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Abstract

Currency-specific pricing factors are pervasive in international asset pricing. How-
ever, portfolio and risk managements based on currency factors, instead of individual
currencies, are rarely discussed. This paper tries to fill this gap by modelling dynamic
correlations and non-normality among currency factors. By considering the four most
popular currency factors: the dollar risk factor, the carry trade factor, the currency
momentum factor and the currency value factor, we find that a dynamic conditional
correlation copula (DCC-copula) model with skewed-t kernel fits the joint distribution
well. For a risk-averse investor, attractive economic value is added by the DCC-copula
model in currency factor investing, while ignoring the correlation structure or assuming

naive distributions (such as joint normal distribution) brings significant costs.
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1 Introduction

Currency anomalies are difficult to fit into a stochastic discount factor (SDF) model with
traditional risk factors (e.g., Burnside et al. [2010], Burnside [2011] and Lustig et al. [2011])

which has led researchers to construct currency market-specific pricing factors.

Lustig et al. [2011] propose the dollar risk factor (DOL) and the carry trade factor (HML).
The DOL factor is the cross-sectional average of all currency excess returns. The HML
factor is the return of high interest rate currencies minus the return of low interest rate
currencies. Menkhoff et al. [2012a] propose the currency volatility factor which is the cross-
sectional average of volatility innovations (volatility factor) of all currencies. Della Corte
et al. [2016] and Della Corte et al. [2021] introduce the currency volatility risk premia. They
find currencies that are cheap to insure (by using currency options) provide higher returns.
Asness et al. [2013], Menkhoff et al. [2017] and Kroencke et al. [2014] discuss the currency
value strategy (VAL) which is the return difference between over-valued currencies and under-
valued currencies. Whether the currency is over- or under-valued depends on the consumer
price index (CPI) in a country other than the US. Menkhoff et al. [2012b] find that the excess
return of currency momentum strategies (MOM), in cross-section, is impressive. Burnside
et al. [2011] find that the currency momentum is not correlated with other currency factors.
Among others, the forex factors cited above have became pervasive in the literature. An
SDF model that employs a DOL and another currency-specific factor capture substantial

cross-sectional carry trade returns.

Factor investing has been widely studied in the equity market. It involves using the “factors”
instead of individual assets, as the basic unit in portfolio constructions and risk managements.
Given that a composite set of currency factors has been established, a straightforward ques-
tion arises: How should investors choose between currency factors in forming portfolios, or
put differently, what is the economic value of the factor when investing in the currency

market? Surprisingly little attention has been paid to this research question.

We try to fill this gap focusing of the four most popular currency factors, namely, DOL,
HML, VAL, and MOM. Using factors, instead of individual currencies, as the basic unit
in forming optimal currency portfolios provides two advantages. First, the country-specific
risk can be averaged out. Second, factors are rebalanced every month so there is stable risk
property through time, whereas the risk property of individual currencies could change with

the economic fundamentals or government policies.

!Such as the market, value, size, and momentum factors in the equity market



Modelling the correlation structure is of great importance in factor investing, especially for
currency factors. Unlike equity factors which are nearly orthogonal to each other, we find
the currency factors are correlated with each other. Menkhoff et al. [2012a] show that the
mimicking portfolio of the currency volatility factor loads in a similar way as to a carry
trade strategy. The HML factor and VAL factor could also be correlated. Because of CPI
and interest rates, the sorting variables of HML and VAL, are highly correlated with each
other. We also show that the correlation has a time-variant property. Thus, the dynamic
conditional correlation (DCC) model of Engle [2002] is used.

We follow Christoffersen and Langlois [2013] and Arnott et al. [2019] who suggest investors
should not ignore tail risk and joint non-normality in factor investing. In fact, currency
carry trades and momemtums carry negative skew and excess kurtosis (See, for example,
Brunnermeier et al. 2008 and Menkhoff et al. 2012b). We report strong evidence of joint
non-normality between currency factors. We employ a battery of copula models to model

the joint distribution of currency factors.

In this paper, the dynamic conditional correlation copula (DCC-copula) model with normal,
student t, and skewed t kernels are employed. We show that there is non-linear correlation
structures among currency factors. Thus, the DCC-copula with skewed t kernel fits the data

best in terms of the log-likelihood.

Based on the DCC-copula model, we build optimal currency portfolios with 24 years of weekly
out-of-sample returns. Under the setting of a constant relative risk aversion (CRRA) utility
investor, we find the significant economic value of the model in forming optimal currency
portfolios. We consider two benchmark models: i) the orthogonal model which ignores the
correlation structure ii) the normal model which assumes linear correlation. The DCC-
copula with skewed t kernel outperforms two benchmark models in terms of Sharp ratios
and certainty equivalents. This result is robust across different levels of risk aversion, the
sub-sample of developed or developing currencies and even stronger when transaction costs

are considered.

The final part of this paper focuses on risk management. We forecast the value-at-risk (Var)
and expected shortfalls (ES) of individual factors. The DCC-copula model still shows the
robustness compared with the benchmark models. We apply the Diebold-Mariano tests,
following Patton et al. [2019], to rank the performance of the models. The DCC-copula with
skewed t rank the best. Modelling the non-normality and the dynamic correlation improve

the ability to forecast the risk measures.



As far as we are aware, this is one of the few papers to design optimal currency portfolios using
forex factors and to investigate the correlation structure and non-normality between currency
factors. Previous literature is limited in that it focuses on individual currency. For example,
Patton [2006] first introduces the copula model to discuss tail dependence for mark-dollar and
yen-dollar exchange rates. Bouyé and Salmon [2009] derive the implicit form of conditional
quantile relations of dollar-yen, dollar-sterling and dollar-DM. One of the few closely related
studies is Barroso and Santa-Clara [2015] who form optimal currency portfolios and detect
relevant variables by using the portfolio policies method [Brandt et al., 2009]. They show that
carry, momentum and value work better than fundamentals on designing optimal portfolios.
Our paper extends Barroso and Santa-Clara [2015] as we provide a detailed analysis of factor

correlations and introduce non-linearity.

As we mentioned, our paper is also related to the large literature in the equity arena focusing
on factor investing. Christoffersen and Langlois [2013] apply the copula model to the market
factor, size factor, value factor and momentum factor in the out-of-sample data set and show
that correlations of the factors in the equity market are not orthogonal. Arnott et al. [2019]

also discuss the correlations between the factors in the equity market.

Our paper is also related to the literature using copula models to manage tail behavior in the
joint distributions of financial time series. Patton [2006] uses normal copula and student-t
copula to model the bivariate distribution of individual currencies. Patton [2006] shows that,
compared with the normal copula, the student t can handle the kurtosis. Christoffersen
et al. [2012] propose the constant and dynamic copula models to focus on the multivariate
joint distribution. The skewed t copula model proposed by Christoffersen et al. [2012] shows
that accounting for asymmetry is also important. Furthermore, the dynamic conditional
correlation copula model can also handle the time-varying changes of the correlations between

the variables.

The paper is organized as follows: section 2 describes our data and relevant statistic de-
scription; section 3 presents asymmetry tail dependence modelling of forex factors; section 4
introduces the economic implications of the copula model by constructing optimal portfolios
for risk-averse investors; section 5 shows the application of the copula in risk management;

section 6 provides the conclusion.



2 Data and Currency Factors

2.1 Data

We use weekly forward and spot rates and price level of consumer goods from January 1, 1989,
to March 20, 2020, for 31 active trading currencies.” The data are all from DATASTREAM.

2.2 Currency Factors

The excess return of carry trade is calculated using term ¢ log forward rate less term ¢ + 1

log spot rate for each currency.

ERjy = fie = Sjan
Where the f;; denotes the term ¢ log forward rate of currency j. The s;,;; denotes the term

t + 1 log spot rate of currency j. ER;; is the excess return at term ¢ of currency j.

The dollar risk factor (DOL) is simply the mean of 31 currencies’ excess return.

DOL; = mean (ER;;)

In constructing the high minus low carry trade factor (HML), we follow Lustig et al. [2014] and
sort the currency returns from lowest to highest based on the forward premium and allocate
them into five portfolios. The HML factor is the difference between the mean returns of
the fifth portfolio (the largest forward premium) and the first portfolio (the smallest forward

premium). We denote it as the carry trade factor.

