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Abstract

This paper proposes a variational Bayes algorithm for computationally efficient
posterior and predictive inference in time-varying parameter (TVP) models. Within
this context we specify a new dynamic variable/model selection strategy for TVP
dynamic regression models in the presence of a large number of predictors. This
strategy allows for assessing in individual time periods which predictors are relevant
(or not) for forecasting the dependent variable. The new algorithm is evaluated
numerically using synthetic data and its computational advantages are established.
Using macroeconomic data for the US we find that regression models that combine
time-varying parameters with the information in many predictors have the potential to
improve forecasts of price inflation over a number of alternative forecasting models.
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1 Introduction

Regression models that incorporate stochastic variation in parameters have been used by
economists at least since the work Cooley and Prescott (1976). Thirty years later, Granger
(2008) argued that time-varying parameter models might become the norm in econometric
inference since, as he illustrated via White’s theorem, time variation is able to approximate
generic forms of nonlinearity in parameters. Indeed, initiated by the unprecedented shocks
observed during and after the Global Recession of 2007-9, a large recent literature has
established the importance of modeling time variation in the intercept, slopes and variance
of regressions for forecasting economic time series; see Stock and Watson (2007) for a
representative example of a model using only a stochastic intercept and volatilities. At the
same time, the stylized fact that economic predictors are short-lived — that is, relevant for
the dependent variable only in short periods' — has emerged in various forecasting problems
such as inflation (Koop and Korobilis, 2012), stock returns (Dangl and Halling, 2012) and
exchange rates (Byrne et al., 2018). Following these observations, there is no shortage of
recent econometric work on methods for penalized estimation of time-varying parameter
models via classical or Bayesian shrinkage, as well as variable selection methods; see for
example Belmonte et al. (2014), Bitto and Frithwirth-Schnatter (2019), Kalli and Griffin
(2014), Callot and Kristensen (2014), Korobilis (2019), Kowal et al. (2019), Nakajima and
West (2013), Rockova and McAlinn (2017), Uribe and Lopes (2017) and Yousuf and Ng
(2019).

In this paper we add to this literature by proposing a new dynamic variable selection
prior and a novel, for the field of economics, Bayesian estimation methodology. In particular,
we propose to use variational Bayes (VB) inference to estimate time-varying parameter
regressions using state-space methods. Variational inference has long been used in data
science problems such as large-scale document analysis, computational neuroscience, and
computer vision (Blei et al., 2017). Nevertheless, it is only relatively recently that posterior
consistency and other theoretical properties of these methods have been explored by
mainstream statisticians (Wang and Blei, 2019). Variational inference is a unified estimation
methodology which shares similarities with the Gibbs sampler that many economists
traditionally use to estimate time-varying parameter models (see for example Stock and
Watson, 2007). Like the Gibbs sampler, parameter updates are derived for one parameter
at a time conditional on all other parameters using an iterative scheme. Unlike the Gibbs

sampler, there is no repeated sampling involved and the output of VB is typically the first

1An alternative terminology for such periods, which is due to Farmer et al. (2018), is “pockets of
predictability”.



two moments of the posterior distribution of parameters. Our first task is to introduce this
estimation scheme in the context of TVP regressions, and contrast it to existing estimation
algorithms used in economics for capturing structural change.

Our second contribution lies on the development of a dynamic variable selection prior that
is a conceptually straightforward extension of the static variable selection prior of George
and McCulloch (1993). The dynamic extension of this prior allows to tackle the non-trivial
econometric problem of allowing some predictor variables to enter the TVP regression, model
only in some periods of the full estimation sample. With p predictors and T time periods,
dynamic variable selection involves choosing the “best” among 2P models at each point in
time ¢, for t = 1,...,T. Such procedure is in line with strong, recent empirical evidence that
different factors might be driving predictability of economic variables over time; see Rossi
(2013) for a thorough review of this idea. By specifying our new prior within a variational
Bayes framework, we are able to derive an algorithm that is numerically stable and can be
extended to much larger p and T than was possible before.?

We show, via a Monte Carlo exercise and an empirical application, that our proposed
algorithm works well in high-dimensional, sparse, time-varying parameter settings. Using
artificial data we establish that the new algorithm is precise in estimation and in dynamic
variable selection, even in settings with more predictors than time-series observations. In a
forecasting exercise of various measures of price inflation, we illustrate that our methodology
applied to a time-varying parameter regression with 400+ predictors is able to beat a wide
range of linear and nonlinear forecasting regressions. The empirical results provide strong
evidence that the new algorithm can achieve estimation accuracy comparable to Markov
chain Monte Carlo algorithms, while being much faster to run. The additional feature
of dynamic variable selection successfully prevents overparametrization, since our high-
dimensional TVP specification is able to beat both parsimonious time series models with
no predictors as well as factor models and penalized likelihood estimators.

The remainder of the paper proceeds as follows. Section 2 introduces the basic principles
of VB inference for approximating intractable posteriors, and applies these principles to
the problem of estimating a simplified time-varying parameter regression model. Section
3 introduces the the novel modelling assumptions, namely dynamic variable selection and
stochastic volatility, and derives an estimation algorithm within the VB framework. Section
4 assesses the new algorithm on simulated data. In Section 5 we apply the new methodology
to the problem of forecasting US inflation using time-varying parameter regressions with

many predictors.

2In particular, many of the algorithms cited above, such as Koop and Korobilis (2012), Kalli and Griffin
(2014), or Nakajima and West (2013), are unable to scale up to regressions with hundreds of predictors.



2 Variational Bayes inference in state-space models

as variational Bayes (VB) is not an established estimation methodology in econometrics,
we first provide a generic discussion of VB methods in approximating intractable posterior
distributions. We then apply the generic concepts and formulas to the specific problem of
estimating a simplified time-varying parameter regression model with known measurement
error variance.® Detailed reviews of variational Bayes can be found in Blei et al. (2017) and
Ormerod and Wand (2010), among several others. Variational Bayes estimation of state-
space models is described in detail in the monograph of Smidl and Quinn (2006), as well as
research papers such as Beal and Ghahramani (2003), Tran et al. (2017), and Wang et al.
(2016).

2.1 Basics of variational Bayes

Consider data y, latent variables s and (latent) parameters 6. Our interest lies in time-varying
parameter models that admit a state-space form. Hence, s represents unobserved state
variables, such as time-varying regression coefficients and time-varying measurement error
variances, and # represents all other parameters, such as the error covariances in the state
equation. The joint posterior of interest is p (s, 8]y) with associated marginal likelihood p (y)
and joint density of data and parameters p (y, s,0). When the joint posterior is complex and
computationally intractable, we can define an approximating density ¢ (s, 0|y) that belongs
to a family & of simpler distributions defined over the parameter space spanned by s, 6.
The main idea behind variational Bayes inference is to make this approximating posterior
distribution ¢ (s, 0|y) as close as possible to p (s, f]y), where “distance” is measured with the

Kullback-Leibler divergence?

KL(allp) = [ a(s.0) 1og{]%}dsde. 0

That is, the aim is to find the optimal ¢* (s, 0]y) that solves

q" (s,0]y) = argmin K'L (q||p) - (2)

q(s,0ly)EF

Insight for why K L (¢||p) is a desirable distance metric arises from a simple re-arrangement

involving the log of the marginal likelihood (Ormerod and Wand, 2010, page 142) where it

3Readers already familiar with these concepts can skim through this section, and focus on our novel
methodology that is described in the following section
4For notational simplicity we henceforth abbreviate multiple integrals using a single integration symbol.



can be shown that

logp(y) = logp(y)/p(Sﬁly) dsdf = /p(Sﬂly) logp (y) dsdf (3)

_ . o p(y,s,0) /a(s,0ly) .
L ’9"””g{p<s,9|y>/q<s,e|y>}dd‘) (4)

= [ats.o o {%} dsdf + KL (qllp) (5)

Because K L (q||p) is non-negative (it is exactly zero when ¢ (s,0|y) = p (s, 0|y)), the quantity

p(y,s,0)
Q(579|y)

% (4(s,0ly)) = exp { [ats.0m) 1og{ }dsda} = exp [Eq(ep1y) (108 (0 (1,5 6)) — log (a (5, 619)))]
(6)
becomes a lower bound for the marginal likelihood p(y).° The function € (¢(s, f|y)) is known
as the Evidence Lower Bound (ELBO). Therefore, instead of minimizing the objective
function KL (g||p) (which cannot be evaluated) we can find an approximating density
q* (s,0]y) that maximizes the marginal data density p(y) by maximizing the ELBO. We
emphasize that € is a functional on the distribution ¢(s, 0|y). As a result, the ELBO can be
maximized iteratively using calculus of variations.
If we assume for simplicity the so-called (in Physics) mean field factorization of the form
q(s,0ly) = q(0ly) q(s|y), it can be shown® that the optimal choices for ¢ (sly) and ¢ (6|y)

d(sly) o exp [ / q<e\y>logp<s|y,e>de] = oxp [Egon (logp (sl )], (1)

1(6ly) o exp [ / q<s|y>1ogp<e|y,s>ds] = oxp By (logp @l s)] . (8)

The first expression denotes the expectation over ¢(6|y) of the conditional posterior for s,
and the second expression denotes the expectation over ¢(s|y) of the conditional posterior
for 0. Because ¢(f]y) is a function of ¢(s|y), and vice-versa, the above quantities can be
approximated iteratively instead of relying on more computationally expensive numerical
optimization techniques. Given an initial guess regarding the values of (6, s), VB algorithms
iterate over these two quantities until € (¢(s,6|y)) has reached a maximum. Due to
similarities with the Expectation-Maximization (EM) algorithm of Dempster et al. (1977),
this iterative procedure in its general form is sometimes referred to as the Variational
Bayesian EM (VB-EM) algorithm; see Beal and Ghahramani (2003). It is also worth noting

°In the following we denote as Ey(,) the expectation w.r.t to a function g(e).
6A formal and thorough derivation of these ideas is given in the excellent monograph of Smidl and Quinn
(2006); see Theorem 3.1 and subsequent results.



the relationship with Gibbs sampling. Like Gibbs sampling, equations (7) and (8) involve the
full conditional posterior distributions. But unlike Gibbs sampling, the VB-EM algorithm

does not repeatedly simulate from them and is computationally much faster.

