
WORKING
PAPER
SERIES

Energy Markets and Global Economic Conditions

Christiane Baumeister, Dimitris Korobilis and Thomas K. Lee

Paper no. 2020-08 
February 2020



Energy Markets and Global Economic Conditions∗

Christiane Baumeister
University of Notre Dame

NBER and CEPR

Dimitris Korobilis
University of Glasgow

Thomas K. Lee
U.S. Energy Information Administration

February 4, 2020
Revised February 24, 2020

Abstract

This paper evaluates alternative indicators of global economic activity and other market

fundamentals in terms of their usefulness for forecasting real oil prices and global petroleum

consumption. We find that world industrial production is one of the most useful indicators

that has been proposed in the literature. However, by combining measures from a number of

different sources we can do even better. Our analysis results in a new index of global economic

conditions and new measures for assessing future tightness of energy demand and expected oil

price pressures.

JEL classification: C11, C32, C52, Q41, Q47

Keywords: Energy demand, forecasting, stochastic volatility, oil price pressures, petroleum

consumption, state of the world economy

∗We thank Nida Çakır Melek, Todd Clark, Ferre De Graeve, and James Hamilton for many insightful discussions

and useful suggestions, and Scott Brave, Pierre Guérin, Francesco Ravazzolo, James Stock, and participants at the

EIA 2019 Annual Workshop on Financial and Physical Energy Market Linkages for additional helpful comments.

Special thanks to James Ng and Mark Robison at the Hesburgh Library for their valuable assistance with obtaining

access to the shipping data. Part of this research was conducted while Christiane Baumeister was visiting KU Leuven

and Bocconi University whose hospitality is gratefully acknowledged. Aram Derdzyan and Qian Li provided excellent

research assistance. The work of Christiane Baumeister was supported by grant DE-EI0003240 from the U.S. Energy

Information Administration. The views expressed in this paper are solely the responsibility of the authors and

should not be interpreted as reflecting the views of the U.S. Energy Information Administration. Corresponding

author: Christiane Baumeister, Department of Economics, 3060 Jenkins Nanovic Hall, Notre Dame, IN 46556, email:

cjsbaumeister@gmail.com



1 Introduction

What are the key drivers of world energy markets? This question is of vital interest not just to

academic researchers but also to business and government planners around the globe. Financial

analysts, energy companies, budget agencies, central banks, and organizations like the International

Monetary Fund, the International Energy Agency, and the U.S. Energy Information Administration

devote a considerable amount of resources in an effort to assess the current and future outlook for

production, consumption, and prices of major sources of energy.

A large academic literature has sought to contribute to these efforts by developing models of

energy market dynamics that generate usable forecasts of energy prices. Prominent contributions

include Alquist, Kilian, and Vigfusson (2013), Alquist, Bhattarai, and Coibion (2019), Baumeister

and Kilian (2014a, 2015), Baumeister, Kilian, and Lee (2017), Bernard, Khalaf, Kichian, and

Yelou (2018), Ferrari, Ravazzolo, and Vespignani (2019), and Manescu and van Robays (2016).

This literature has concluded that although a random walk is hard to beat in out-of-sample oil-

price forecasting exercises, careful attention to the economic fundamentals that are driving energy

markets can lead to practical improvements in forecasts.

A key step in this effort is to find a useful summary of the global economic conditions that

influence energy demand.1 One of the promising early proposals for this purpose was a measure

of dry-cargo shipping rates developed by Kilian (2009). This measure is available monthly in real

time, is forward looking, and was found by Alquist, Kilian, and Vigfusson (2013) and Baumeister

and Kilian (2012) to produce promising forecasts of the refiner acquisition cost (RAC) of crude oil

imports. However, since these studies were published, there has been tremendous turbulence in the

shipping index that does not seem to reflect changes in world economic activity. Although Kilian

and Zhou (2018) have tried to defend continuing the use of shipping costs in modeling commodity

price dynamics, they do not provide any statistical evidence or formal criteria in support of that

conclusion. A growing number of researchers are suggesting alternative measures based on world

industrial production (Baumeister and Hamilton, 2019; Hamilton, 2019), commodity prices more

broadly (Alquist, Bhattarai, and Coibion, 2019; Delle Chiaie, Ferrara, and Giannone, 2017; West

and Wong, 2014), or global steel production (Ravazzolo and Vespignani, 2019).