HML, = Porty; — Portr,

2List of currencies: 10 important developed countries’ currencies (AUDUSD, CADUSD, CHFUSD,
DKKUSD, EURUSD, GBPUSD, JPYUSD, NOKUSD, NZDUSD and SEKUSD); 8 important emerging coun-
tries’” currencies (CZKUSD, HUFUSD, ILSUSD, ISKUSD, PLNUSD, RUBUSD, TRYUSD and ZARUSD); 6
Asian currencies (HKDUSD, KRWUSD, MYRUSD, PHPUSD, SGDUSD and THBUSD); 5 Latin American
currencies (BRLUSD, CLPUSD, COPUSD, MXNUSD and PENUSD); 2 Middle East currencies (JODUSD
and KWDUSD). Note that the developed countries’ dataset, which we apply in the later section, just includes
the 10 important developed countries. The developing countries’ dataset include the rest of 21 countries’
currencies.



Where POT.tH,t = mean (ERj,t,largest forwardpremium) and POTtL,t = mean (ERj,t,smallest forwardpremium)-

For the currency momentum (MOM) factor, we follow Menkhoff et al. [2012b] and use the
previous 6-week formation period and 1-week holding period to sort the currencies into five
portfolios based on their lagged returns. The MOM factor is the difference between the mean
returns of the lowest lagged return portfolio and the highest lagged return portfolio.

MOM,; = Portgn, — Portpay

Where POTtHM,t = mean (ERjJ,highestlaggedreturn) and POTtLM,t = mean (ERj,t,lowestlaggedreturn)-

We follow Kroencke et al. [2014] to construct the currency value factor (VAL) factor. For

currency j, we first determine the real exchange rate );; at time ¢:

Q‘%t — ]7P* Js
j7t
where P;; denotes the price level of consumer goods in country j at term ¢ P}, the corre-

sponding foreign price level (here USD); S, is the spot exchange rate.

The VAL factor can be calculated as the above equation by the real exchange rate with 3 and
13 weeks. Since we want the factor portfolio returns, we then sort the currency returns from
lowest to highest based on the VAL factor and allocate them into five portfolios to obtain
the VAL portfolio as follows:

VALt = POTtHV’t - POT’tLV’t

Where POTtHM,t = mean (ERj,t,highest VAL factor) and POTtLM,t = mean (ERj,t,lowest VAL factor)-

2.3 Descriptive statistics

In Table 1 we report descriptive statistics for 4 currency factors. The table shows annual-
ized mean returns, Newey-West t-statistics, standard deviations, skewness, kurtosis, auto-

correlation coefficient and linear correlation matrix. The annualized mean return is the



highest for the carry trade factor HML and is negative for the DOL factor. All factors show
excess kurtosis. The skewness is negative for most factors but positive for VAL. The second
panel shows the auto-correlation coefficients. Most of the factors, apart from the DOL, have

strong second-order and third-order auto-correlation.

We report the sample linear correlation matrix in the last panel. There are significant pairs
of correlations among all factors. We observe a negative correlation between MOM and DOL
which is consistent with Daniel and Moskowitz |[2016|. Surprisingly, we find that correlation
between HML and MOM is positive and HML and VAL is negative. Since most studies have
reported a negative correlation between HML and MOM factors (see, for example, Burnside
et al. 2011 ), we investigate this issue further by splitting the full sample into two: one
including the 2008 financial crisis and one not including it. Table 2 shows the results. The
financial crisis does not seem to be driving that result (see Table 1). However, when we split
the sample into developed and developing countries, we find a clear difference for correlations
of HML and MOM or HML and VAL. In developed countries, the factors HML and MOM
have the expected negative correlation while HML and VAL are positively correlated. For

developing countries, HML and VAL are also positively correlated.

|Table 1 factor descriptive stats table is about here]

The empirical evidence above, although in a simple form, does support our view: correlation

among forex factors is not captured by a normal distribution.

3 Modelling Asymmetry Between Currency Factors

In this section, we model asymmetry between currency factors. First, we apply the threshold
correlation to test the non-linear correlation between factors. We apply the AR-GARCH
model to mitigate auto-correlation (evidence from table 1) and we introduce univariate
volatility focusing on the joint distribution between factors.® Finally, we introduce the copula

model and present the results of the asymmetry.

3The AR-GARCH model and the results are presented in the Appendix A



3.1 Modelling Dependence Between Currency Factors

In this section, we present a detailed analysis of the dependence structure between forex
factors. We model the dependence structure for each pair of currency factors using threshold
correlations or quantile dependence, as in Christoffersen and Langlois [2013]. * The idea
here is to characterize the dependence of two variables in the joint lower or joint upper tails,
respectively. Unlike linear correlation, this approach involves modelling the asymmetric de-
pendence structure between extreme events, which is appropriate in the presence of skewness
and excess kurtosis. We define the threshold correlation p; ;(u) for any two factors i and j

as follows:

5. () corr(ry,rj|ri < F; N (u),ry < Fj_l(u)) whenu < 0.5
Pi\U) =
’ corr(ry,rilr; > F ' (u),r; > F7 ' (u))  whenu > 0.5

Where u is a threshold between 0 and 1, and F; '(u) is the empirical quantile function of the

univariate distribution of r;.

Figure 2 plots the empirical threshold correlation against the threshold u for the each pair
of factors.” As a comparison, we assume that the theoretical threshold correlation, given
the factors pairs, follows a bivariate normal distribution (see the dashed line). For bivariate
normal distributions, the threshold correlation will be symmetric around 0.5 and will gradu-
ally approach 0. Figure 2 shows that the bivariate normal assumption does not hold, as we
observe increasing correlations in extreme events. The empirical correlations show a signifi-
cant degree of asymmetry, especially in the tail. Correlations between factors appear to be,
in general, positive and large. Our results show that assuming linear dependency between
factors will underestimate portfolio risk in extreme event scenarios, and so diversification, in
this case, will not work in reducing the overall risk exposure. The empirical results above are
important and new as they shed new light on the literature (see for example Kroencke et al.

2014; Brandt et al. 2009) and show that dependence between forex factors is very significant.

|[Figure 2 Threshold correlation graph about here]

4The same method was used by Longin and Solnik [2001], Ang and Chen [2002], Ang and Bekaert [2002]
and Patton [2004]

®We follow Christoffersen and Langlois [2013] who compute the threshold correlation when at least 20
pairs of values are available.

6 Although these results appear rather interesting and worthy of further investigation, this is not the
objective of this paper and we leave this question for future research



3.2 Copula Models

To model non-normality, we use copula models as in Patton [2006]. Before modelling tail
dependence, we apply the univariate autoregressive-non-linear generalized autoregressive con-
ditional heteroscedasiticity (AR-NGARCH) model to get the residuals for the factors.” We
then use copula as it is a flexible framework to characterize multivariate distributions. The
joint probability density function fi(r1¢11,...,7n 1) of the N forex pricing factors can be

decomposed as follows:

N

Je(rieets s rvee1) = a(me1, o M) H fia(riesn),
j=1

Where f;+(r;++1) is the univariate marginal probability density function for factor j and
time ¢; ¢;(M1441, ..., MN4+1) 1s the conditional density copula function;n; 4 is the marginal

probability density for factor j.

Tj,t+1

Njtr1 = Fje(rjee) = / fia(r)dr

—00

The Fj, is the cumulative distribution function (CDF) of the skewed t distribution of Hansen
[1994].

The most common functional forms of copula models in financial time series are the nor-
mal copula and the student t copula. However, these two copula models can only generate
symmetric multivariate distributions and fail to account for the asymmetry in threshold corre-
lations that we have empirically shown above for the factors. Copulas from the Archimedean
family (The Clayton, the Gumbel and Joe-Clayton specifications) can be used for asymmetric

bivariate distributions, but they are not easily generalized to high dimensional cases.

Demarta and McNeil [2005] propose the skewed t distribution and the skewed t copula which

have been widely used in financial modelling.® The skewed t distribution belongs to the

"The detailed model and results of the univaraite model are shown in Appendix A

8The skewed t copula is used by Christoffersen et al. [2012] for the analysis of international equity diver-
sification and Christoffersen and Langlois [2013] for equity market factor modelling. Cerrato et al. [2017a]
use this model for joint credit risk analysis of UK banks. Cerrato et al. [2017b] model the higher-order
components of equity portfolios.



multivariate normal variance mixtures class. An N-dimensional skewed t random variable X

has the following representation:

X =VWZ+\W (1)

Where W follows an inverse Gamma IG(v/2,v/2) distribution; Z is a N-dimensional normal
distribution with mean 0 and correlation matrix ¥; A is a N x 1 asymmetry parameter vector.