2.2 VB estimation of a simple TVP regression model

Before collecting all building blocks of our proposed methodology, we outline a VB algorithm
for the univariate TVP regression with known measurement error variance ¢. This simplified

model is of the form

Y = X+ e (9)
By = Biatmy (10)

where y; is the time ¢ scalar value of the dependent variable, t = 1,.., T, x; is a 1 X p vector
of exogenous predictors and lagged dependent variables, e, ~ N (0,02), 5, ~ N (0, W) with
W, = diag (w4, ...,w,;) a p X p diagonal matrix’ and w; = [wy, ..., w,,]" a p x 1 vector. In
likelihood-based analysis of state-space models it simplifies inference if it is assumed that ¢;
and 7, are independent of one another and we do adopt this assumption here. Finally, we
use a notational convention where j,¢ subscripts denote the j* element of a time varying
state variable, or parameter, observed only at time ¢, while 1 : ¢ subscripts denote all the
observations of a state variable from period 1 up to period t.

The model in equations (9) and (10) has unknown parameters (3.7, wi.r). Following
the analysis of the previous subsection we first consider the independent prior on the initial

conditions B, wy of the form

p
p(w;o) = N(myg, Py) % H [Gamma(cjo,d;o)] 1, (11)
J=1 j=1

:wx

(/807 wO

where w; o is the j™ element of wy, and Gamma(a, b) denotes the Gamma distribution with
shape parameter a and rate parameter b, that is, the definition of the Gamma distribution

that has mean a/b and variance a/b*. The time ¢ prior, conditional on observing information

"By restricting W not to be a full covariance matrix, coefficients 3;; and Bj¢ are uncorrelated a-posteriori
for ¢ # j, which might not seem like an empirically relevant assumption. However, allowing for cross-
correlation in the state vector 8, can result in counterproductive increases in estimation uncertainty, with
this problem being significantly more pronounced in higher dimensions. A diagonal W, allows for a more
parsimonious econometric specification, less cumbersome derivations of posterior distributions, and faster
and numerically stable computation; see also Belmonte et al. (2014), Bitto and Frithwirth-Schnatter (2019)
and Rockova and McAlinn (2017) who adopt a similar assumption.



up to time t — 1, is given by the Chapman-Kolmogorov equation

p(By, wily 1) = f%,Wp(/Bt|/8t—1) ?:1p(wj7t|wj,t—l)

(12)
X p(ﬁt—p’wt—l|yt—1)d5t_1dw1,t—1-.-dwp,t—17

where @B is the support of 3, and W the support of all w;,. Finally, once the measurement

y; is observed, we obtain from Bayes theorem the following time ¢ posterior distribution

P(By wilyy.4) < p(ye| By, wi)p(By, el Yy.y—1)- (13)

This Bayesian joint posterior distribution is rarely analytically tractable, even if conjugate
prior densities have been specified. However, posterior conditionals can be tractable,
and this is why in macroeconomics TVP models are predominantly estimated using the
Gibbs sampler; see Stock and Watson (2007) for an example. Nevertheless, sampling
repeatedly using (Markov chain) Monte Carlo methods is computationally prohibitive in
high-dimensional settings or in settings with more flexible likelihood and prior distributions.
For that reason we define a tractable variational density as an approximation to the exact
intractable time ¢ posterior, that is, we define p (3, wi|y,,) ~ ¢ (B, wi|y,,). Among all
possible functions ¢ (3,, w;|y,,) we want to obtain the one that has hyperparameters that
minimize the relative entropy with the true posterior. Following the discussion earlier in this
section, this problem is equivalent to maximizing the evidence lower bound (ELBO) of the
log-marginal likelihood, that is, it is the solution to

) Q(Bt7wt|y1:t)
q" (B, wi|y,4) = argmax /qﬂawy: 10g< ‘ H
( ! t| 1t) q(Bywi|yq..) ( ! t‘ lt) p(ﬁt’wt|y11t) ( )

This maximization problem is simplified once we assume the mean field factorization of

the form ¢ (B,, wi|y,.+) = ¢ (By1.) [[ ¢ (wj+|yy.,) so we can optimize B, and w; sequentially.
As a result, using variational calculus (Smidl and Quinn, 2006) we can show that the ELBO

is maximized by iterating through the following recursions

¢ (Bilyrs) o< exp (/logp(yt,ﬂt,wﬁyl:t_l)HQ(wj,tlylzt) dwt>, (15)

J

q (wjelyy,) o< exp (/logp(yt,ﬂt,wtlylzt_l)Q(Bt|y1:t)dﬂt>,j=1,~-,p- (16)

Both formulas above become equalities after the addition of a normalizing constant. The

first expression is an expectation with respect to the probability density [ ] ;4 (wj,t\ylzt,l),



that is, we can write equation (15) using the following form

q (ﬁt'yl:t) X exp (Eq(wt\ylzt) (10gp (yt> Bta wt’ylztfl))) (17)
= €xp (Eq(wt‘yl;t) (10g [p (el By, wy) p (ﬁt’ylzt—l) p (wt|y1:t—1)])) (18)
= p(ylBy, wy) exp (Eq(wt|y1:t) (Ing (/6t|/6t—1) +log g (ﬁt‘ylzt—l))) (19)

where ¢ (B,|y1.4—1) is the time t prior of (B3, obtained from the time ¢ — 1 posterior
q (B;_1|Y14_1) using the Kalman filter recursions, and the term p (wi|yy,_,) in (18)
disappears because the expectation is w.r.t the variational posterior of w;. This latter
representation of ¢ (3,|y,.;) can be trivially updated by a Normal distribution, with moments
given by the Kalman filter and smoother; see Smidl and Quinn (2006, Chapter 7) for
detailed derivations. We can use similar arguments in order to show that equation (16)
is an expectation that leads to a ¢ (w; '|y,,) of the form G (c;y,d;;) (or equivalently to

q (w¢|y,.,) that is inverse Gamma).

Algorithm 1 Variational Bayes algorithm for TV P regression model with fized measurement
variance

1: Choose values of hyperparameters mq, P, ¢j,0,dj0 for j =1,...,p. Set + =1 and initialize w1,

2: while ||% (q(ﬁ(”),w(")|y> - € <q(ﬁ(”_1),w(”_1)\y) || = 0 do

3: Step 1: Approximate, V t = 1, ..., T, the posterior

4" (B¢lyr.r) ~ N (mi, Py)

conditional on W(”*l),g2, where m}, P} Vt=1,..,T, are obtained using the Kalman filter and the Rauch-Tung-Striebel
smoother

4: Step 2: Approximate, Vt=1,...,7 and j = 1, ..., p, the posterior
-1
q (wj’t |y1:T> ~ G (& dyy)

conditional on py, P}, where ey = cjo+1/2, d;f’t =djo+Djj /2 with Dy = (P{ - P{,l) + (mgr)mgr)/ _ mgﬁlmgr_){)
Set W) = diag (df /¢ ;. i /5, )
r=v+1
. end while
: Upon convergence set ¢* (Bi.p,wi.rly.r) = ¢ Brrlyir) X H?:l q" (wj¢|yy.r) wusing the parameters
(mf.7, Pi.r, ¢l 1.7> 91, 1.7) Obtained during the last iteration of the while loop.

Algorithm 1 provides pseudocode for the basic VB estimation problem described in
this section, without assuming either a (dynamic) variable selection prior or stochastic
volatility in the measurement equation. In the following section we drop these two unrealistic

assumptions.



3 Variational Bayes Inference in High-Dimensional
TVP Regressions

We rewrite for convenience the univariate time-varying parameter model

Yy = XB+ e (20)
B, = Bit+my (21)

where we define now &; ~ N(0,0?) with o7 a stochastic (time-varying) variance parameter,

and we assume that the dimension p of 8, = (P14, ..., prt)/ is large and possibly p > T

3.1 Dynamic variable selection and averaging

The core ingredient of our modeling approach is a dynamic variable/model selection strategy.
We specify a dynamic variable selection (DVS) prior that extends the “static” variable
selection prior of George and McCulloch (1993) that was originally developed for the constant

parameter regression using MCMC and is of the form

Bj,t Vits Tj%t ~ (]- - r)/j,t) N (072 X Tj2,t> + ’Yj,tN (07 7-j2,t) ) (22)
YVielme ~ Bernoulli(m,), (23)
1
— ~ Gamma(go, ho) (24)
Tj’t
7o+ ~ DBeta(l,1), (25)
for j = 1,...,p, where ¢, g9 and hy are fixed prior hyperparameters. Variable selection

principles require us to set ¢ — 0, such that the first component in the prior for 3;, shrinks the
posterior towards zero, while the second component has variance Tj%t which is “large enough”
in order to allow for unrestricted estimation. The choice between the two components in the
prior for 3; is governed by the random variable v;; which is distributed Bernoulli and takes
values either zero or one. If ,, = 1 the prior for 3;; has a Normal prior with zero mean and

variance 72

+1» while if 75, = 0 the prior variance becomes gTﬁt.