One of the objectives of our paper is to revisit this evidence using updated data and to compare

the measures that have been proposed by other researchers with those developed from a broad

set of observations on global variables that we assembled for the purpose of this study. We begin

by reproducing the success of early models at forecasting real RAC over the period 1992-2010,

but document how these break down badly for subsequent data. We note that they perform even

more poorly for forecasting alternative measures of oil prices such as Brent. We find that models

based on alternative measures of global economic conditions such as world industrial production

1Studies stressing the importance of the measure of global economic conditions used include Alquist, Bhattarai, and

Coibion (2019), Baumeister and Kilian (2014a), Delle Chiaie, Ferrara, and Giannone (2017), Funk (2018), Manescu

and van Robays (2016), and Ravazzolo and Vespignani (2019).
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or a common factor extracted from a panel of real commodity prices lead to substantially better

forecasts, even for forecasting RAC over the original sample period.

We also examine the usefulness of Bayesian shrinkage priors, allowing for time-varying volatility,

and pooling multiple sources of information. We find that Bayesian shrinkage is beneficial in every

specification, and introducing stochastic volatility improves long-horizon forecasts substantially.

Although many researchers have reported that pooling leads to superior forecasts in a number of

different settings, we do not find evidence of that here.

One of the features that distinguishes our effort from earlier studies is that we investigate po-

tential measures of energy market fundamentals not only in terms of their ability to predict prices

but also to predict changes in world oil consumption. We find that none of our baseline specifica-

tions perform very well for forecasting global petroleum consumption. We investigate alternative

measures that add additional determinants of energy demand including measures of geopolitical

risk, developments in transportation, oil price uncertainty, and weather-related indicators. We find

that constructing an indicator of global economic conditions that includes these variables along

with world industrial production helps improve the forecast accuracy for petroleum consumption

considerably.

Our analysis results in some new measures for characterizing energy demand and quantifying

oil price risks. We use real-time joint forecasts obtained from our model of oil prices and petroleum

consumption to construct an energy demand indicator that signals market tightness and anticipated

future demand pressures. We complement this analysis with measures that signal the likelihood of

a build-up of upward or downward oil price pressures relative to the recent past and forecast the

probabilities that the oil price will remain within the range of values experienced recently, rise above

or fall below this range over a two-year horizon. Our analysis suggests that these measures may be

very helpful for the private and public analysts who are constantly trying to assess the implications

of current developments in energy markets for purposes of making their own budgeting and planning

decisions.

The remainder of the paper is structured as follows. Section 2 provides a systematic comparison

of the usefulness of alternative indicators of global economic activity based on their forecasting

performance for the real price of oil. This evaluation takes place within existing models of the

global oil market as well as a new set of forecasting models that focus more on the demand side

of the market and allow for time variation in volatilities. Section 3 extends the analysis to global

petroleum consumption to gain a more complete understanding of future developments in energy

markets. Section 4 proposes a new indicator of global economic conditions that covers a diverse

range of variables tied to future energy demand. Section 5 illustrates how price and consumption

forecasts can be used to gauge the current and expected state of energy markets by introducing

some new real-time monitoring tools. Specifically, we develop measures that provide policymakers

and markets with a quantitative assessment of future energy demand conditions and expected oil

price pressures. Section 6 offers some concluding remarks.
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2 Forecasting Oil Prices

2.1 Forecasting with Vector Autoregressive Models

A widely followed approach to forecasting oil prices is the dynamic model of the global oil market

proposed by Alquist, Kilian, and Vigfusson (2013) and Baumeister and Kilian (2012). Their analysis

is based on the following reduced-form vector autoregression (VAR) that contains the fundamental

drivers of the real price of oil,

yt = c+Φ1yt−1 + · · ·+Φpyt−p + εt, (1)

where yt is a 4 × 1 vector of monthly data, c is a 4 × 1 vector of intercepts, Φi, i = 1, ...p, are

4× 4 coeffi cient matrices with p indicating the number of lags, and εt are white-noise innovations.
The four variables included in their VAR are the percent change in global crude oil production,

an estimate of the change in global crude oil inventories, the log of the real price of crude oil as

measured by the U.S. refiner acquisition cost of imported crude oil (RAC) deflated by the U.S.

consumer price index, and an index of global real economic activity (REA) developed by Kilian

(2009).2 This measure of real economic activity is based on single-voyage dry-cargo freight rates.