The multivariate probability density function of the skewed t distribution is:

2—(v+N)

QfK# (\/(U + z*TLZ'/fIZ*))\T&pfl)\) e T

fi(ryo, \,0) =

_v+N v+ N

I (%) (WU)% | |z <\/(v + Z*Tlff—lz*)/\TlI/—l)\> ’ (1 + —Z*Tl‘pflz*> ’

v

The copula density function derived from the above probability density function is:

(v—2)(N—1

Q%K# <\/(v + Z*Tw—lz*))\TlP—l/\> e YA

_ v+N v+ N

| |3 <\/(v n Z*le*)AwlA> 7 (1 + ‘”—) ’

() ()
j=1 Ko <\/<v + (z;f)2> )\5) .

Where K(-) denotes the modified Bessel function of the second kind, and z* = ¢} (1;) denotes

the copula shocks where t ,(7;) is the univariate skewed t distribution:

v+

n 1= 21Kv42-1 ( (’U + 33'2) )\?) e
trw (1) = / i

v+1

vy v (Voram) s

However, a closed-form solution for skewed t quantile function is not available. We use

simulation to define the quantile function and employ 1,000,000 replications of equation 1.

10



3.3 Modelling Dynamic Dependence Between forex Factors

Another interesting feature of the results above is that correlations change over time. We
account for this feature following Engle [2002] and use a dynamic conditional correlation

(DCC) model, where the correlation matrix dynamic is generated as 2

Qu=Q(1 — B — ae) + BeQuo1 + 212, (2)

In the case of N pricing factors, yis a N X N positive semi-definite matrix for time t;a.and (.
are scalars; zis a N x 1 row vector of standardized residuals with jth entry z;, = F. ' (n;.),
where F 1 is the inverse CDF from copula estimation; @ is a constant matrix which is a
full-sample correlation matrix. The dynamic conditional correlation between factor i and j

for time ¢ is defined as

Qijt
V Qii,tijJ

Coefficient [.and . are estimated to allow the dynamic correlation. Note that the dynamic

Wije =

copula mean-reverts to the full sample correlation matrix (). The estimates of coefficient

Beand a, are shown in Table 3.

3.4 Estimation Method

We use a composite log-likelihood estimation introduced by Engle et al. [2009] and Christof-

fersen et al. [2012].” The composite likelihood function in our case is defined as :

T N
CL(0) :ZZ Zln ¢t (Mies Myt 0ig)
=1

i=1 j>i

Where 6 is the parameter set; c;(1;:,m;4;0;;) is the bivariate copula distribution of factor
pair ¢ and j. We maximize the composite log-likelihood function C'L(#) to get the Copula

coefficient estimates ¢, ; for each factor pair. We then average 0; ;to obtain an estimator of the

%Engle et al. [2009] find that in the large-scale DCC model, the traditional likelihood method yields biased
estimates.

11



[Table 3 Copula results about here|

|[Figure 3 Dynamic correlations of residuals about here]

parameter set 6. The standard errors are based on Engle et al. [2009]. Following Christoffersen
et al. [2012], all the copula models are estimated by this method. In the Appendix, we also
report the parameter estimates from maximizing the conventional likelihood function along

with parameter standard error based on Chen and Fan [2006].

3.5 Empirical Results

The first panel of Table 3 shows the composite likelihood estimates for constant/dynamic
parameters of normal, student t and skewed t copula. The degree of freedom v and most
of skewness parameter )\ in skewed t copula are all significant. This is consistent with
non-normal and asymmetric dependence between currency factors. For the constant cop-
ula models where the constant correlation structure is assumed, the full sample correlation
estimates are reported. For dynamic copula models, we report DCC parameter estimates
A, Beand long-term mean-reverting correlation matrix () as in equation 2. The estimates of
@ are about the same as for the full sample correlation of the static copula models. DCC
parameters a.and S.are significant in all three models. This result supports the time-varying

correlation.

In the lower panel of Table 3, we report the model diagnostic statistics. The results are con-
sistent with the presence of time-varying correlation and asymmetric dependence. Following
Chen and Fan [2006], we perform the pseudo-likelihood ratio (PLR) test to show that the
skewed t copula model outperforms the student t copula. The null hypothesis is that the
asymmetry parameters () in the skewed t copula are all zero. The pseudo-likelihood ratio

(PLR) test rejects the null hypothesis. Thus, there is robust evidence of asymetry.

Figure 3 shows the dynamic correlation implied by the skewed t dynamic copula during the
period from January 1 1989, to March 20 2020. The correlations of pairs HML& VAL and
HML&MOM move around the value of @ (in equation 2). We consider the most difficult pe-
riod of the recent financial crisis. During 2008, all pairs of correlations fluctuate considerably.

The financial crisis hugely impacted on the forex market, invalidating models.

To reinforce our empirical results pointing towards non-normality and checking their ro-

bustness, in Figure 4 we plot the empirical threshold correlation of residuals z*from the

12



[Figure 4Threshold Correlations for Factor Residuals and Copula Models|

AR-NGARCH model along with the standard bivariate normal implied threshold correla-
tion, student t copula and skewed t copula implied threshold correlations. It is evident that
the empirical threshold correlations are far from a bivariate normal distribution. In what
follows we rely on the skewed t copula to model the dependency structure across factors in

the forex market.

4 Portfolio Optimization

The empirical evidence above suggests that forex factors have significant time-varying asym-
metric dependence. What is the economic cost of a forex trader ignoring this dependence
structure? In the next sections, we shall consider forming optimal currency portfolios. We
shall assess the economic value of considering this type of dependence structure in a forex
portfolio. As in Kroencke et al. [2014], we use a real-time strategy. We show that once
we implement a forex optimized strategy and consider asymmetry and time-varying in the
dependence structure, the benefit in terms of utility is significant. For portfolio analysis, we
assume that at each time t, investors allocate their wealth, based on the weighting vector
wy, across the 4 currency factors to maximize their expected utility. We compare the return
characteristics of alternative strategies by using different dependence structure models and a
large real time out-of-sample analysis. Note that following Christoffersen and Langlois [2013],
we use the average return of the previous two years as a proxy for the expected return of the

factors. This helps us focusing on the impact of higher moments on the portfolio selection.

4.1 The Investor’s Optimization Problem

We assume that investors follow a constant relative risk aversion (CRRA) utility function:

1-" (PO (1+ w;THl)lﬂ) ify#1

Uly) = ‘
log (PU (1+w;rt+1)) ify=1

Where Py is the initial wealth which we set at $1 here, r; is the vector 4 currency factor

returns at time ¢, w; is the weighting vector, v denotes the degree of relative risk aversion

13



(RRA). We consider 3 levels of RRA: v = 3,7,10. The weighting vector for each time t is
obtained by maximizing the expected utility function which gives different assumptions for

the factors’ joint distribution.

wy = arg rgvax E;. (U (1 + thrtH))
we
14w )
= argmax / ( 1t wn) fe1 (reg1) driga (3)
weW -7

Where fi11 (1411) denotes the joint distribution of the four factors. We assume that investors
face investment constraints in that the risk exposure to any single factor and the four factors in
total is less than $1. Thus the weighting matrix w = { (w1, wa, w3, w4) € [—1, 0wy |+ |wo |+ |ws |+
Due to the complexity of the joint distribution f;,1 (7,11), solution for wy is generally not given
analytically. We solved 3 by simulating 10,000 Monte Carlo replications for the four factors

using a multivariate distribution fiq (r441).

4.2 Forex Portfolio

Our weekly investment strategy is implemented in two stages: the first stage consists of
modelling joint distribution for the expected return f;,; (r;41); the second stage involves the
estimation of the factor weighting vector by maximizing the investors’ utility function 3. To
begin with, we estimate the skewed t AR-NGARCH model for the four factors using the
previous data sample following Cerrato et al. [2020]. Thereafter, we estimate the dependence
structure between four residuals from the AR-NGARCH by using copula models.'’ Each

time ¢, the expected factor return for factor j is generated by equation 4:

Tit+1 = Qo5 + @170 + Oj 416041 (4)

Whereg, ; and ¢, jare the AR coefficients; 0;.1 is the 1-step-ahead forecasted conditional
volatility in the NGARCH model; €41 is simulated from the joint distribution function
which is characterized by the copula model. Note that the parameter estimates in the AR-

NGARCH and copula models are updated once a year using the whole of the data sample. For

10We also used a multivariate standard normal distribution as a benchmark for comparison with copula
models.

14



dynamic copula models, where DCC is used to model the time-varying correlation coefficient,
the factor correlation is updated weekly. We start our investment from April 1, 1994, giving

us an investment period of over 25 years.