Early papers such as George and McCulloch (1993) give very broad guidelines on choosing
values for ¢ and Tj%t such that the first component in equation (22) has small enough
variance (to force shrinkage) and the second component has large enough variance (to allow
unrestricted estimation). More recently, Narisetty and He (2014) show that selecting and
fixing the prior variances of such mixture priors could, as 7" and p grow, lead to model

selection inconsistency. The authors suggest to specify these parameters to be certain



deterministic functions of the data dimensions 7" and p. In our case, we do fix ¢ = 10~*
such that the first component has always smaller variance, but we assume (Tj%t)_l is a
random variable that has a Gamma prior. That way this parameter is always updated by
the information in the data likelihood. The choice of a Gamma prior for (Tj%t)_l implies
that the marginal prior for 3;; is a mixture of leptokurtic Student’s T distributions whose
components could tend to shrink f;, towards zero, regardless of whether v;; is zero or
one. Therefore, the proposed prior is able to find patterns of dynamic sparsity as well as
impose dynamic shrinkage in time-varying parameters, a property that is very desirable in
high-dimensional settings.®

Finally, it becomes apparent that under this variable selection prior setting, 7o, =
E (p(moy)) = % is the time ¢ prior mean probability of inclusion of all predictors in the
TVP regression, while the quantity 7;; = E (p (v;:|y1.7)) is the posterior mean probability
of inclusion in the regression of predictor j at time period ¢, simply referred to as the posterior
inclusion probability (PIP). Due to the fact that all of the hyperparameters v, 7 and 72 are
time-varying, our prior allows to obtain time-varying PIPs whose interpretation extends this
of PIPs in constant parameter settings, such as the one in George and McCulloch (1993), in
a straightforward way.

In terms of tackling estimation using this prior we note that adding the prior (22) to our
benchmark TVP specification introduces some peculiarity: by combining equations (10) and

(22) we end up having two conditional prior structures for f;;, namely

BitlBje—1,wjie ~ N (Bjt—1,w;jt) (26)
Bit ’Yj,t,TjZ,t ~ N<Oavj,t)7 (27)

where we define v, = (1 — ;)% cx 72 +75,77, and V, is the p x p diagonal matrix comprising

the elements v;;. Following ideas in Wang et al. (2016) we combine the two priors for 3

described above by rewriting the state equation as’

/315 = INFtBtfl + ﬁt? (28)

8In signal processing a signal (regression coefficient vector) is typically sparse by default, that is, the
researcher knows a-priori to expect that estimates of several coefficients will tend to be exactly zero. In
economics, the sparsity assumption might not be empirically founded in certain settings; see the discussion
in Giannone et al. (2017). In such cases, a dense model may be preferred, that is, a model where all predictors
are relevant with varying weights. While factor models and principal components have been used widely to
model dense models in macroeconomics, shrinkage methods are also quite reliable for this task. In particular,
we note the result in De Mol et al. (2008) that forecasts from Bayesian shrinkage are highly correlated to
forecasts from principal components.

9The derivation is straightforward using arguments in the previous subsection, see equation (19). Define




where 1, ~ N <0 Wt> with parameter matrices W, = (E (W)™ +E(Vt)71)_l and
= W, x E(W,)™", where W, = diag (w1, oy Wpy) and Vi = diag (v, ..., vpy), and all
expectatlon operators are with respect to g (3,|y;.,). Under this formulation we can observe
that the joint prior variance for 3, is a function of both w;; and v;¢, Vj = 1, ..., p. Therefore,
the TVP regression model with dynamic variable selection prior can be written using a new
state-space form, with measurement equation given by (9) and state equation given by (28).
Application of algorithm 1 to the transformed state-space model consisting of equations
(20) and (28) provides as output estimates myp Vi, that is, the smoothed posterior
mean of ¢ (B,|y1.r). Conditional on these estimates, derivation of the update steps for
Vits Tﬁt and my; relies also on deriving the expectations of these variables with respect
to q(B,|y1.r). Therefore, extending the analysis of the previous section to accommodate
these new parameters, and similar to derivations found in Gibbs sampling approaches to
variable selection (see, for instance, the formulas of the conditional posteriors in George and
McCulloch, 1993), the updating steps for the parameters in the dynamic variable selection

prior are the following

T =Ela(Filw)] = (ho+mjyr)/(90+1/2), (29)
N(m]t|T|Oa jt) To,t
N (mJt\T|0> Jt) Toe + N (mygrpel0, ¢ x 72,) (1 — Toy)’

Ve = Elq (viey)] = (1 - ’Yj,t) ¢ ]t + AT, ]t? (31)

Tos = Elq (mo.lpn)] = (1 + Z %s) /(2+Dp), (32)

Ve = Elg (7)) (30)

for each t = 1,..,7T and j = 1,...,p, where again expectations E are with respect to the
VB posteriors of each of the parameters showing up on the right-hand side of the equations

above.

q (Bt|y1:t—1) to be the time ¢ variational Bayes prior of 5; given information at time ¢ — 1. Then we have
q (ﬁt|y1:t—1) X €exp {E (logp (lgt|/3t—1a Wf)) +E (logp (Bt|vf))}

1 o
X exp{—2 (:Gt By 1) (/8 By 1) ﬂtvt 1/675}
x exp { BB+ BB, - ;ﬁ;V;lﬂt}
x|y (B~ Fup ) W, (- Fib) |

where the simplification occurs due to the fact that B,_; is known and fixed (i.e. not a random variable)
given information at time ¢ — 1. Therefore, the formula above specifies the new, joint time ¢ prior of 3, given
the two priors in equations (26)-(27).

10



3.2 Adding stochastic volatility

A known regression variance is far from a realistic assumption for most datasets. When
forecasting macroeconomic data, so is the assumption of an unknown variance that is
constant over time. A vast recent literature highlights the importance of time-varying
volatility in improving point and density forecasts (Clark and Ravazzolo, 2015), and the
purpose of this subsection is to accommodate estimation of the parameter var(e;) = o in
the VB setting. Several elegant algorithms for VB inference in stochastic volatility models
exist in the literature. For example, Naesseth et al. (2017) introduce a variational Bayes
Sequential Monte Carlo (SMC) algorithm for stochastic volatility models. Tran et al. (2017)
propose a variational Bayes method for intractable likelihoods that does not rely on the mean
field approximation, and apply their algorithm to the estimation of a stochastic volatility
model.

Nevertheless, such algorithms assume an explicit time-series model for the stochastic
volatility parameter, an assumption that is only useful in a setting where one is interested
in forecasting volatility. In a macroeoconomic setting we are interested in forecasting y; and
not its volatility (as it would be the case in empirical asset pricing). At the same time,
previous empirical work shows that there are no statistically important differences when
forecasting with alternative specifications of macroeconomic volatility.! For that reason,
our aim here is not only to render estimation of stochastic volatility precise, but at the same
time numerically reliable and computationally efficient. In order to achieve this, we build
on variance discounting ideas for dynamic linear methods as described in West and Harrison
(1997); see also Rockovéa and McAlinn (2017).

Define ¢, = Ui? to be the precision (inverse variance). Following West and Harrison (1997)

we assume that the time ¢ — 1 posterior of ¢ has the following conjugate form
Gr—1|y1:4—1 ~ Gamma (a;—1,b,_1) . (33)

We do not specify an explicit time series model for the dynamics of ¢ (e.g. stochastic
volatility or GARCH) because the posterior for ¢; wouldn’t be conjugate to the likelihood
and we would fail to obtain fast updates. In order to maintain this conjugacy we specify

instead the time ¢ prior of the form

Gely1:e—1 ~ Gamma (da;_1,0b;_1), (34)

0For example, Clark and Ravazzolo (2015) compare a range of specifications for time-varying variance
parameters in univariate and multivariate autoregressive models, and any differences among such
specifications are not statistically important (while all volatility specifications are always better relative
to constant variance specifications).

11



for a variance discounting factor 0 < § < 1, subject to a choice of hyperparameters ag and
by. By doing so, we assume that ¢, is centered around ¢, ; as if this parameter had random
walk dynamics,'! since it holds that E (¢¢|y1:—1) = E(¢¢_1|y1c_1). However, based on the
properties of the Gamma distribution, the dispersion of ¢, is larger to that of ¢;_;.

Under this scheme the variational Bayes update of ¢, that is, its time ¢ posterior mean

has the form
P = Eq(ﬂtlyLT) (¢t|y1:t) = at/bta (36)

where a; = 1/2 + da;—1 and d; = % [(yt — fctmt\T))Q + x Pyrxy| + 6bi—1, where myp, Pyp
are the smoothed mean and variance of 5;. Using this scheme, past information in the data is
discounted exponentially by the factor §. The scalar § can be seen as a prior hyperparameter
whose choice determines how much relative weight we give to recent versus older observations,
that is, it determines how fast we expect the precision parameter to change over time. For
d = 1 we obtain the posterior under a standard recursive update scheme (similar to recursive
OLS), while typical values that would allow for faster time-variation in the precision/variance
would be between 0.8 and 0.99. Values lower than 0.8 are not empirically advised, since they
allow for a large amount of time-variation and stochastic variance estimates become very
noisy. In the empirical exercise we set 6 = 0.8, a choice that reflects our prior expectation
that macroeconomic data have many abrupt breaks in their second moments and excess
kurtosis during recessions (implying variances that can move very fast over time).