The idea behind the Kilian index is that changes in real shipping costs expressed in deviations

from a linear time trend capture the cyclical component of demand for industrial commodities.

Given that shipping of raw industrial materials is linked to future production of manufacturing

goods, Kilian (2009) and subsequent researchers have treated this index as a proxy for the state of

the global business cycle. Baumeister and Kilian (2012) found this model did an excellent job of

predicting oil prices over the period 1992.1 to 2010.6.

2.1.1 Evaluating Forecasts Based on the Kilian Index

Our first step is to reproduce the results in Alquist, Kilian, and Vigfusson (2013) and Baumeister

and Kilian (2012). In doing so, we use the global real activity measure now recommended by Kilian

(2019) which corrects a coding error in the calculation of his original index noted by Hamilton

(2019).3 We set the lag length p = 12, which has been shown to deliver the most accurate out-

of-sample forecasts for the real RAC (see Baumeister and Kilian, 2012, 2015). We estimate the
2All oil-related data were obtained from the U.S. Energy Information Administration’s Monthly Energy Review

and International Energy Portal. Monthly world oil production data measured in thousands of barrels of oil per day

and monthly U.S. crude oil stocks measured in millions of barrels (which include the Strategic Petroleum Reserve)

are available from January 1973 onward. We obtain a proxy for global oil stocks by multiplying the U.S. crude oil

inventories by the ratio of OECD inventories of crude oil and petroleum products to U.S. inventories of crude oil

and petroleum products. Given that data on OECD petroleum inventories are only recorded since January 1988, we

assume that the ratio before January 1988 is the same as in January 1988. The monthly U.S. refiner acquistion cost

of imported crude oil only goes back until January 1974. We follow Baumeister and Kilian (2012) to extrapolate it

back to 1973.1. The U.S. consumer price index for all urban consumers was taken from the FRED database.
3 In order to linearly detrend the deflated index only using data available to the forecaster at the time the

forecast is made, we use the series of the log nominal shipping index provided on Jim Hamilton’s webpage

(http://econweb.ucsd.edu/~jhamilto/shipping_costs.xlsx).
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VAR parameters recursively and evaluate the mean-squared prediction error (MSPE) of the oil

price forecasts in levels for horizons h = 1, 3, 6, 9, 12, 18, 24 months ahead. We first estimate the

parameters using data from 1973.2 to 1991.12 to forecast the log of the oil price for 1992.1 for h = 1,

1992.3 for h = 3, and so on, and then exponentiate to get a forecast of the level of the real oil price.

We then re-estimate parameters using data through 1992.1 to forecast 1992.2 for h = 1, 1992.4 for

h = 3, and so on. Following Alquist et al. (2013), we use the random walk without drift as the

benchmark for evaluating the forecasting ability of alternative models (which essentially amounts

to postulating that the real oil price is unpredictable). All MSPE results are normalized relative to

the no-change forecast. A ratio below 1 indicates that the model does better than a random walk,

while a value above 1 indicates that it does worse. To gauge the statistical significance of differences

in forecasting performance, we follow Carriero, Clark, and Marcellino (2015) who suggest using the

Diebold and Mariano (1995) test for equal mean-squared forecast error, compared against standard

normal critical values, even for nested models. They base their recommendation on Monte Carlo

evidence provided in Clark and McCracken (2015) that shows that, in the case of nested models,

the Diebold-Mariano (DM) test based on normal critical values can be considered a conservative

choice in finite samples.

Table 1, panel (a) presents the recursive MSPE ratios for the same evaluation period as in

Baumeister and Kilian (2012) which runs from 1992.1 to 2010.6. Column 1 reproduces Baumeister

and Kilian’s conclusion that the VAR offers better forecasts at near horizons of the real RAC than

does a random walk, with MSPE reductions of 32% at the 1-month horizon and 22% at the 3-month

horizon.4

However, since 2010 the Kilian index has exhibited some erratic behavior that is diffi cult to

attribute to the overall level of global economic activity. Figure 1 shows that in early 2016 the

index reached an all-time record low of 159% below trend, suggesting a far weaker global economy

than at the trough of the financial crisis in 2009, when the real shipping index was only 75% below

the linear trend (marked with a vertical line in the figure). After a recovery back to trend the

index again dropped sharply to 88% below trend in February 2019. As discussed by Hamilton