In the second stage, we use the simulated 10,000 draws from f;yq (r441) to value the integral

in 3. Thus maximizing 3 is equivalent to maximizing 5

w; = argmarn™! Z U* (Rfyq; (w)) (5)

weW i—1

where

R (w) = 14w r

e =22204 x 10716

and

100

Us (Rt—&-lﬂ' (w)) = WU (Rt+1,i (w))

The cut-off 2.2204 x 10716 was chosen as the machine epsilon. We use the function U* instead
of U directly, since the numerical maximization routine does not work well with extremely
small or large values. The Udoes not affect the ranking of alternatives, and the 100 value is

the reverting mean of the U.

By maximizing equation 5, we obtain the optimal weighting vector w, for time ¢. Fach time

t, investors liquidate the previous position and rebalance their portfolios according to wy.
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[The real-time investment results about here]

4.3 Performance of Different Strategies

The empirical results based on a large battery of dependence structure models are reported
in Table 4. We consider three levels for the CRRA, namely v = 3 in Panel A, v = 7 in Panel
B, and v = 10 in Panel C. We follow Christoffersen and Langlois [2013|, Patton [2004]. As
the value of v increases the risk-averse level also increases and the turnover decreases. The
portfolio mean, volatility, skewness and kurtosis of returns for the 5 different models are given
in Table 4. We start with the full dataset (i.e. developed and developing countries). Since
we apply the average return, we apply the certainty equivalent to measure the performance

of the portfolios.

We compute the certainty equivalent (CE) of the average realized utility for each strategy as

follows

1

T 1— T i
1 0
CE=U" (?Z—””g > ( ST (140 ‘”)
t=1

t=1

N[ =

where U~ is the inverse of the utility function and where

T
Tpt = W T¢

are the out-of-sample portfolio returns.

To find out whether richer models lead to better performance by generating a better trading

signal, we also report the average turnover

100
Average turnover (%) = ZZ| Wi — Wip—1 |

t=1 i=1

The estimates are all around 12%-21%, depending on risk aversion. These values are similar
within each of the panels. This indicates that the improvement in realized utility across the

models is not driven by the difference in trading turnover.
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|Table 5 Out-of-sample investment with transaction about here]

We use the multivariate standard normal model as our benchmark. Risk factors are assumed
to be orthogonal with each other. Hence, we show the portfolios with the orthogonal as-
sumption. There is clear empirical evidence that asymmetry is economically relevant (i.e.
the skewed t copula out-performs the other models). Thus, by considering asymmetry one

can add value to a forex portfolio.

To assess whether the difference between the benchmark portfolio and skew t-copula portfolio
is economically significant, we apply bootstrap methods under the null hypothesis that the
difference is significantly different from zero. In this way, we can infer if the actual difference

shown in Table 4 is economically relevant.

4.4 Transaction Costs

Transaction costs can significantly reduce the performance of a trading strategy. There is
empirical evidence [Menkhoff et al., 2012b], that the performance of a momentum strategy is
highly reduced after considering transaction costs. In Table 5, we consider transaction costs
to check the robustness of the results presented in the previous table. To compute the cost,

we follow Barroso and Santa-Clara [2015]:

ask bid
Fz‘,t,t+1 - ‘Fi,t,t+1
Cit

it T Trask bid
Fz’,t,t+1 + Fi,t,t+1

Where ¢; ; is the transaction cost of currency 7 at time ¢. ﬂf’f 1 and sz;‘it +1 denote the bid and
ask price of the forward exchange rate of currency 7 at time t. To convert currency transaction
costs into factor transaction costs, we use the same method and parameters to calculate the
factor transaction cost by simply changing currency excess return to the currency transaction

cost.

We consider transaction costs for combined strategies and not a “stand alone” strategy as it
may will be that when we consider transaction costs for a momentum strategy, the cost offsets
the return for that strategy, but when it is combined with other strategies (for example carry
trade) the higher profit of this combined strategy offsets the transaction costs. Clearly trans-
action costs are important. However, overall the main results remain unchanged. Moreover,

the skewed t copula model shows stronger advantages.
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[Table 6 Out-of-sample investment in developed currencies about here]

[Table 7 Out-of-sample investment in developing currencies about here|

4.5 Performance in Developed and Developing Countries

In this section, we split the data into developing and developed countries. Information
on the dataset can be found in the footnote 1. We do this for several reasons: first, we
aim to check whether our results are driven by country-specific factors affecting exchange
rates. Second, the benefits of diversifying forex portfolios between developing and developed
countries’ exchange rates are well known. Table 6 shows that for the developed countries
the p-values reject the null hypothesis only at the 10% significance level. Thus, the rejection
is weaker than in the previous tables. The annualized mean return is generally higher for
the t-skew copula model while annualized volatility and skewness stay unchanged across the
models. The large negative skew may signal the presence of crash risk. As before, if we
consider an investor with a relative risk aversion of 3, they would now gain 0.011% , this is

1.15bp per month if using the skew t-copula instead of our benchmark model.

The results for developing countries also point towards an economic gain when using a skew
t-copula as opposed to our benchmark one, but they are weaker than those presented for all
countries: the benefit for our investor of using a skew t-copula model, in this case, is only
1.94bp per month. There is an economic benefit in diversifying an forex portfolio between
developed and developing markets. The annualized mean return for developing countries is
higher than that for developed countries, but annualized volatility is also higher. Overall,

the CE measure for developing countries is the highest.

5 Risk Management

In this section, we consider the implications for risk management when we fail to correctly
specify the relevant risk measeres. We compute two risk measures for each factor: the Value
at Risk (VaR), which is the tail quantile of the conditional distribution of the portfolio
returns; and the expected short (ES) fall, which is the conditional expectation of exceeding
the VaR. If there is a loss function which could calculate the risk measure by minimizing the
expected loss of the function, the risk measure is elicited [Patton et al., 2019]. Note that the
risk measure from loss function is the exact risk of the variable. For instance, the mean value
could be obtained using the quadratic loss function, and the VaR value could be obtained

using the piecewise linear function.
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Fissler [2017] shows the joint elicitation of the VaR and ES in the loss function. We follow the
loss function from Fissler [2017] to forecast the VaR and ES and evaluate the performance of
the forecasting models. In this section, we follow Patton et al. [2019] univariate distribution

model and extend it to a multivariate setting by using copula models.

In risk forecasting, we apply the in-sample data from 1 January 1989 to 10 March, 2005, and
out-of-sample data from 11 March, 2005 to 20 March 2020. Following Patton et al. [2019],
we estimate the model only once on 10 March, 2005. The future risk measures are forecast
from the updated data and the consistent model. We will apply the goodness-of-fit test and

Diebold-Mariano tests to evaluate the performance of the forecasting models.

5.1 Copula VaR and ES Forecasting

We apply the distribution of factor returns, the mean and variance, to forecast the VaR and
ES. We first use GARCH dynamics, following Patton et al. [2019], for the conditional mean

and variance to get the volatility item o,. The copula forecasting model is:

Y, = p + oy

o =w+ Bop_ + i,

Y; denotes the factor portfolio’s return, where g, is specified to the ARMA model and o? is
specified to the GARCH model. 7, denotes the residual of the factor returns. Given F,, the

forecasting of VaR and ES can be estimated as:

vy = g + aoy, wherea = F{l(a)

er = g + boy, whereb=E[n, | n, < a

In the univariate model, Patton et al. [2019] assume the residuals 7, follows the univariate
distribution. We, however, assume the 7, follows the joint distribution as indicated here. We

consider three choices for F;, to describe the distributions of 7;:
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1, ~ 1id Normal linear

1 ~ 1id orthoganal

ne ~ 1id Normal copula

ne ~ td Student t copula

N ~ itd Skewedt copula

To estimate the parameters (a,b), we use the Monte Carlo simulation. We use simulation
to define the quantile function and employ 1,000,000. Thereafter, we sort the replications to

obtain the quantile value a.

We apply the NGARCH model in Section 3.2 to get the residual of the factor portfolios. The
details of the univariate model are shown in the Appendix A. To keep consistency with the

previous model, we also use the NGARCH model to consider leverage effects in forecasting

af =w+ /Baf_l + 70752—1(7715—1 — 6)?

In the next subsection, we shall discuss the goodness-of-fit and Diebold-Mariano tests as in
Patton et al. [2019].

5.2 Ranking from different test

Table 8 shows the fit of the future risk measures for different forecasting models. The good-
of-fit test using the FZ-loss function follows Fissler [2017]. That is, minimizing the expected
loss using any of these loss functions returns the true VaR and ES. The loss function is shown

below:
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Lrz(Y,v,e,G1,Ga) = arg7(m'7)1 (1{Y <v} —a) <G1 (v) =G (Y)+ éGQ (e) v)

G (e) 61 (Y <o}y — e) Gy (e)

where (G; denotes the weakly increasing and G5 denotes the strictly increasing and strictly
positive. To simplify the loss function, Patton et al. [2019] assume that the loss differences
from the loss function are homogeneous of degree zero. Thus, the G; and G, will be G(x) =
0and Go(x) = —1/z.'" Gy is the differential coefficient function of Gy, G, = G5. Parameters
v, e denote the VaR and ES.