The previous formulas pertain to the iterative updating of ¢; given ¢, ;. Estimates of
¢; can be smoothed using subsequent observations ¢t + 1, ..., T". Following West and Harrison

(1997) we can run a backward recursive filter of the form

%t =(1- 5)$t + 6$t+1> (37)

fort=T—1,...,1, where & = EqBulyrr) (0]Ye41) and aT = ggT. Once we obtain this update
for the precision ¢;, a posterior mean estimate of the volatility o2 can be obtained simply as

the inverse of &Jt.

"Even though we haven’t specified an explicit time series evolution for ¢;, by using results in Uhlig (1994)
we can show that the proposed variance discounting methodology is equivalent to assuming the following
specification:

bt = Y1ht-1/9, (35)
for a parameter y;|y1.4—1 ~ Beta (da;—1/2,(1 — d)ai—1/2).
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3.3 The Variational Bayes Dynamic Variable Selection (VBDVS)

algorithm

Here we provide details of the exact parameter updates that result from VB inference in
our proposed specification. Algorithm 2 outlines our proposed Variational Bayes Dynamic
Variable Selection (henceforth, VBDVS) algorithm. This Algorithm shows an accurate
picture of how this would look like when programmed using a language like MATLAB or
R: while there are many parameters involved in our specification, the code is short and it
involves simple scalar operations (meaning it is very fast). The only cumbersome operation
is the inversion of the p X p matrix Py, in line 14 which has worst case complexity
6 (p?) for each t. There are four main blocks in this algorithm. Lines 4-12 are a result
of straightforward application of the Kalman filter on the state-space model of equations
(20) and (28), and lines 13-17 show the backwards (smoothing) recursions. Lines 18-27
update the prior hyperparameters of the DVS prior for 8,. Finally, lines 28-33 provide

updates for the stochastic volatility parameter, as discussed in the previous subsection.

4 Simulation study

In this section we evaluate the performance of the new estimator using artificial data.
Although we view the algorithm as primarily a forecasting algorithm, it is also important to
investigate its estimation accuracy in an environment where we know the true data generating
process (DGP). Thus, we wish to to establish that the VBDVS is able to track time-varying
parameters satisfactorily and establish that the dynamic variable selection prior is able
to perform shrinkage and selection with high accuracy (at least in cases where we know
that the DGP is that of a sparse TVP regression model). We also wish to investigate the
computational gains that arise from application of variational Bayes methods on the complex
dynamic variable selection prior structure.

In all our experiments we use the following DGP:

38
39
40
41
42
43

y = Buri + Paure + ... + Bpuxp + orer, €0 ~ N(0,1)
zj; ~ N(0,1), j=1,..,p

Bie = i X by

00 = 0,4 p(0j—1—0,) + s, mjx ~ N(0,1)
log (07) = o+ ¢ (log(o71) — ) + &G, ¢~ N(0,1)

00 = Qj7 log (03) =0’

(38)
(39)
(40)
(41)
(42)
(43)
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Algorithm 2 Variational Bayes algorithm for TVP regression model with dynamic variable

selection and stochastic variance (VBDVS algorithm)

1: Choose values of mq, Pg, ag, bo, ¢4,0,d;,0, 90, ho, ¢, and 4; initialize all vectors/matrices.
2:r=1

3: while |6 (4(8¢), wly) — % (4(87, w0 =Dly) || 0 do

10:

11:

12:
13:

14:
15:
16:
17:
18:
19:

20:
21:

22:

23:

24:

25:
26:
27:
28:
29:
30:
31:
32:

33:
34:

fort=1to T do

'\t — r— — v— -1 — v— — r— -1
WE):diag((wlé ( 1)-1—1)1’2 ( 1)) Y eees (ij ( 1>+vp7% ( 1)) )

i‘iv) _ Wﬁ” (WE“”)H

() 2 ()

m =F, ' m

tt—1 t—1|t—1
- = (#) = )
P,E‘t),l =F; ' Py F;y" +W,
+ + + 2 (»—1)\1
KO = PY) al (0PY) ) 457 OV
) _ () () ()
Myt = Mye—1 + K (yt - wtmt\t—l)
() _ () ()
P = (Ip - K! wt) P
end for
forT=T—-1to 1do .
_p@O R () T
C*Pt|t Fy (Pt+1\t)
) _ () (r) (r)
myp =my, +C (mz+1\T - mt+1\z>
) _ p) () ()
PtlT - Pt\t +C (Pt+1|T - Pt+1|t) c’
end for

_ p) (r) () () () Q) =)
D¢ = Py p+my pmy o + (Ptfl\T +mt71|Tmt71\T> <[P —2F; )

2
R: = |:(yt — mtmilr%) —+ il:tpt|T:I:;:|

fort=1to T do
for j =1to pdo

—2 (¢ ” 2
?j,f ") = (g0 +0.5)/ (ho +0.5 (m;t)‘ﬁ )

A0 N(mhrlors, O)we Y
R T ) PR g BTt ) oy
N S00N2 22 () L ()22 ()
Ui = (1 _Wj,t) e Ve Th
~—1
@5, " =(cy+0.5)/(dg+0.5Dj;.)
end for

7ol = (1+ 0, 357) 12+ )
") = (Sa;_1 +0.5)/(8bi_1 + 0.5R;)

end for

for~T:T—1to 1 do _
o7 = (=03 + 50

end for

r=7r4+1

end while

Predicted mean

Predicted variance

Kalman gain

Filtered mean of [,

Filtered variance of (3,

Smoothed mean of 3,

Smoothed variance of 3,

Squared error in state

Squared error in measurement

Posterior mean of

Posterior mean of

Posterior mean of

Posterior mean of

Posterior mean of

Filtered mean of

Smoothed mean of

eq.

eq.
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Our benchmark specification sets 8 = (—1.7,2.9,1.4,-2.3,0), ¢ = 0.1, p = ¢ = 0.99,
0=E£= T-'/2_ In the specification above s;is T' x 1 vector of either zeros or ones, such that
B+ =0+ when s;;, = 1, and zero otherwise. We set s, = 1fort =1,..., |T/3] — 1 and zero
otherwise, so; =1Vt =1,...,T, s3;, = 1 for t =1,...,|T/2] — 1 and zero otherwise, s4; = 0
fort =1,...,[T/2] — 1 and zero otherwise. These choices mean that f;; is zero during the
last third of the sample, S, is a relevant predictor in all periods, 33 is zero during the last
half of the sample, and S, is zero during the first half of the sample. Any other coefficient
for j = 5,...,p is zero at all periods, i.e. s;; =0V j > 4,t=1,...,T. By doing so, we
simulate a situation where only one predictor is relevant in all time periods, three predictors
are relevant only in certain subsamples of the data, and all remaining p — 4 predictors are
irrelevant for y at all time periods.

After we generate artificial data, we compare three competing estimation algorithms for
TVP models: i) our variational Bayes dynamic variable selection (VBDVS) algorithm, ii)
the EM algorithm implementation of the dynamic spike and slab (DSS) of Rockova and
McAlinn (2017), and iii) Gibbs sampling (MCMC) estimation of the TVP model using the
fast algorithm of Chan and Jeliazkov (2009). While there are numerous other algorithms
available for estimating TVP models, our limited choice of algorithms reflects our desire
to simulate exclusively high-dimensional models. By doing so, we exclude most of the
recently proposed Bayesian methodologies cited in the Introduction. These methodologies
introduce various flexible parametrizations (like we do) that result, however, in the need for
many tuning parameters and estimation via MCMC, such that they become unreasonably
cumbersome for p > 50. Our model instead, as we demonstrate in detail later, requires
very straightforward tuning. The default prior setting we use for the VBDVS algorithm
is based on the case Prior 3 presented in Table 2 in the next section. The settings used
in the DSS and MCM algorithms are discussed in the Online Supplement to this paper.
In order to compare numerically these algorithms we generate R = 100 datasets from
the above DGP for various choices of sample size and total number of predictors, namely
T = 100,200, 500 and p = 50, 100, 200. Subsequently squared deviations between true and
estimated parameters are calculated, and then averaged over the T' time periods, and p
predictors. To be precise, if we let (8{"¢) denote the true artificially generated coefficients
and (5t,at) for j = DVS,DSS, MCMC, the estimates of these coefficients, we calculate

the sum of mean squared deviations (MSD) statistic as

MSD% _ %(Txpzz<ﬂtmer ]('r) )7 (44)

t=1 =1

where r =1, ..., 500 denotes the number of Monte Carlo iterations.
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Figure 1: VBDVS coefficient estimates of the first 20 predictors generated from the DGP
with T = 200 and p = 200. Black dashed lines are the true generated coefficients. Posterior
medians (over the 100 Monte Carlo iterations) of VBDVS estimates are shown with green
solid lines, and grey areas denote 16™ and 84" percentiles.
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Time-varying inclusion probabilities
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Figure 2: Time-varying posterior inclusion probabilities (expected value of v, estimates) of
the first 20 predictors generated from the DGP with T' = 200 and p = 200. These probabilities
are means over the 100 Monte Carlo iterations.

