Since �nancial time series generally show a �leverage e�ect�, an unexpected drop in return

may have a bigger impact on conditional volatility than an unexpected increase (i.e. θjis

positive). Under this circumstance, the NGARCH model is expected to mitigate the skewness

and excess kurtosis. We use the maximum likelihood method under the assumption of i.i.d.

normal innovations of εj,t.

Table 9 reports the coe�cient estimates and diagnostic tests under the normal assumption

for εj,t. In the �rst panel, we report the estimated coe�cients and standard errors of an

AR(1)-NGARCH model φ0,φ1,α,β and θ. The parameters (φ0) are all signi�cant except for

the DOL. Most parameters of the NGARCH model are also signi�cant. The coe�cient θ of

the VAL and the MOM factors have large positive values which are statistically signi�cant

while the DOL factors have insigni�cant negative θ. The log-likelihoods are all signi�cant

and positive.
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The divergence between model skewness/kurtosis points towards strong non-normality of

εj.To better model the factor dynamics, we employ the skewed t distribution of Hansen [1994]

for error term εj,t, where the coe�cients κjand υjgovern the skewness and the kurtosis. We

use the maximum likelihood method under the assumption of skewed t distribution of εj,tto

estimate the AR(1)-NGARCH model. The results are reported in Table 10 which shows that

the kurtosis parameters (υ) are all signi�cant and the skewness factors (κ) of HML are not

signi�cant.13

Figure 6 graphs the autocorrelation function for the residual and its absolute value. After

adjusting the skewness and excess kurtosis by assuming a normal distribution, the serial

correlation in absolute value is highly reduced. Figure 7 is the QQ plot of the residuals from

skewed t AR(1)-NGARCH. When comparing these results with Figure 1, we see that most

of the skewedness and kurtosis have been modelled after using the AR(1)-NGARCH.

13By comparing the signi�cance for the whole AR(1)-NGARCH model in Table 10, we �nd that the AR(1)-
NGARCH model with the normal distribution �ts the data well.
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Figure 5 � Autocorrelation 4 factors and the absolute value of 4 factors

Autocorrelation of weekly returns (dashed line) and absolute returns (solid line) from January 1, 1989, to
March 20, 2020. The horizontal dotted lines provide a 95 con�dence interval around 0.
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Figure 6 � Autocorrelation graph of residual series

Autocorrelation of AR-FARCH residuals (dashed line) and absolute residuals (solid line) from January 1,
1989, to March 20, 2020. The horizontal dotted lines provide a 95 con�dence interval around 0.
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Figure 7 � QQ plot of residuals series

For each observation we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the skewed t distribution on the horizontal axis. If the AR-GARCH residuals adhere to the
skewed t distribution, then the data points will fall on the 45º line, which is marked by dashes. The parameters
for the skewed t distribution are from Table 3.
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Table 9 � Estimation table of normal residuals

We report parameter estimates and model diagnostics for the AR-NGARCH model with normal shocks.
Standard errors which are in parentheses are calculated from the outer product of the gradient at the optimum
parameter values. The model estimated is rj,t = φ0,j + φi,jrj,t−1 + σj,tεj,t, where σ

2
j,t = ωj + βjσ

2
j,t−1 +

αjσ
2
j,t−1(εj,t−1 − θj)2. Here ω is �xed by variance targeting, and variance persistence denotes the sum of

parameters of the model.We also provide the p-value for Ljung-Box (L-B) tests of the residuals and absolute
residuals by 20 lags. The empirical skewness and excess kurtosis of the residuals are compared to the model
implied levels from the normal model.

Parameter Estimates DOL HML MOM VAL
φ0 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
φ1 0.04 0.02 0.01 0.11

(0.04) (0.03) (0.03) (0.03)
α 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
β 0.93 0.95 0.91 0.00

(0.56) (0.02) (0.09) (0.00)
θ -0.37 0.08 0.49 0.12

(0.22) (0.12) (0.11) (0.02)
κ / / / /
υ / / / /

Diagnostics
Log-likelihood 5131.10 4714.60 4572.50 4451.70
Variance persistence 0.93 0.95 0.91 0.00
L-B(20) p-value 0.14 0.00 0.00 0.00
Absolute L-B(20) p-value 0.00 0.00 0.00 0.00
Empirical skewness -0.33 -0.39 -0.16 0.15
Model skewness 0.00 0.00 0.00 0.00
Empirical excess kurtosis 4.71 5.17 7.03 6.91
Model excess kurtosis 0.00 0.00 0.00 0.00
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Table 10 � Estimation table of skewed t residuals

This table show the same structure as Table 9. We report parameter estimates and model diagnostics for
the AR-NGARCH model with skewed t shocks.

Parameter Estimates DOL HML MOM VAL
φ0 0.01 0.019 0.01 0.00

(4.43) (39.88) (19.04) (0.00)
φ1 0.12 -0.99 -0.38 0.08

(21.11) (626.76) (95.52) (0.03)
α 0.14 0.14 0.14 0.00

(99.84) (2238.70) (10.37) (0.00)
β 0.0487 0.0495 0.0872 0.9278

(0.78) (1001.00) (16.30) (0.03)
θ 0.10 0.10 0.15 0.03

(6.95) (340.28) (17.54) (0.11)
κ 0.63 0.64 0.72 0.03

(984.01) (4693.00) (124.69) (0.04)
υ 8.53 9.47 6.67 8.67

(313.48) (7898.40) (1234.20) (1.63)

Diagnostics
Log-likelihood 3092.00 2768.60 2968.20 4542.90
Variance persistence 0.19 0.19 0.23 0.93
L-B(20) p-value 0.02 0.00 0.00 0.00
Absolute L-B(20) p-value 0.00 0.00 0.00 0.00
Empirical skewness -0.30 -0.17 0.12 0.18
Model skewness 1.30 1.25 1.66 0.08
Empirical excess kurtosis 4.68 4.11 4.96 6.90
Model excess kurtosis 6.25 5.79 8.96 4.29

Appendix.B Diebold-Mariano tests of

whole data set

We put the Diebold-Mariano tests of the cross-section data set. The four factors results are

shown separately. The DOL factor are shown �rst. Then, we present the Diebold-Mariano

tests of HML. The test results of MOM and VAL factors are shown in the last two tables.
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Appendix C: Diebold-Mariano tests of

developed countries

We show the Diebold-Mariano tests for developed countries. The results for the four factors

are shown separately. The DOL factor is shown �rst. We then report the Diebold-Mariano

tests for the HML factor. Finally, we report the results for MOM and VAL factors in the

last two tables.
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Appendix D: Diebold-Mariano tests of

developing countries

We display the Diebold-Mariano tests for developing countries. The results for the four

factors are shown separately. The DOL factor is shown �rst. We then report the Diebold-

Mariano tests for the HML factor. Finally, we report the results for MOM and VAL factorsa

in the last two tables.
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