Following Patton et al. [2019], the loss function can be rewritten in the following form:

1
Lpzo(Y,v,e;a) = @1{3/ <v}(v=Y)+ g +log(—e) —1

We carry out the goodness-of-fit test and Diebold-Mariano tests as in Patton et al. [2019].
The two tests are briefly discussed below. The idea of testing is that the expected value at

time of the loss function partial derivative for VaR and ES should equal to zero:

OLFz0 (Yt, Ut, €45 Oé) /avt

-1 =0 (6)
OLpz0 (Y, vr, e 0) [Oey

t

When the partial derivatives equal to zero, it indicates a good results for the goodness-of-fit
test. To simplify the calculation, let A, = OLpzo (Y, vy, e5) /Oy and NS, = OLpzo (Y, vr, €45 @) /ey

==Y <u)-a

’U,t - Ut

A :ﬂ:éu}ggvt}%_l

E,t - €t

Consequently, the standardized and generalized residuals also have the expected value zero,
By [X5,] = Eim1 [A2,] = 0. Patton et al. [2019] uses the dynamic quantile (DQ) approach
employing a simple regression of the generalized residuals at each term ¢. To test E [/\f,’t} =

E;( [)\g’t} = 0, we use the following regressions:

"The detailed proof for the choosing of G; and G3 can be found in Patton et al. [2019].
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[Table 8: Rank of Diebold-Mariano tests and goodness-of-fit test of copula forecasting models|

)\f)»t =ag+ al)\it,l “+ aqvy + Uyt
)‘z,t = bQ + bl)‘:,t—l -+ bget -+ Ue ¢

If the parameters in the regression are all zero, the results show that the forecasting risk
measures pass the test. Following Patton et al. [2019], we set the hypothesis that all param-
eters in the regressions are not zero. In table8, we show the p-value of the goodness-of-fit.

The results which do not pass the test are in bold.

Diebold-Mariano tests compare the average loss of each model statistically to show which
achieves the best performance. The tables in the Appendix B, Appendix C and Appendix
D show the Diebold-Mariano tests results. A positive value indicates that the column model
outperforms the row model on the average loss using the loss function from Fissler [2017]".
In the Appendix, we show that the t-statistics from Diebold-Mariano tests comparing the
average losses over an out-of-sample period from 11 March, 2005, to 20 March, 2020, for 10
different forecasting models. We present a summary for the Diebold-Mariano tests in the

table 8.

As we are focusing on multivariate risk forecasting, we apply the average rank of the four
factors as the ratio to compare the performance of the models. The GARCH skewed t copula
model shows the best performance among the 10 models in the cross section (whole data set)
and the developed countries dataset, while the NGARCH skewed t copula model ranks first
among the models in the developing countries factors. Furthermore, the benchmark models
(orthogonal and normal linear distribution) always underperform the DCC-copula model in

forecasting risk.

The results confirm our findings in the portfolio management section. These models can help
to accommodate extreme changes. The factors MOM and VAL carry the highest risk. The
models accounting for asymmetry generally carry the lowest average loss. Our results show
that asymmetry between forex factors is an important element and can help improving the

risk management of forex portfolios.

12We follow Patton et al. [2019] to apply the average loss as the rank ratio
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6 Conclusion

We conduct a detailed study on the dependence structure among the most widely investigated
currency factors in the literature that are also very relevant to the hedge fund industry when
designing forex trading strategies. We show that the dependence structure between forex
factors is more complex than has been considered in the literature so far and asymmetry
and time dependence are very relevant. To evaluate the economic cost to a hedge fund of
neglecting these modelling features, we consider two examples: forex portfolio management
and forex portfolio risk management and show that adding asymmetry and time-varying
dependence among the factors improves portfolio performance and risk management. Our
results are very relevant for the academic literature in this area as we shed some new light
on the dependence structure between some popular forex factors, and they are also relevant

to hedge funds when designing forex trading strategies.
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Figure 1 - Quantile-Quantile Plots for 4 factors

For each observation, we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the standard normal distribution on the horizontal axis. If returns are normally distributed,
then the data points will fall randomly around the 45° line ,which is marked by dashes.
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Figure 2 — Threshold correlation for 4 factors

This figure presents threshold correlations between the 4 factors . Our sample consists of weekly returns from
January 1, 1989, to March 20, 2020. The continuous line represents the correlations when both variables are
below (above), a threshold when this threshold is below (above) the median. The dashed line represents the
threshold function for a bivariate normal distribution using the linear correlation coefficient from the data.
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Figure 3 — Skewed t copula dynamic correlations with composite method

We report dynamic conditional copula correlation for each pair of factors from January 1, 1989, to March 20,
2020. The correlations are obtained by estimating the dynamic skewed t copula model on the factor return
residuals from the AR-GARCH model. This sample is used in estimation of the models.
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Figure 4 — Threshold Correlations for Factor Residuals and Copula Models

We present threshold correlations computed on AR-GARCH residuals from January 1, 1989, to March 20,
2020. The thick continuous line represents the empirical correlation. The threshold correlation functions are
computed for thresholds for which there are at least 24 data points available. We compared the empirical
correlations to those implied by the normal copula and the constant t and skewed t copulas.
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Table 1 — Description Statistics of Weekly Factor Return

We report the annualized mean, annualized volatility, skewness, kurtosis and autocorrelation and cross-
correlation for logged weekly return of four factors. The period of the sample is from January 1, 1989, to
March 20, 2020. The significant correlation is marked by * and ** denoting the 5% and 1% levels.

Sample Moments DOL HML MOM VAL

Mean 0.00 0.18 0.08 0.03
Volatility 0.06 0.08 0.09 0.10
skewness -0.35 -0.40 -0.15 0.26
Kurtosis 4.73 5.16 6.93 6.86
Autocorrelation

First-order 0.04 -0.01 -0.01  0.09**
Second-order 0.04 0.09**  0.06* 0.18**
Third-order 0.02 0.08*%* 0.09** (.14**
Cross Correlations

DOL 1.00 0.31**  -0.08*% -0.16**
HML 0.31%* 1.00 0.05* -0.27**
MOM -0.08*  0.05* 1.00  0.56**
VAL -0.16%*%  -0.27*%  0.56** 1.00
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Table 3 — Estimation results for copula models with composite method

This table presents parameter estimates for the dependence models of the residuals from the NAGARCH
model for the period January 1, 1989, to March 20, 2020. All models are estimated by maximum likelihood.
Standard errors (in parentheses) are computed using the methodology of Engle et al. [2009]. The last line
presents the pseudo-likelihood ratio test statistics. We followed Chen and Fan [2006] for the null hypothesis
that the asymmetry parameters in skewed t copula are all equal to 0. The * and ** denote the significant
levels of 5% and 1%. The value and the standard errors of the A are multiplied 100.

4 factors
constant dynamic
normal t skewed t normal t skewed t
v 9.16 7.25 6.07 6.49
(2.26) (0.13) (0.94) (0.28)
AboL -0.09 -0.25
(0.02) (0.13)
AHML 0.15 0.31
(0.05) (0.07)
)\MO]W -0.13 -0.22
(1.62) (0.51)
AV AL -0.95 -0.02
(0.26) (1.06)
Be 0.81 0.80 0.81
(0.03)  (0.01) (0.02)
Qo 0.02 0.04 0.03
(0.01)  (0.00) (0.00)
p(DOL,HML) 0.16 0.15 0.15 0.21 0.21 0.21
p(DOL,MOM) 0.02 0.04 0.04 0.02 -0.00 -0.00
p(DOL,VAL) -0.05 -0.01 -0.00 -0.05 -0.10 -0.09
p(HML,MOM) 0.08 0.09 0.09 0.11 0.08 0.08
p(HML,VAL) -0.16 -0.16 -0.16 -0.18 -0.19 -0.19
p(MOM,VAL) 0.55 0.56 0.56 0.55 0.57 0.57

Model Properties
Correlation persistence  0.00 0.00 0.00 0.84 0.83 0.84

Log-likelihood 334.99 544.75 551.96  521.36 602.80 610.38
No. of parameters 6.00 7.00 11.00 8.00 9.00 13.00
Pseudo-likelihood 15.28%* 12.47%*
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Table 4 — Out-of-sample investment results