Figure 1 shows the coefficient estimates from VBDVS for the case T' = p = 200. This
plot compares the posterior median (green solid lines) versus the true generated coefficients
(black dashed lines). The 16" and 84 percentiles over the 100 Monte Carlo iterations are
also shown as a shaded area around the posterior median. Only the first 20 coefficients, out
of the possible 200, are plotted. The first row shows the four coefficients that, at least in
some periods, are non-zero, followed by 16 coefficients that are exactly zero. It is impossible
to plot the remaining 180 coefficients in the DGP that are exactly zero, but their estimates
are represented fairly well by the estimates of coefficients f5; - [20+ shown in Figure 1.
Under the assumption of sparsity in the DGP, the VBDVS algorithm is able to recover the
true coefficients with accuracy. Not only the coefficients that are zero in the DGP in all
periods are correctly estimated to be zero, but also the three coefficients that are zero only
in certain subsamples are estimated precisely. When a coefficient is initially zero and later
in the sample becomes important (see coefficient 84,), and vice-versa (see coefficients [,

and f33,), the dynamic variable selection algorithm is able to identify and jump quickly to
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the new state. Figure 2 shows that the true reason why estimation is so precise — even
in such a demanding case with 200 time-varying coefficients for only 200 observations — is
because the estimates of the time-varying posterior inclusion probabilities (PIPs) of each
predictor are recovered with precision in the first instance. By identifying correctly which
variables should be excluded from the regression model in each period results in shrinking
many coefficients to zero and allowing to preserve enough degrees of freedom for estimation
of non-zero coefficients.

Table 1 shows the values of the MSD statistics for the three algorithms under the different
combinations of 7" and p. Given that the MSD statistics measure deviation from the true
coefficient, lower values imply that a certain estimation algorithm has done better recovery
of the coefficients generated by the DGP. In all cases VBDVS has the best performance
among all competing algorithms. The estimation error of the MCMC algorithm is quite
large mainly because the algorithm is unable to shrink all p — 4 coefficients in the DGP
that are exactly zero. The DSS algorithm provides a better fit since it is also an algorithm
that does dynamic variable selection and shrinkage. Its performance is slightly inferior to
VBDVS, but the results should not be taken as final evidence. While we have done all effort
to follow the settings suggested by Rockova and McAlinn (2017), there might be other priors
that could improve the performance of this algorithm.

Another important feature of the VBDVS algorithm is its fast computing time. While it
is not surprising that our algorithm is faster compared to MCMC, our algorithm can provide
substantial savings in high-dimensional settings compared to the DSS that relies on the EM
algorithm. Columns 6-8 in Table 1 reveals that VBDVS can be multiple times faster than
both DSS and MCMC algorithms.
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Table 1: MSD statistics and computing time for Monte Carlo exercise

MSD statistic Computing time (secs)

VBDVS DSS MCMC  VBDVS DSS MCMC

p =50 0.203 0.419 7.979 1.2 8.3 22.6

T =100 p=100 0.469 1.014  11.787 72 201 106.6
p = 200 0.536 1.915 14.628 29.9 458 402.0

p =50 0.047 0.256 5.825 5.5 19.9 49.9

T =200 p=100 0.088 0.789  10.583 10.1  40.1 232.2
p =200 0.165 1.780  17.983 386 919 841.4

p =50 0.019 0.147 4.613 8.3 511 125.2

T =500 p=100 0.043 0.819 9.095 50.9 125.1 555.6
p =200 0.085 1.679  18.398 83.6 220.6 2127.8

Notes: Computing times are based on a Windows 10 laptop running MATLAB 2020a, featuring an Intel i7-8665U processor
and 32GB of RAM.

5 Macroeconomic Forecasting with Many Predictors

5.1 A new large dataset for forecasting inflation

Following a large literature on time-varying parameter models in macroeconomics, our
primary target is to forecast quarterly US inflation. While there exists mixed empirical
evidence about the potential of very large datasets to improve forecasts of inflation, our aim
is to demonstrate here that the new dynamic variable selection methodology can successfully
extract, period-by-period, predictive information from a large number of predictors. For
that reason we build a novel, high-dimensional dataset that brings together predictors from
several mainstream aggregate macroeconomic and financial datasets.'?> Our building block
is the FRED-QD dataset of McCracken and Ng (2020), which we augment with portfolio
data used in Jurado et al. (2015), stock market predictors from Welch and Goyal (2007),
survey data from University of Michigan consumer surveys, commodity prices from the World
Bank’s Pink Sheet database, and key macroeconomic indicators from the Federal Reserve
Economic Data for four economies (Canada, Germany, Japan, UK). All data are quarterly,
and span the period 1960Q1-2018Q4. All variables are adjusted from their respective sources

for seasonality (where relevant), and we additionally remove extreme outliers.'3

12\While one could also think of potential predictors in disaggregated panels obtained in surveys, internet,
or documents (text data), such novel sources are typically proprietary and would make our results hard to
replicate.

B3Following Stock and Watson (2016), we replace outliers using the median of the preceding five
observations. An outlier is defined to be any observation that satisfies |y, — m|/igr > k, where m is
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The dataset has in total 444. Out of these we forecast the series (FRED-QD mnemonics
in parentheses): GDP deflator (GDPCTPI), total CPI (CPIAUCSL), core CPI (CPILFESL),
and PCE deflator (PCECTPI). When each of these price series, P, is used as the dependent
variable to be forecasted h-quarters ahead we transform it according to the formula vy, =
(400/h) In (P,p, — P;). We forecast these transformed series one at a time, and the remaining
three price series are included in the list of exogenous predictor variables (443 in total). The
predictor variables are transformed using standard norms in the literature (see for example
McCracken and Ng, 2020): i) levels for variables that are already expressed in rates (e.g.
unemployment, interest); ii) first differences of logarithm for variables measuring population
(e.g. employment), variables expressed in dollars (e.g. GDP), commodity prices, and some
indexes (e.g. Industrial production); and iii) second differences of logarithm for price and
consumption indexes, as well as deflator series. The online supplement describes in detail

all variables and transformations, and provides links to all sources.

5.2 How the dynamic variable selection algorithm works: An in-

sample assessment

Before we set up a comprehensive out-of-sample forecasting exercise, we first assess in-sample
estimates from the VBDVS by doing small sensitivity analysis to various prior choices. This
exercise is intended to demonstrate that the new algorithm provides reasonable estimates
of trends, volatilities and other parameters. Most importantly it serves as a way to clarify
that, despite the fact that our prior is heavily parametrized, prior elicitation in the VBDVS
algorithm becomes a reasonably straightforward task. As it is impossible to present estimates
of the TVP model using all variables in our dataset as predictors, we focus on a small TVP
model where GDP deflator regressed on an intercept, two own lags, and the first five principal
components from the 443 exogenous predictors (eight predictors in total).

Out of all parameters and hyperparameters defined in our algorithm it is only a handful
that are crucial for inference and forecasting, while others can be fixed to reasonable
or uninformative values and possibly have little effect on forecasting. Table 2 lists all
hyperparameters one need to choose in the VBDVS algorithm, and does an explicit separation
into “Important” and “Fixed” hyperparameters. Starting from the latter, ag and by are the
initial scale and rate parameters of the initial condition of the precision parameter in equation
(34). Setting ag = by = 0.01 implies that the precision has prior mean one and variance 10,
which is a reasonable uninformative choice for an inverse variance parameter. Next, we set

0 = 0.8 for reasons explained in subsection 3.2. Given that p is very large to allow us to

the median of y, iqr is the interquantile range, and xk = 4.5.

20



obtain meaningful prior information about the regression coefficients 3, (e.g. using a training
sample), we allow their initial condition 3, to be fairly uninformative by setting my = 0
and Py = 4I,. The parameter ¢ in the dynamic variable selection prior has to be small
(see discussion in subsection 3.1) and how small it exactly is, affects the way the algorithm
selects each of the two Normal components in the spike and slab prior — that is, it affects
the choice between a certain 3;; being restricted or not. We prefer to fix this parameter to
¢ = 0.0001 and allow only Tj%t and its prior to determine the ratio of the prior variances of

the two Normal components in the mixture prior.

Table 2: Hyperparameter choices for sensitivity analysis
Prior 1 Prior 2 Prior 3 Notes

IMPORTANT HYPERPARAMETERS

90 0.01 0.01 1 see eq. (24)
ho 0.01 0.01 12 see eq. (24)
Cjo 100 1 100 see eq. (11)
dio 1 1 1 see eq. (11)
FIXED HYPERPARAMETERS

¢ 10~ 1074 107*  see eq. (22)
ao 0.01 0.01 0.01 see eq. (34)
bo 0.01 0.01 0.01 see eq. (34)
) 0.8 0.8 0.8 see eq. (34)
mjo 0 0 0 see eq. (11)
P 4 4 4 see eq. (11)

The parameters that are important in our high-dimensional setting are the ones affecting
the two prior variances of the time-varying coefficients 3,, namely the hyperparameters of Tj%t
and w; . Our first prior choice, denoted as “Prior 1”7 in Table 2, selects ¢;; = 100, d;; = 1 such
that w; has a prior mean of 0.01 and prior variance 0.0001. This conservative choice restricts
movements 3;; to be very persistent and excludes the case of frequent, noisy jumps. Such
prior is used widely in empirical macroeconomic applications, see for example the “business
as usual” prior motivated in Cogley and Sargent (2005) for the case of a vector autoregression
with time-varying parameters. We subsequently set an uninformative prior on Tﬁt by setting
go = ho = 0.01. The dashed lines in Figure 3 represent (posterior mean) coefficient estimates
from our eight-predictor model: coefficient 3, ; is the time-varying intercept (trend inflation),
coefficients (s, B3, correspond to the first two lagged values of GDP deflator, and coefficients
Bas to Ps, correspond to the five principal components. As a comparison, we plot posterior
mean estimates from the same time-varying parameter regression estimated with MCMC
(using identical settings as in the Monte Carlo comparison). The MCMC-based estimates

can be broadly thought of as the unrestricted equivalents of the VBDVS algorithm, since
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they are not based on any form of dynamic variable selection or hierarchical shrinkage. The
intercept and first lag coefficients are virtually identical using the two algorithms. However,
all remaining coefficients are penalized heavily by the VBDVS algorithm. Variation over

time of these coefficients is very moderate and restricted to be close to zero for many time

periods.
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Figure 3: Posterior means of time-varying coefficient estimates from VBDVS (red dashed
lines) using Prior 1. Solid lines are posterior means from a TVP model with the same
predictors estimated with MCMC.