(2019), these sharp contractions in the Kilian index in the post-financial crisis period are at odds

with common understanding and other available measures of recent fluctuations in global economic

activity. The excessive swings and increased volatility of this index have raised concerns about

its reliability as an indicator of world economic activity and its usefulness for forecasting. For

example, Hamilton (2019) provides in-sample evidence that the Kilian index has little predictive

power for a range of real commodity prices and no statistically significant correlation with annual

world real GDP growth rates, casting doubts on its ability to identify shifts in demand in industrial

commodity markets. Our focus here is on out-of-sample forecasts of real RAC.

In panel (b) of Table 1 we update the analysis using data through 2018.8. The first column

shows that the model does not do quite as well when the evaluation period is extended to include

4 Interestingly, Kilian’s original REA index produced slightly better forecasts at longer horizons than does the new

index that corrects for the coding error.
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more recent data, which may reflect the fact that oil prices were harder to forecast over 2011-2018

as well as problems with using the detrended shipping cost index as a measure of real economic

activity (see Hamilton, 2019). Notwithstanding, the VAR continues to beat the random walk for

near-term forecasts of real RAC but with much smaller reductions in MSPE. The improvements

one and three months ahead are only 13% and 4%, respectively.

For many oil-market participants, predicting other oil prices like Brent may be a higher priority

than predicting RAC. In fact, the Brent price has evolved into the global benchmark for oil and oil

products with about two-thirds of oil purchases worldwide using it as a reference price according

to the Intercontinental Exchange (ICE).5 It is also closely followed by policymakers and frequently

referred to in the media. For these reasons, we evaluate the usefulness of the framework for

forecasting Brent, replacing the RAC with the Brent price as a more relevant measure for the

global price of crude oil. Since the monthly Brent spot price is available only from 1987.5 onward,

we extend it back to 1973.1 using the growth rate of RAC. Table 1, panel (c), shows that if our

goal is to forecast the real price of Brent rather than RAC, the VAR is completely unsuccessful.

The VAR forecast does not beat the random walk at any horizon.

2.1.2 Alternative Indicators of Global Real Economic Activity

We next explore alternative monthly measures of global real economic activity that have been

proposed in the literature. Details on the different measures we investigate are summarized in

Table 2.

Real shipping cost factor. One possibility is that composite measures of shipping costs other

than that proposed by Kilian (2009) may provide better forecasts. Hamilton (2019) argues that

removing a deterministic linear time trend is a poor way to isolate the cyclical component in real

shipping costs and is not supported by the data. A natural alternative is to use the unbalanced

panel of disaggregated data underlying the Kilian index and extract a common factor from the

cross-section of real shipping costs in growth rates.6 The dataset consists of a cross-section of 61

freight rates for individual shipping routes for a set of industrial commodities such as coal, iron

ore, and fertilizer which we manually digitized from Drewry’s Shipping Insight up to August 2018.7

Changes in shipping routes and in the composition of freight lead to missing observations which

we fill by recursively applying the expectation-maximization (EM) algorithm of Stock and Watson

(2002).8 The resulting real shipping cost factor for the period 1973.2 to 2018.8 is shown in the top

panel of Figure 2. Visually this series appears to be a far more plausible proxy for global economic

5See https://www.theice.com/article/brent-crude/the-worlds-leading-crude-oil-benchmark.
6Before conducting the principal component analysis, each growth rate is standardized by subtracting the mean

and dividing by its standard deviation.
7Table 1A in the online appendix provides detailed information on the shipping routes and the commodity shipped.
8The algorithm is initialized by replacing missing values with the unconditional mean of the observations available

for each series before extracting the first K principal components where K is determined by the Bai and Ng (2002)

information criterion. We use the estimated factors to impute the missing observations and repeat the factor analysis

with the updated values until the estimates do not change.
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activity than the corrected Kilian index in Figure 1. The measure in the top panel of Figure 2

also addresses some of the weaknesses of Kilian’s real economic activity index as summarized by

Kilian and Zhou (2018). For example, they document that freight rates are increasingly subject to

idiosyncratic shocks in the markets for commodities shipped as dry bulk cargo. A case in point is

the large supply shock in iron ore in late 2015 which contributed to the substantial deterioration

in the Kilian index in early 2016 as discussed by Kilian and Zhou (2018). By contrast, the factor

approach filters out commodity-specific noise and may provide a better characterization of the

cyclical component of world economic activity.