The period of the out-of-sample is from April 1, 1994, to March 20, 2020. For each level of relative risk
aversion, the performance of the three copula models is compared to the benchmark normal distribution.
Panels A;B and C show the results for a relative risk aversion coefficient of 3,7 and 10, respectively. We
report the realized moments of the portfolio returns, the average turnover, as well as the certainty equivalent.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. y=3
Return(%) 18.58 18.60 18.59 18.60 18.89
Volatility (%) 12.90 12.89 12.90 12.89 12.74
skewness -0.14 -0.15 -0.15 -0.15 -0.03
Kurtosis 2.90 2.92 2.93 2.93 2.58
Average turnover(%) 1.37 1.81 1.88 1.93 1.71
CE(basis point) 35.47 35.70 35.67 35.70 36.25
Diff in CE(%) - - - - 0.28
Bootstrap p-value - - - - 0.01

Panel B. =7
Return(%) 18.23 18.45 18.43 18.53 18.69
Volatility (%) 12.92 12.91 12.92 12.91 12.72
skewness -0.07 -0.13 -0.13 -0.15 0.00
Kurtosis 2.90 2.95 2.95 2.95 2.66
Average turnover(%) 1.40 2.19 2.24 2.22 2.13
CE(basis point) 34.79 35.29 35.26 35.45 35.76
Diff in CE(%) - - - - 0.24
Bootstrap p-value - - - - 0.03

Panel C. =10
Return(%) 18.08 18.31 18.31 18.46 18.64
Volatility (%) 12.98 12.96 12.96 12.97 12.94
skewness -0.06 -0.13 -0.13 -0.16 -0.14
Kurtosis 2.85 2.92 2.92 291 2.85
Average turnover(%) 1.41 2.20 2.19 2.22 2.35
CE(basis point) 34.50 34.94 34.94 35.23 35.58
Diff in CE(%) - - - - 0.33
Bootstrap p-value - - - - 0.01
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Table 5 — Out-of-sample investment with transaction cost

This table has same structure as table 4. However, we show the out-of-sample investment with the transaction
cost.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. y=3
Return(%) 17.75 17.74 17.70 17.69 18.07
Volatility (%) 13.21 13.19 13.20 13.21 12.98
skewness -0.22 -0.20 -0.20 -0.21 -0.06
Kurtosis 2.98 2.97 2.96 2.99 2.61
Average turnover(%) 1.72 1.81 1.88 1.93 1.71
CE(basis point) 33.93 34.02 33.95 33.94 34.67
Diff in CE(%) - - - - 0.33
Bootstrap p-value - - - - 0.01

Panel B. v=7
Return(%) 17.38 17.35 17.31 17.40 17.60
Volatility (%) 13.20 13.26 13.28 13.24 13.01
skewness -0.13 -0.17 -0.17 -0.17 -0.01
Kurtosis 2.94 2.95 2.96 2.93 2.73
Average turnover(%) 1.75 2.19 2.24 2.22 2.13
CE(basis point) 33.23 33.16 33.08 33.25 33.64
Diff in CE(%) - - - - 0.25
Bootstrap p-value - - - - 0.01

Panel C. =10
Return(%) 17.23 17.19 17.19 17.32 17.44
Volatility (%) 13.24 13.30 13.30 13.29 13.28
skewness -0.11 -0.17 -0.16 -0.17 -0.16
Kurtosis 2.90 2.92 291 2.88 2.83
Average turnover(%) 1.76 2.20 2.19 2.22 2.35
CE(basis point) 32.93 32.76 32.75 33.01 33.24
Diff in CE(%) - - - - 0.25
Bootstrap p-value - - - - 0.02
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Table 6 — Out-of-sample investment in developed countries currencies

This table has the same structure as Table 4. This table shows the out-of-sample investment with the
developed countries’ factor portfolios.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. y=3
Return(%) 16.54 16.55 16.54 16.50 16.68
Volatility (%) 13.51 13.51 13.51 13.52 13.50
skewness -0.49 -0.49 -0.49 -0.49 -0.50
Kurtosis 2.90 2.90 2.90 2.89 2.90
Average turnover(%) 2.81 2.80 2.81 2.66 2.55
CE(basis point) 31.72 31.72 31.72 31.64 31.99
Diff in CE(%) - - - - 0.14
Bootstrap p-value - - - - 0.08

Panel B. v=7
Return(%) 16.26 16.254 16.26 16.18 16.27
Volatility (%) 13.50 13.50 13.50 13.55 13.50
skewness -0.45 -0.44 -0.45 -0.45 -0.45
Kurtosis 2.88 2.88 2.88 2.84 2.87
Average turnover(%) 2.79 2.82 2.79 2.81 2.40
CE(basis point) 31.05 31.04 31.05 30.89 31.06
Diff in CE(%) - - - - 0.01
Bootstrap p-value - - - - 0.08

Panel C. =10
Return(%) 16.15 16.14 16.15 16.08 16.16
Volatility (%) 13.54 13.54 13.54 13.57 13.57
skewness -0.43 -0.43 -0.43 -0.42 -0.42
Kurtosis 2.83 2.83 2.83 2.80 2.80
Average turnover(%) 2.71 2.74 2.71 2.73 2.47
CE(basis point) 30.73 30.72 30.73 30.60 30.75
Diff in CE(%) - - - - 0.02
Bootstrap p-value - - - - 0.03
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Table 7 — Out-of-sample investment in developing countries currencies

This table has the same structure as Table 4. This table shows the out-of-sample investment with the
developing countries’ factor portfolios.

Dynamic correlation models

Linear Copula
Orthogonal Normal Normal Student t Skewed t

Panel A. y=3
Return(%) 23.78 23.87 23.87 23.86 23.92
Volatility (%) 15.08 15.10 15.09 15.10 15.09
skewness -0.02 -0.05 -0.04 -0.05 -0.05
Kurtosis 2.71 2.74 2.74 2.74 2.73
Average turnover(%) 1.61 1.95 2.00 2.03 1.88
CE(basis point) 45.59 45.40 45.76 45.74 45.85
Diff in CE(%) - - - - 0.23
Bootstrap p-value - - - - 0.01

Panel B. v=7
Return(%) 23.71 23.78 23.78 23.80 23.84
Volatility (%) 15.23 15.23 15.23 15.22 15.21
skewness -0.09 -0.11 -0.11 -0.12 -0.11
Kurtosis 2.71 2.77 2.77 2.78 2.79
Average turnover(%) 1.70 2.39 2.38 2.46 2.38
CE(basis point) 45.24 45.37 45.37 45.40 45.49
Diff in CE(%) - - - - 0.03
Bootstrap p-value - - - - 0.06

Panel C. =10
Return(%) 23.83 23.91 23.91 23.92 24.00
Volatility (%) 15.22 15.18 15.18 15.18 15.17
skewness -0.12 -0.15 -0.15 -0.15 -0.16
Kurtosis 2.83 2.94 2.94 2.96 2.97
Average turnover(%) 1.69 2.60 2.61 2.68 2.64
CE(basis point) 45.31 45.47 45.47 45.48 45.64
Diff in CE(%) - - - - 0.09
Bootstrap p-value - - - - 0.07
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Appendix A Univariate model

The empirical results in Table 1 also show that autocorrelation could be an important issue
for factors’ returns. In Figure 5, the autocorrelation function is plotted by a dashed line for
all the factors up to 100 lags, a 95% confidence boundary included. Financial time series are
generally subject to heteroscedasticity and volatility clustering. We plot the autocorrelation
function for the absolute value of the factors on the same graph. We find a strong and

persistent serial correlation.

We model the dynamics of factors by using a univariate autoregressive-non-linear generalized
autoregressive conditional heteroscedasiticity (AR-NGARCH) process. The conditional mean

is estimated by an AR(1) process as follows:

it = Qo+ GijTji—1+ 0ji€ju (7)

Where r;,is the factor value of factor j at time ¢. The conditional volatility is governed by
an NGARCH |[Engle and Ng, 1993]

05 = wj+ G051 + o, (€1 — 0;)° (8)
The NGARCH model allows for the asymmetric influence of past return innovations €;;_.
Since financial time series generally show a “leverage effect”, an unexpected drop in return
may have a bigger impact on conditional volatility than an unexpected increase (i.e. 6;is
positive). Under this circumstance, the NGARCH model is expected to mitigate the skewness
and excess kurtosis. We use the maximum likelihood method under the assumption of i.i.d.

normal innovations of €;;.