In order to examine the effect that the prior has on the time evolution of the coefficients,
we change the initial condition for w;; to have hyperparameters c;o = d;o and we leave
the same uninformative prior for Tj%t. The posterior mean coefficient estimates in Figure 4
exhibit an interesting pattern. By allowing a looser prior on w; the parameters that are
unrestricted (intercept and first lag), do exhibit larger amount of time-variation compared
to the MCMC estimates. However, the remaining coefficients that were previously restricted
to be close to zero, are now forced more aggressively towards zero in all time periods. This
demonstrates the fact that our algorithm imposes the state-space model in equation (28),
where the variance of j3;, is a function of both w,; and v;; (where the latter, is in turn a
linear function of 77,). Therefore, allowing for a looser w;; tends to introduce more noise in
the state-space model, and for that reason the dynamic variable selection prior compensates
for this increased noise by shrinking more aggressively. While there is this compensation
effect and coefficient estimates won’t explode as quickly as the model without the dynamic

variable selection prior (recall that /3, evolves as a non-stationary random walk), it is not
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advisable to use such a lose prior on w ;.
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Figure 4: Posterior means of time-varying coefficient estimates from VBDVS (red dashed
lines) using Prior 2. Solid lines are posterior means from a TVP model with the same
predictors estimated with MCMC.

For that reason, our final prior (called Prior 3 in Table 2) returns to the conservative
choice c;p = 100 and d;, = 1, and sets instead go = 1 and hy = 12. Figure 5 shows
the estimates from this prior. Once again the VBDVS estimates of the intercept and first
lag coefficients are identical to the estimates from the MCMC algorithm. The remaining
coefficients are again heavily penalized but there are also many time periods where these
evolve unrestrictedly. As a matter of fact, this prior allows the time-varying coefficients to
exhibit distinct and abrupt jumps between periods where they are zero and periods where
they are unrestricted. This pattern of time-variation is more in line with the findings of the
previous literature that there are pockets of predictability or, put differently, that economic
predictors are short-lived (see discussion in the Introduction).

In order to have a visual assessment of the time pattern of dynamic variable selection and
shrinkage, panel (a) of Figure 6 plots the posterior inclusion probabilities of each regressor
associated with the time-varying coefficient estimates presented in Figure 5. These seem to
show the exact periods where each coefficient moves from a state of being restricted to zero
to a state where it is not zero. Panel (b) of the same figure shows the posterior mean of
the stochastic volatility estimate from VBDVS versus the estimate from MCMC. These two
estimates are fairly similar, showing that the specification of time-varying variances in the

VBDVS does a good job at capturing known peaks in GDP deflator inflation volatility. Any
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differences in volatility estimates reflect the fact that the two algorithms assume different
specification of o2 and also use different priors in the estimation of 3,.

For all these reason, we build all of our forecasting models in the next subsection based

. . 14
on this last prior.
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Figure 5: Posterior means of time-varying coefficient estimates from VBDVS (red dashed
lines) using Prior 3. Solid lines are posterior means from a TVP model with the same
predictors estimated with MCMC.

4Due to the fact that the choice hy = 12 looks in Figure 5 to penalize possibly excessively the small
model with just eight coefficients, in the next subsection we adapt only this hyperparameter depending on
the number of predictors we have available. Otherwise, all other hyperparameters are identical to the ones
in the column labelled Prior 3 in Table 2.
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(a) Posterior inclusion probabilities
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Figure 6: Panel (a) shows time-varying posterior inclusion probabilities (PIPs) from VBDVS
algorithm, using Prior 3. Panel (b) shows posterior means of time-varying volatility estimates

from VBDVS (red dashed line) versus MCMC' (solid blue line).

5.3 Forecasting inflation

We forecast inflation using models of the form

Yirh = 04 + P14y + P21Ye—1 + T3y + €14hs (45)

where vy, is h-step ahead inflation (see subsection 5.1 for a definition) regressed on an
intercept, two own lags and exogenous predictors. We use a variety of forecasting models.
Some benchmark models are based on equation (45) but assume constant coefficients (i.e.
ar = o, ¢14 = ¢1 and so on), while others assume different sets of exogenous predictors.
However, what all models have in common is that they always include an intercept and
two own lags of inflation. Given that our dataset is much larger than datasets used before
for forecasting inflation, in order to avoid confusion by specifying different combinations or
subsets of predictors, we only distinguish four simple categories of models: i) models with no
predictors (i.e. only intercept and autoregressive terms); ii) models with first five principal
components as predictors; iii) models with sixty principal components as predictors; and iv)

models with all 443 predictors. Our list of models representing each category is the following

e AR: benchmark AR(2) with intercept, estimated with OLS

e TVPAR: time-varying parameter version of the AR model, with stochastic volatility,
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estimated with MCMC

FAC5: Builds on benchmark AR specification by augmenting it with first five principal

components estimated with OLS

BAG/FACS5: Same predictors as FACSH, estimated as constant parameter regression
using the Bagging algorithm of Breiman (1996)

DMA /FAC5: Same predictors as FAC5H, estimated as TVP regression using the
Dynamic Model Averaging algorithm of Koop and Korobilis (2012)

VBDVS/FAC5: Same predictors as FAC5S, estimated as TVP regression using our

Dynamic Variable Selection prior with Variational Bayes
GPR/FACS5: Same predictors as FACH, estimated as a Gaussian Process Regression

SSVS/FACG60: Builds on benchmark AR specification by augmenting it with first
60 principal components, estimated using the SSVS prior with MCMC of George and
McCulloch (1993)

ELN/FAC60: Same predictors as SSVS/FACG60, estimated as a constant parameter
regression using the Elastic Net algorithm of Zou and Hastie (2005)

VBDVS/FACG60: Same predictors as SSVS/FAC60, estimated as a TVP regression

using our Dynamic Variable Selection prior with Variational Bayes

ELN/X: Builds on benchmark AR specification by augmenting it with all 443
predictors, estimated using the Elastic Net algorithm of Zou and Hastie (2005)

PLS/X: Same predictors as in ELN/X, estimated as a constant parameter Partial

Least Squares regression

VBDVS/X: Same predictors as ELN/X, estimated as a TVP regression using our

Dynamic Variable Selection prior with Variational Bayes

The choice of models is based on their simplicity and replicability. In particular, the Gaussian

Process Regression, Partial Least Squares, and Elastic Net algorithms are based on built-in
functions in MATLAB’s Statistics and Machine Learning Toolbox (MATLAB, 2020), and are
fairly easy to set up. Estimation of these models is done using default settings in MATLAB

or default choices proposed by their respective creators.’® Exact details of these algorithms

and their default settings is provided in the Online Supplement.

15As an example, the penalty parameter in the Elastic Net is estimated using 10-fold cross-validation.
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In terms of statistical properties, all these models cover a wide spectrum of forecasting
specifications. The AR(2) is a standard benchmark in economic time series forecasting, and
typically performs better than a random walk (which is the benchmark for financial data).
Its time-varying parameter counterpart, our second model on the list, allows for proxying for
similar specifications that have been shown to forecast inflation well, see Stock and Watson
(2007) and Bauwens et al. (2015). Extracting the first few principal components (factors)
is possibly the most popular way of representing parsimoniously the information in a large
dataset, see Stock and Watson (2016). A naive factor model uses least squares estimation
on a model that has the first five principal components as exogenous predictors, while a
second factor model replaces OLS with the Bagging algorithm of Breiman (1996) that allows
to select the “best” factors in a static way. Next the Dynamic Model Averaging (DMA)
algorithm described in Koop and Korobilis (2012) as well as our VBDVS algorithm allow to
implement dynamic variable selection in a TVP setting using the same first five principal
components. The Gaussian Process Regression is a very flexible nonparametric method that
allows us to understand whether inflation is better described by time-varying parameters
or some more complex form of nonlinearity. Moving on to models with 60 factors, we have
to drop many previous specifications for computational reasons.'® For that reason we use
the SSVS algorithm of George and McCulloch (1993), which can be thought of as the static
equivalent of our VBDVS algorithm. The Elastic Net of Zou and Hastie (2005) is a popular
penalized likelihood estimator for high-dimensional data. Finally, our VBDVS algorithm is
also estimated with a larger number of factors to find out whether its dynamic shrinkage
properties are useful relative to the naive selection of the first five factors. Finally, we
estimate models using all 443 exogenous predictors. The Elastic Net is again on the list,
and we also include Partial Least Squares (PLS) regression. PLS is similar to principal
component analysis, with the main difference being that factors are extracted with reference
to the variable to be predicted. Principal components instead only explain the variability in
the exogenous predictors, and it may be the case that they do not carry predictive information
for the predicted variable. Finally, our VBDVS algorithm is applied to this full model with
all predictors.