Column 2 of Table 1 shows that the real shipping cost factor does not perform quite as well

as the Kilian index for RAC at short horizons over the original sample. But it does better over

longer horizons in the original sample period (panel a) and substantially better for forecasting

RAC over any horizon when using the extended evaluation period (panel b). It is also substantially

better for purposes of forecasting Brent at all horizons (panel c). Thus this alternative approach

to summarizing shipping costs not only gives a more plausible proxy for global economic activity

since 2010 but also offers a significant improvement for purposes of forecasting oil prices.

World industrial production. Column 3 of Table 1 repeats the analysis replacing the Kilian index

with the index of world industrial production developed by Baumeister and Hamilton (2019). Their

measure remains closer to the traditional concept of economic activity as measured by the physical

volume of output generated in the industrial sector. They constructed an updated version of a

monthly index of industrial production covering OECD countries and six major emerging markets

(Brazil, China, India, Indonesia, the Russian Federation and South Africa) that was originally

reported in the OECDMain Economic Indicator (MEI) database from 1958.1 to 2011.10 by applying

the same methodology used by the OECD.9 The index is plotted in growth rates in the second panel

of Figure 2. The VAR using world industrial production does considerably better at predicting the

real price of both RAC and Brent over every evaluation period compared to either of the shipping-

based indicators (see column 3 of Table 1). Using world industrial production leads to notable

improvements in forecast accuracy relative to the no-change forecast for the real Brent price at the

shortest and longest horizons. In particular, it reduces the MSPE by about 5% at horizons 1 and

3, and by 6% at horizon 24.

Real commodity price factor. Alquist, Bhattarai, and Coibion (2019), Delle Chiaie, Ferrara,

and Giannone (2017), and West and Wong (2014) extract a global factor related to business cycle

fluctuations from a large cross-section of growth rates of monthly real commodity prices. The

idea is that the source of common variation in commodity prices stems from demand-induced

changes in economic activity which tend to move all prices in the same direction, while supply-side

developments in specific commodity markets show up as idiosyncratic shocks that are unlikely to

have pervasive effects. Our commodity price dataset consists of 23 basic industrial and agricultural

commodities listed in Table 2 whose markets are sensitive to changes in global economic conditions.

The selection of the set of commodity prices is guided by the same criteria as in Alquist et al.

9This series is regularly updated and can be downloaded at https://sites.google.com/site/cjsbaumeister/research.
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(2019). The primary purpose of commodities included in the construction of the global factor

should relate to aggregate output in the form of inputs in the production of final goods. This rules

out commodities that behave more like financial assets such as gold and other precious metals.

The commodities should be freely traded on liquid spot markets. There should be no periods of

infrequent price adjustments due to long-term contractual agreements. The commodities should

also not be vertically integrated to avoid idiosyncratic shocks to be propagated along the supply

chain. Following Alquist et al. (2019), we do not include any energy commodities. The third panel

of Figure 2 shows the real commodity price factor constructed from the first principal component

of the balanced panel of percent changes of real commodity prices. Column 4 of Table 1 reports the

results when this measure is used as the global economic activity indicator. The real commodity

price factor does almost as well as world industrial production for short horizons and somewhat

better at longer horizons. For example, it improves the forecast accuracy of the real Brent price by

3% at horizon 18 and by 8% at horizon 24 relative to the no-change forecast.

Global steel production factor. Ravazzolo and Vespignani (2019) suggest using monthly world

steel production as an indicator of global real economic activity. They argue that steel is an

important input for many industries including construction, transportation, and manufacturing,

and that it is a relatively homogenous commodity that is traded freely worldwide. The World Steel

Association provides an aggregate measure of the level of steel production reported by member

countries. One important drawback is that a consistent series is only available since 1994 at

monthly frequency due to changes in the number of reporting countries. Given that this measure is

an aggregate of the physical amount of steel produced, an increase in the number of steel-producing

countries leads to discrete jumps, as pointed out by Kilian and Zhou (2018). We propose an

alternative way to construct a measure of global steel production that enables us to extend the

series all the way back to 1973 without encountering the problem of structural breaks due to

aggregation, while preserving the broadest possible coverage. In its Steel Statistical Yearbook, the