Table 9 reports the coefficient estimates and diagnostic tests under the normal assumption
for €;+. In the first panel, we report the estimated coefficients and standard errors of an
AR(1)-NGARCH model ¢g,¢1,a,3 and 0. The parameters (¢g) are all significant except for
the DOL. Most parameters of the NGARCH model are also significant. The coefficient 8 of
the VAL and the MOM factors have large positive values which are statistically significant
while the DOL factors have insignificant negative . The log-likelihoods are all significant

and positive.
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The divergence between model skewness/kurtosis points towards strong non-normality of
¢;.'To better model the factor dynamics, we employ the skewed t distribution of Hansen [1994]
for error term ¢;,, where the coefficients x;and v;govern the skewness and the kurtosis. We
use the maximum likelihood method under the assumption of skewed t distribution of ¢;to
estimate the AR(1)-NGARCH model. The results are reported in Table 10 which shows that
the kurtosis parameters (v) are all significant and the skewness factors (k) of HML are not

significant.'?

Figure 6 graphs the autocorrelation function for the residual and its absolute value. After
adjusting the skewness and excess kurtosis by assuming a normal distribution, the serial
correlation in absolute value is highly reduced. Figure 7 is the QQ plot of the residuals from
skewed t AR(1)-NGARCH. When comparing these results with Figure 1, we see that most
of the skewedness and kurtosis have been modelled after using the AR(1)-NGARCH.

13By comparing the significance for the whole AR(1)-NGARCH model in Table 10, we find that the AR(1)-
NGARCH model with the normal distribution fits the data well.
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Figure 5 — Autocorrelation 4 factors and the absolute value of 4 factors

Autocorrelation of weekly returns (dashed line) and absolute returns (solid line) from January 1, 1989, to
March 20, 2020. The horizontal dotted lines provide a 95 confidence interval around 0.
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Figure 6 — Autocorrelation graph of residual series

Autocorrelation of AR-FARCH residuals (dashed line) and absolute residuals (solid line) from January 1,
1989, to March 20, 2020. The horizontal dotted lines provide a 95 confidence interval around 0.
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Figure 7 — QQ plot of residuals series

For each observation we scatter plot the empirical quantile on the vertical axis against the corresponding
quantile from the skewed t distribution on the horizontal axis. If the AR-GARCH residuals adhere to the
skewed t distribution, then the data points will fall on the 452 line, which is marked by dashes. The parameters
for the skewed t distribution are from Table 3.

DOL HML
4 0.06
+
3l
004
2
2 2 002
E E
5 5
2] @
20 5 o
£ £
g1 002
2 2
§-2 g
I} 3 -004
-3
i 0.06
& -008 —+
-4 -3 2 - 0 1 2 3 4 -4 -3 2 - 0 1 2 3 4
Standard Normal Quantiles Standard Normal Quantiles
MOM VAL
5 + 04 N
4 0.08
8 0.06
@ o
42 o
£ £ 004
5 s
21 o
3 3 0.02
so £
5 5
0
§ §-0.02
S S
<} <]
3 -0.04
4 -0.06
o
5 0.08 —+ ¢
-4 3 -2 - 0 1 2 3 4 -4 -3 2 - 0 1 2 3 4
Standard Normal Quantiles Standard Normal Quantiles

43



Table 9 — Estimation table of normal residuals

We report parameter estimates and model diagnostics for the AR-NGARCH model with normal shocks.
Standard errors which are in parentheses are calculated from the outer product of the gradient at the optimum
parameter values. The model estimated is 7, = @o; + ¢i;7j1—1 + 0j€4, where 05, = w; + Bjo7, | +
ozjoit_l(ej,t,l — 6;)?. Here w is fixed by variance targeting, and variance persistence denotes the sum of
parameters of the model.We also provide the p-value for Ljung-Box (L-B) tests of the residuals and absolute
residuals by 20 lags. The empirical skewness and excess kurtosis of the residuals are compared to the model

implied levels from the normal model.

Parameter Estimates DOL HML MOM VAL
oo 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)
01 0.04 0.02 0.01 0.11
(0.04) (0.03) (0.03) (0.03)
Q 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)
I5] 0.93 0.95 0.91 0.00
(0.56) (0.02) (0.09) (0.00)
0 -0.37 0.08 0.49 0.12
(0.22) (0.12) (0.11) (0.02)
K / / / /
v / / / /
Diagnostics
Log-likelihood 5131.10 4714.60 4572.50 4451.70
Variance persistence 0.93 0.95 0.91 0.00
L-B(20) p-value 0.14 0.00 0.00 0.00
Absolute L-B(20) p-value  0.00 0.00 0.00 0.00
Empirical skewness -0.33 -0.39 -0.16 0.15
Model skewness 0.00 0.00 0.00 0.00
Empirical excess kurtosis 4.71 5.17 7.03 6.91
Model excess kurtosis 0.00 0.00 0.00 0.00
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Table 10 — Estimation table of skewed t residuals

This table show the same structure as Table 9. We report parameter estimates and model diagnostics for
the AR-NGARCH model with skewed t shocks.

Parameter Estimates DOL HML MOM VAL
o 0.01 0.019 0.01 0.00
(4.43) (39.88) (19.04) (0.00)

01 0.12 -0.99 -0.38 0.08
(21.11)  (626.76)  (95.52)  (0.03)

Qo 0.14 0.14 0.14 0.00
(99.84)  (2238.70)  (10.37) (0.00)
I6; 0.0487 0.0495 0.0872 0.9278
(0.78)  (1001.00)  (16.30) (0.03)

0 0.10 0.10 0.15 0.03
(6.95) (340.28) (17.54) (0.11)

K 0.63 0.64 0.72 0.03
(984.01) (4693.00) (124.69) (0.04)

v 8.53 9.47 6.67 8.67

(313.48) (7898.40) (1234.20) (1.63)

Diagnostics

Log-likelihood 3092.00  2768.60 2968.20  4542.90
Variance persistence 0.19 0.19 0.23 0.93
L-B(20) p-value 0.02 0.00 0.00 0.00
Absolute L-B(20) p-value  0.00 0.00 0.00 0.00
Empirical skewness -0.30 -0.17 0.12 0.18
Model skewness 1.30 1.25 1.66 0.08
Empirical excess kurtosis 4.68 4.11 4.96 6.90
Model excess kurtosis 6.25 5.79 8.96 4.29

Appendix.B Diebold-Mariano tests of

whole data set

We put the Diebold-Mariano tests of the cross-section data set. The four factors results are
shown separately. The DOL factor are shown first. Then, we present the Diebold-Mariano
tests of HML. The test results of MOM and VAL factors are shown in the last two tables.
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Appendix C: Diebold-Mariano tests of

developed countries

We show the Diebold-Mariano tests for developed countries. The results for the four factors
are shown separately. The DOL factor is shown first. We then report the Diebold-Mariano
tests for the HML factor. Finally, we report the results for MOM and VAL factors in the

last two tables.

20



NEBN ¥6°L 179 179 6L°L 0v'v ov'v 0rv 0cv or'v IP-YHO-HHDN

¥6'L- NeN ¥€'9 g9 PT'L 9EY 9EF 90¥ 9Ty 9€V IP-WG-HHON
17'9- 7€9- N®N €€°9 ¥€9- 69°€ 69°¢ ve'e gee 69°€ PIP-BS-HODN
179" Ge9- €€°9- NEeN V€9 87°€ 8v'€ ¢re vee Lv'e 29P-1-HODN
6L°L- VLL- ¥€'9 ve9 NEeN eV aer G0 Ly ey 2IP-U-HOHPDN
0v'¥- 9€7- 69°¢- 8¢~ GeT- NEeN 79T L8°T- PaT- 09°0- IP-YHO-HDD
0V v- 9€7- 69°€- 8¢ GeT- o' 1- N®N 881~ Ga' - 8T'T- 2p-Wq-HHO
0rv- 90"~ Ve es olre- G0 - 181 88°L NeN ¥9°c 681 2IP-PS"HDOD
0¢'¥- 9T'7- gere- vee- arv- Vet S ¥9°¢- NN 9¢'T P-1-HOD
0v'¥- 9€7- 69°€- Ly'e- GET- 09°0 8T'T 68°1- 94T~ N®¥N 29P-U-HOHD