In terms of the prior choices used when forecasting with our VBDVS algorithm, these
are based on Prior 3 described in the previous subsection, see Table 2. We only adapt how
“aggressively” we shrink based on the total number of predictors in each model. For model
VBDVS/FACSH we set hg = 1, for VBDVS/FAC60 we set hg = 12 and for VBDVS/X we set
ho = 100.

16For example, DMA cannot scale up to these large dimensions, Gaussian Process Regression becomes
overparametrized, and Bagging becomes numerically unstable in some periods of the forecasting exercise.
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Table 3: Forecasting results for GDP deflator (GDPCTPI)

MSFE ALPL
h=1 h=2 h=4 h=38 h=1 h=2 h=4 h=38
MODELS WITH NO PREDICTORS
AR 0.0394 0.0823 0.0308 0.0487 4.8742  4.8949 4.8374 4.6149
TVPAR 1.04 0.96 0.99 0.83 0.30 0.29 0.46 0.31
MODELS WITH FIVE FACTORS
FAC5 1.00 1.08 1.53 1.57 0.02 0.04 0.02 0.01
BAG/FAC5H 0.96 1.05 1.47 1.48 0.05 0.06 0.04 0.02
DMA/FAC5H 0.84 0.79 0.94 0.95 0.26 0.27 0.22 0.18
VBDVS/FAC5H 1.30 1.20 0.97 0.83 0.15 0.14 0.28 0.20
GPR/FAC5H 1.02 0.95 1.07 1.04 0.06 0.13 0.20 0.32
MODELS WITH 60 FACTORS
SSVS/FACG60 0.99 1.03 1.44 1.42 0.01 0.05 0.09 0.13
ELN/FAC60 1.13 1.12 1.24 1.30 0.02 0.07 0.14 0.09
VBDVS/FAC60 1.03 0.81 0.85 0.80 0.25 0.49 0.63 0.92
MODELS WITH 443 PREDICTORS
ELN/X 0.97 1.00 1.35 1.39 0.06 0.04 0.12 0.05
PLS/X 1.14 1.11 1.42 1.24 -0.11 0.02 -0.24 -0.42
VBDVS/X 0.99 0.84 0.71 0.62 0.32 0.39 0.65 0.78

Notes: All models feature an intercept and two lags of the dependent variable. Model acronyms are as follows:

AR: benchmark AR(2) with intercept estimated with OLS

TVPAR: time-varying parameter version of the AR model, with stochastic volatility, estimated with MCMC

FACS5: Builds on benchmark AR specification by augmenting it with first five principal components estimated with OLS
BAG/FACS5: Same predictors as FAC5, estimated as constant parameter regression using Bagging

DMA/FACS5: Same predictors as FACS, estimated as TVP regression using Dynamic Model Averaging

VBDVS/FACS5: Same predictors as FACS, estimated as TVP regression using our Dynamic Variable Selection prior with
Variational Bayes

GPR/FACS5: Same predictors as FAC5, estimated as a Gaussian Process Regression

SSVS/FACG60: Builds on benchmark AR specification by augmenting it with first 60 principal components, estimated using
an SSVS prior with MCMC

ELN/FAC60: Same predictors as SSVS/FAC60, estimated as a constant parameter regression using the Elastic Net
VBDVS/FAC60: Same predictors as SSVS/FAC60, estimated as a TVP regression using our Dynamic Variable Selection
prior with Variational Bayes

ELN/X: Builds on benchmark AR specification by augmenting it with all 448 predictors, estimated using the Elastic Net
PLS/X: Same predictors as in ELN/X, estimated as a constant parameter Partial Least Squares regression

VBDVS/X: Same predictors as ELN/X, estimated as a TVP regression using our Dynamic Variable Selection prior with
Variational Bayes

Entries in columns 2-5 of this Table are mean squared forecast errors (MSFEs), and columns 6-9 are average predictive
likelihoods in logarithms (logAPLs). The AR model serves as a benchmark and its entries (shown in italics) are the values

of MSFEs and logAPLs for each forecast horizon. Entries for each subsequent model are MSFEs and logAPLs relative to the

values of the AR benchmark. MSFEs lower than one signify improvement relative to the benchmark and vice-versa for values
higher than one. logAPLs that are positive signify improvement relative to the benchmark and vice-versa for negative values.

Entries in boldface indicate the best performing model for each forecast statistic and for each forecast horizon.
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Table 4: Forecasting results for PCE deflator (PCECTPI)

MSFE ALPL
h=1 h=2 h=4 h=38 h=1 h=2 h=4 h=38
MODELS WITH NO PREDICTORS
AR 0.1442 0.1801 0.1070 0.0980 4.6028  4.6527 4.5695 4.4313
TVPAR 1.10 1.04 0.81 0.57 0.08 0.24 0.62 0.67
MODELS WITH FIVE FACTORS
FAC5 1.10 1.23 1.32 1.40 0.02 0.03 0.05 0.06
BAG/FAC5H 1.13 1.27 1.33 1.38 0.04 0.06 0.07 0.05
DMA/FAC5H 1.14 1.13 1.02 0.86 -0.07 -0.02 0.05 0.27
VBDVS/FAC5H 0.92 0.95 0.75 0.71 -0.09 -0.14 -0.21 0.29
GPR/FAC5H 1.08 1.17 1.00 0.96 0.06 0.22 0.31 0.23
MODELS WITH 60 FACTORS
SSVS/FAC60 0.98 1.18 1.19 1.37 0.07 0.11 0.17 0.28
ELN/FAC60 0.84 1.04 1.03 0.95 0.16 0.20 0.24 0.32
VBDVS/FAC60 1.11 1.04 0.70 0.51 0.05 0.22 0.54 1.02
MODELS WITH 443 PREDICTORS
ELN/X 0.73 0.97 1.06 1.00 0.22 0.13 0.12 0.02
PLS/X 0.81 0.91 0.95 0.82 0.12 0.07 0.15 -0.05
VBDVS/X 0.93 0.84 0.62 0.51 0.11 0.27 0.57 0.69
Notes: see notes under Table 3.
Table 5: Forecasting results for CPI (CPIAUCSL)
MSFE ALPL
h=1 h=2 h=4 h=38 h=1 h=2 h=4 h=38
MODELS WITH NO PREDICTORS
AR 0.1838 0.2247 0.1621 0.1425 4.3741 4.3776  4.3663 4.2359
TVPAR 0.93 0.96 0.73 0.57 0.09 0.42 0.59 0.96
MODELS WITH FIVE FACTORS
FAC5 0.95 0.96 1.05 1.03 0.04 0.09 0.03 0.16
BAG/FAC5 0.95 0.97 1.01 0.92 0.06 0.10 0.09 0.16
DMA/FAC5 0.93 0.91 0.87 0.67 -0.02 0.00 0.02 0.35
VBDVS/FAC5H 1.07 1.15 0.71 0.75 0.06 0.43 -0.12 0.40
GPR/FAC5H 0.93 0.90 0.79 0.82 0.12 0.30 0.29 0.25
MODELS WITH 60 FACTORS
SSVS/FAC60 0.89 0.87 0.93 0.87 0.06 0.13 0.14 0.31
ELN/FAC60 1.08 0.81 0.89 0.72 -0.01 0.20 0.22 0.39
VBDVS/FAC60 0.98 0.88 0.67 0.54 0.10 0.45 0.56 1.01
MODELS WITH 443 PREDICTORS
ELN/X 0.84 0.84 0.92 0.89 0.21 0.27 0.19 0.23
PLS/X 0.95 0.89 0.96 0.89 0.08 0.34 0.21 0.26
VBDVS/X 0.94 0.82 0.64 0.50 0.24 0.33 0.47 0.81

Notes: see notes under Table 3.
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Table 6: Forecasting results for core CPI (CPILFESL)

MSFE ALPL
h=1 h=2 h=4 h=38 h=1 h=2 h=4 h=28
MODELS WITH NO PREDICTORS
AR 0.0221 0.0195 0.0287 0.0549 4.6432  4.6832 4.6294 4.4824
TVPAR 1.00 0.85 0.79 0.48 0.52 0.55 0.58 0.54
MODELS WITH FIVE FACTORS
FAC5 1.89 2.37 2.17 1.41 0.02 0.04 0.09 0.15
BAG/FAC5H 1.62 2.15 1.90 1.26 0.06 0.08 0.14 0.16
DMA/FAC5H 1.17 1.23 0.94 0.60 0.36 0.42 0.48 0.56
VBDVS/FAC5H 1.49 1.24 0.90 0.53 0.54 0.39 0.67 0.48
GPR/FAC5H 1.66 1.79 1.44 0.99 0.34 0.37 0.68 0.50
MODELS WITH 60 FACTORS
SSVS/FACG60 1.73 2.18 2.00 1.05 0.03 0.04 0.13 0.19
ELN/FAC60 1.91 2.09 1.81 0.99 0.05 0.04 0.26 0.32
VBDVS/FAC60 0.91 0.79 0.72 0.47 0.72 0.78 0.93 0.92
MODELS WITH 443 PREDICTORS
ELN/X 1.79 1.96 1.47 1.21 0.22 0.11 0.37 -0.05
PLS/X 2.53 2.87 2.05 1.27 0.13 0.00 0.14 0.19
VBDVS/X 0.99 0.78 0.60 0.43 0.71 0.78 0.99 1.07

Notes: see notes under Table 3.

We forecast h = 1,2,4 and 8 quarters ahead. We use 50% of the sample as our initial
estimation period which, for example, for A~ = 1 translates to using data for the period
1960Q4-1989Q2 in order to forecast 1989Q3. We then add one new observation to the
estimation sample and forecast h-step ahead, until the full sample is exhausted. Since all
models that have predictors rely on the direct forecasting regression (45), for comparability
we produce direct AR(2) forecasts as a special case of this equation with no predictors.!”
We measure forecast accuracy using the mean squared forecast error (MSFE) and the
average log-predictive likelihood (ALPL). The first measure is the square of the forecast
error (difference between forecast and real value of y;,,) averaged over the out-of-sample
evaluation period, while the second measure is calculated as the logarithm of the predictive
distribution evaluated at the observation y;.;, and also averaged over the out-of-sample
evaluation period; see Bauwens et al. (2015) for more details on these two metrics.

Tables 3 to 6 present the MSFEs and ALPLs for GDP deflator, PCE deflator, CPI and
Core CPI, for all competing models and all considered forecast horizons. To be precise results
for the benchmark AR(2) are the values of the MSFE and ALPL statistics, while results for
all other models are relative to those for the AR(2). For the MSFE this means calculating

the ratio such that a number lower than one means that a certain model performs better

1"The alternative would be to specify an AR(2) model linking ; with y;_; and y;_» and then iterate the
process h periods ahead, a procedure also known as iterative forecasting. By using direct AR(2) forecasts as
the benchmark we can explicitly assess the exact contribution of various models that introduce exogenous
predictors.
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than the AR(2). For the ALPL relative quantities are obtained as the spread from the ALPL
of the AR(2) (i.e. the logarithm of the ratio) such that positive numbers indicate that a
certain model performs better than the AR(2).

The immediate message from these tables is that the VBDVS/X is the model that
performs best, especially when looking at point forecast evaluation (MSFEs) for h = 2,4, 8.
In terms of density forecasts, VBDVS/X and VBDVS/FACG60 are jointly the best performing
specifications. While VBDVS /FACS5 is also doing well in longer horizons, this model is always
underperforming the TVPAR, that is, the TVP model that doesn’t consider any predictors.

How can we explain these results? There are various stylized facts we can derive from
the information in these tables. Our discussion here focuses on point forecasts (MSFE
criterion), due to the fact for that metric the picture is much clearer. First, time variation
seems to matter a lot, especially in the long-run. TVPAR, DMA/FACS5, and the three
VBDVS specifications can improve dramatically over their constant parameter counterparts,
regardless of whether these consider exogenous predictors or not. Are exogenous predictors
important for forecasting” The answer depends on the variable to be forecast, the horizon
considered, as well as the way each model specification utilizes the predictors. For example,
for GDP deflator for h = 8 the differences in MSFE between VBDVS/X (TVP model with
all available predictors) and TVPAR (TVP model with no predictors) is vast, suggesting
that not only time-variation is important but also the information in exogenous predictors.
However, looking at all constant parameter models with exogenous predictors, whether these
predictors are observed or enter each regression via factor methods, all these methods struggle
to beat the simple AR(2). This suggests the argument in the Introduction about pockets
of predictability. For that reason, DMA (which is the best performing model for h = 1 and
h = 2) and the three VBDVS specifications perform very well, with VBDVS /X providing the
most dramatic improvements for h = 8 when at the same time ELN/X and PLS/X perform
24% and 39% worse than the benchmark AR(2).

For the next two inflation variables (PCE deflator and total CPI) a large number of
predictors does seem to be important in the short-run, but in the long-run it looks like
the largest contribution in forecasting accuracy is due to time-variation in parameters.
For example, for PCE deflator and total CPI, for horizons h = 1,2, ELN/X seems to be
performing much better than the AR and the TVPAR specifications. However, for h = 4,8
the TVPAR overtakes substantially both the AR and ELN/X specifications. While the
VBDVS/X is still the best performing model for h = 4, 8, its differences to the TVPAR are
statistically much smaller compared to the differences of these two models when forecasting
GDP deflator. In any case, whether predictors are important or not, the VBDVS algorithm

seems to be doing a very good job in shrinking irrelevant coefficients and making sure that
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there is not overfitting — if there was, the VBDVS/X forecasts would be inferior to those
from the TVPAR.

Finally, for core CPI all methods struggle to beat the simple AR for very short-run
forecasts. The VBDVS/FAC60 and VBDVS/X models do so marginally, while many others
perform as much as 150% worse than the benchmark. For longer horizons all constant
parameter models continue to underperform, however, the TVP models seem to provide
the most dramatic improvements, with the VBDVS/X improving almost 60% over the
benchmark. Combined with the observation that the differences between the three VBDVS
specifications and the TVPAR are minimal, it looks like that exogenous predictors are not
relevant for core CPI. Since core CPI is based on the total CPI by removing its most volatiles
components (food and energy), it might be the case that this variable is basically a random
walk and even a simple time-varying intercept model (that is, a local level model as in Stock
and Watson, 2007) would forecast this variable well.

It is harder to extract stylized facts for inflation forecasting based on ALPLs. This is
because this metric is based on all the features of the predictive density, that is, all its
moments and not just the mean. Given that predictive densities can differ a lot between
specifications (e.g. they can multimodal in time-varying parameter models), it is not possible
to attribute differences in ALPLs to specific modeling assumptions. However, a clear pattern
that emerges is that predictors do help to improve predictive density forecasting relative
to the simple AR benchmark, but the largest gains overall are achieved by time-varying
parameter models. In all these comparisons the VBDVS/X is the clear winner showing
that, even though this is a heavily parametrized model and could easily produce erroneous

forecasts, our algorithm ensures sufficient penalization and impressive forecasting gains.
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Settings used in competing models

While all technical details regarding our methodology are provided in detail in the paper, we

have

skipped details for the numerous competing algorithms used in the Monte Carlo and

empirical exercises.

DSS algorithm, Rockova and McAlinn (2017): We followed the authors and
tried the various settings they suggest in their Section 7: Synthetic high-dimensional
data. For our DGP the best performance was achieved with ¢9 = 0, ¢; = 0.98,
A =10% (1 —¢1.2), Ao = 0.9 and © = 0.92 (note that for p = 50 the authors suggest
O = 0.98, but we found that a lower value does better as p gets larger, while it doesn’t
deteriorate performance for p = 50).

MCMUC algorithm, Chan and Jeliazkov (2009): This is the standard time-varying
parameter regression model used in economics, see for example Cogley and Sargent
(2005). It consists of equations (9) and (10), where the measurement error variance
follows a geometric random walk. As with VBDVS, the crucial setting that affects the
amount of time-variation in regression coefficients is the prior on the state variances,
which is of the form wj_l ~ Gamma(vy, vy). We set the conservative choice v; = 3 and
vy = 20, which implies that w; has prior mean around 0.016. In order to estimate this
model efficiently, we use the Gibbs sampler algorithm of Chan and Jeliazkov (2009).

Dynamic Model Averaging, Koop and Korobilis (2012): We use standard
settings described in Koop and Korobilis (2012) with a = 0.99, A = 0.99 and x = 0.96.

Bagging, Breiman (1996): With the bagging algorithm we first resample our data
B times with replacement blocks of size m. For each pseudo-generated dataset we
estimate with ordinary least squares using the Newey and West estimator of the
covariance with lag truncation parameter int {T'/*}. We select the optimal model
using only those predictors that have t-statistics larger than a threshold ¢* in absolute
value. We forecast with the optimal model, and the bagging forecast is obtained as the
average of all forecasts over the B Bootstrap replications. We set B = 1000, m = 1
and ¢* = 2.807.

Elastic Net, Zou and Hastie (2005): We use the MATLAB function “lasso” that
is available in the Statistics and Machine Learning Toolbox. We use 10-fold cross
validation for selecting the optimal A parameter, and we fix o = 0.75.

Gaussian Process Regression: Gaussian Process Regression (GPR) is a very
powerful machine learning method that allows flexible nonparametric estimation
targeted towards prediction. We use the MATLAB function “fitrgp” that is available

1



in the Statistics and Machine Learning Toolbox. This is estimated using the following
settings:

fitrgp(X,y,’Basis’,’linear’,’Optimizer’,’QuasiNewton’, ’verbose’,1,
’FitMethod’,’exact’,’PredictMethod’, ’exact’)

Partial Least Squares: Partial Least Squares (PLS) is a method that originated in
chemometrics. It allows to estimate factors that are extracted with reference to the
variable to be predicted (target variable). Principal components instead maximize only
the variance explained by the large dataset, and may not be optimal for prediction of
the target variable. While more elegant methods have been proposed recently, such as
the three-pass regression filter, the PLS is undeniably a good benchmark for assessing
whether we can improve on the information content of simple principal component
estimates. We use again the MATLAB function “plsregress” available in the Statistics
and Machine Learning Toolbox, and we extract five factors from our dataset.
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