POP-YHO-HDON  29P-WY-HOON 29P-PS-HODN  29P-4-HODN 9P-U-HDON 29P-YHOo-HDHYH 29p-WYG-HDD IP-PS-HDD 2PP-1-HDD 22P-U-HDD )
SPPOW HOUVOVN 94} qiM et
Youa( [RUOS0YIIO ) PUR YIRW YOUI( UOIJR[SIIOD IRJUI] 9y} puk S[epow e[ndod JTWRUAD WOIJ SINSAI FUIISRIDIO] 9} OAIS SMOI OAT IXOU O, "S[Epow
HOMVY 92Ul YA YIew Puaq [euo30Y}I0 9} PUR YIRWDUS(] UOIR[OIIOD IBSUI] oY} Pue S)sedaio] endod dTweuip 0} puodsallod SMOI dAT ISIY oY T,
“A71qea1dIequl 0] pej)Ilio oIe PUR 0197 A[[RIIIUSDI [[€ oI [RUOSRIP UIRWI 91} SUOTR SeN[RA ‘[9AS] 80USPYU0D ¥, GE 9Y) IR OI9Z WOIJ JUSIdPIp AJjueoyIuss
ST 9DUDIOYIP SSO] 9FRIOAR 9Y) 1R[] 9IRIIPUI ON[RA IIN[OSR Ul 9§ URT) I9IRII3 Son[eA [opOUWl UWN[Od ) Uy} SSO] 9FRIoAR IOYSIY SR [9POUT MOI 1)
1e7[) SOIRIIPUL oNJRA 9ATIISOd Y "SUIN)OI 10300] T (] JO SPPOW JUIISLIDIO] JUSIOPIP Ud) I0F ‘0Z0% ‘0% UOIRIN O) ‘C00g ‘IT YoIe]N woiy porrod sjdures
-JO-IN0 9} I0A0 ‘[LT(g] IO[SSI WO} UOIPouNy 07 oY) JuIsn ‘sosso] oferoae o) Surreduwrod $1s0) OURLIRIN-P[OGOT( WOI} SOTISTIR)S- sjuasard o[qe) STy,

SO1IUN0D pado[oAsp )M $)59) OURLIBIN-PIOQRI( TO( — ST °[qeL

o1



NEN s 96°9¢- 86°TF- gTE 7€ €Le LT¢G 067 29°€ 20p-T30-HDON
s NEN 7816 88°CT- 6°LT e L€ 87°¢ 167 £9°¢ 20p-wq-HOOHN
9¢°9¢ 818 NEN 8C'9PEST 80°9¢ 8¢ ¥6°C cr's 65°L 18°¢ 20P-IS-HOON
86°2¥ 88°CY 8C°9PEST- NeEN 6L°TF 67°C 0F'C €F'L 769 LT 20p-3-HOON
gTE- F6°LT- 80°9¢- 6L°TY- NEN 19°¢ 0Le & 98°F 09°€ 29p-U-HOON
79°¢- €9°¢- z8°c- 67 °c- 19°¢- NeN €81 760 €T e 2IP-110-HDD
€L FLE- F6°G- 0F'c- R €8°T- NEN 88°0 9T'T 06'T- 20p-q-FDD
LTG- 87°g- 18- €y L- FEo- 76°0- 88°0- NEN 10°0- G6°0- 20p-1S-HDD
067~ 1677~ 6¢°L- 26'9- 98°F- €CT- 91'1- 100 NEN Va1 29p-1-HDD
29 £9°¢- 18°¢- L2C- 09°¢- @ 06°1 56°0 Vo'l NEN 20p-U-HOD

20P-HO-HOON  99P-WG-HOON  29P-1S-HOON  99P4-HOON  99P-U-HOON  99P-YHO-[DDH 20p-Wq-FDD 99p-s-HOD  29p-+-HOD  29p-U-HDOD - m.v_o_ﬂ -

QINJONI)S dUWIRS OYY) Seyf d9[qe) SIY], 'SUInjel 10)0e] TINH JO S[epouw Sul)sessalo] JUSIaPIp Uo) I0J ‘0Z0¢ ‘0 U2IRIN 09 ‘G00Z ‘1T YoIe]N wolj pouad ojduwes
-J0-1N0 A} I9A0 ‘[LT0g] I[SSI WO} UOTPOUN] SSOT o) SUIST ‘S9ss0] afe1oae o) Surredwrod $1s9) OURLIRIN-PIOQI(J TWIOIJ SOTISTIR)S-) squasaxd a[qey STy,

SO119UN 0o pado[PAdD ITM $)89) OURLIRIN-PIOYRI(] TINH — 9T 9[deL

22



NEN 8'9 86'9 00°L 972 9 ar9 80°9 29 g 20p-T30-HDON
cg'9- NEN 86'9 10°2 09°2 a9 ar9 80°9 119 aro 20p-wq-HOOHN
86'9- 86'9- NEN 18°9- 96°9- eLe aLe Le aLg aLs 20P-IS-HOON
00°L- 10°L- 18°9 NeEN 869~ 18°¢ 08°C 6L°C 8¢ 18°¢ 20p-3-HOON
9L 09°L- 96'9 869 NEN 19 19 209 019 19 29p-U-HOON
ary- ary- aLe- 18°¢- 11°9- NeN 89°1- LTT 9y €6°0- 2IP-110-HDD
ary- ary- Le 08°¢- 9 89T NEN ST'T i 12C 20p-q-FDD
80°9- 80°9- Le- 6LC- 209- LTT- ST'T- NEN 6€°0- LTT- 20p-1S-HDD
ary- 19- R 8¢ 01°9- 9y 1- LvT- 6€°0 NEN - 29p-1-HDD
ary- ary- LG 18°¢- 19- 56°0 12z LTT G NEN 20p-U-HOD
20P-HO-HOON  99P-WG-HOON  29P-1S-HOON  99P4-HOON  99P-U-HOON  99P-YHO-[DDH 20p-Wq-FDD 99p-s-HOD  29p-+-HOD  29p-U-HDOD - m.v_o_ﬂ -

QINYONI)S dUTes 91} SBY S[qe) SIY], 'SUIngal 10308} NOIN JO S[ePoUW SUr)sesal1o] JUaIsfIp U9} 10§ ‘0502 ‘0 U2IBIN 0% ‘00g ‘1T yode]y woly pottod ojduwes
-J0-1N0 A} I9A0 ‘[LT0g] I[SSI WO} UOTPOUN] SSOT o) SUIST ‘S9ss0] afe1oae o) Surredwrod $1s9) OURLIRIN-PIOQI(J TWIOIJ SOTISTIR)S-) squasaxd a[qey STy,

ser1yunod pado[easp YHM $189) OURLIRIN-P[OGRI( NOIN — AT 2I9eL

33



NEN 90 €0°T- 9z'T- 88°0- 98°C 187 86T 187 987 20p-T30-HDON
P70 NEN 0'T- 8¢'T- e 18T 8T o€ 98°C 98°C 20p-wq-HOOHN
€01 0’1 NEN 90°z- 70'T e 69°C L€ 18°€ LT 20P-IS-HOON
9z'T 8T’ 907 NeEN LT1 LT 0L°T LLE 06°€¢ LT 20p-3-HOON
88°0 Ve F0°T- 1TT- NEN 68°C €8°C 60°€ €6°C 68°C 29p-U-HOON
98- 18- L 10C 68°C- NEN 160" 01°0 200~ 91°0 2IP-110-HDD
182 8t 69°2- 0Lz €87 180 NEN €10 €0°0- 190 20p-q-FDD
862 20°¢- 9L°¢- 106 60°¢- 01°0- €ro- NEN 06°0- 01°0- 20p-1S-HDD
182 98°¢- 18°€- 06°¢- €6°C- 200 €0°0 0670 NEN 200 29p-1-HDD
98- 98°¢- oL 9Lt 68°C- 91°0- L9°0- 01°0 200" NEN 20p-U-HOD
20P-HO-HOON  99P-WG-HOON  29P-1S-HOON  99P4-HOON  99P-U-HOON  99P-YHO-[DDH 20p-Wq-FDD 99p-s-HOD  29p-+-HOD  29p-U-HDOD - m.v_o_ﬂ -

QINJONI)S dUIeS JY) SY 9[qe) SIYJ, 'SUINIdI I090.] TYA JO S[pOW SUIISBILIO] JULISHIP U0} 10} ‘0Z0¢ ‘0% U2TBIN OF ‘G00g ‘TT Uode]y wolj poutad ojdues
-J0-1N0 A} I9A0 ‘[LT0g] I[SSI WO} UOTPOUN] SSOT o) SUIST ‘S9ss0] afe1oae o) Surredwrod $1s9) OURLIRIN-PIOQI(J TWIOIJ SOTISTIR)S-) squasaxd a[qey STy,

so1Ijunod pado[eAsp YIIM $)$9) OURLIBIA-PIOGRI(] TVA — 8T 9Iqel,

o4



Appendix D: Diebold-Mariano tests of

developing countries

We display the Diebold-Mariano tests for developing countries. The results for the four
factors are shown separately. The DOL factor is shown first. We then report the Diebold-
Mariano tests for the HML factor. Finally, we report the results for MOM and VAL factorsa

in the last two tables.
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