World Steel Association publishes monthly data on crude steel production for individual countries

and groups of countries. The earliest available issue dates back to 1978, then released by the

International Iron and Steel Institute, and contains data for 29 reporting countries for the period

1968-1977. In the early years, the data are grouped into four blocks: European Community (EC),

United States, Japan, and other reporting countries.10 To maintain consistency across time, it is

necessary to consolidate EC and other reporting countries since some of the countries included in

the latter group later join the European Union. Over time the breakdown gets more detailed and

monthly data for individual countries are reported. We manually digitize the disaggregated data

and expand coverage to China, Eastern Europe, and the Middle East in 1990.1 and to Russia and

Ukraine in 1992.1 resulting in an unbalanced panel of seven time series for monthly production of

crude steel measured in thousands of tons (see Table 2). We extract the common component using

10European Community refers to the following 8 countries: Belgium, Denmark, Federal Republic of Germany,

France, Italy, Luxembourg, the Netherlands, and the United Kingdom. Other reporting countries include Austria,

Finland, Norway, Portugal, Spain, Sweden, Turkey, Yugoslavia, Canada, Argentina, Brazil, Chile, Mexico, Venezuela,

Australia, India, Republic of Korea, South Africa, and Taiwan.
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the EM algorithm to obtain a global steel production factor which is plotted in the bottom panel of

Figure 2. Aggregating information in this way not only circumvents discontinuities but also deals

with the concern of Kilian and Zhou (2018) that world steel production is prone to idiosyncratic

supply shocks in steel-producing countries. It also takes care of other potential sources of noise

such as measurement error and small data revisions. The last column of Table 1 shows that at

short horizons the steel index does not perform quite as well as world industrial production and

the commodity price factor for the extended evaluation period for either real RAC or Brent, but

it performs much better than the Kilian index. At longer horizons its forecasting performance is

comparable to that of world industrial production with MSPE reductions of up to 6%.

Summary. Taking stock, any of the three alternative measures for global real economic activity

do significantly better than the Kilian index for forecasting either real RAC or Brent. While the

forecasts obtained with the alternative indicators achieve gains in average forecast accuracy of up to

23% in the near term and up to 8% in the long term relative to the no-change forecast for the longer

evaluation period, none of these models beats the random walk at the intermediate horizons of 9

and 12 months ahead. Overall, forecasting oil prices with VAR models has become more diffi cult

since 2010 and forecasting the real price of Brent poses additional challenges.

To get a better sense of where the differences across evaluation periods come from, we take a

look at the recursive mean-squared prediction errors for the real RAC. For illustrative purposes,

we focus on the three-month forecast horizon and compare the VAR forecasts produced with the

Kilian (REA) index to those produced with world industrial production (WIP).11 Figure 3 shows

that prior to the financial crisis both VAR forecasts are essentially tied with the no-change forecast

and among each other. The top panel highlights that the model with the Kilian index gets a lot of

mileage out of the volatile 2009-2011 period with most of the MSPE reductions happening during

this time. These gains in accuracy vanish during the 2012-2014 period when oil prices were relatively

stable. The sharp drop in oil prices in mid-2014 puts the model again at a slight advantage relative

to the random walk. The middle panel indicates that the VAR forecast with WIP has outperformed

the no-change forecast since the financial crisis consistently generating smaller forecast errors. This

implies that world industrial production is a reliable indicator of global economic activity and a

useful predictor of oil prices both during crisis times when oil prices move a lot and during normal

times when oil prices are relatively calm. The bottom panel directly compares the recursive MSPEs

of the two VAR forecasts and shows that while initially the relative ranking alternates, since 2011

the model with WIP clearly dominates. It is noteworthy that the deterioration of the forecast

accuracy of the model with the Kilian index coincides with the unusual post-crisis behavior of this

index as documented above.
11The same pattern as for WIP is found for the real commodity price factor and the global steel production factor.
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2.2 The Role of Bayesian Shrinkage

All VAR models in Table 1 have been estimated by unrestricted least squares. It is widely known

that the proliferation of parameters in VARs tends to hurt the out-of-sample forecasting perfor-

mance of these models. One remedy is to apply Bayesian shrinkage which has been shown to lead

to more precise forecasts across a wide range of applications in macroeconomics and finance (see,

e.g., Carriero, Clark, and Marcellino, 2015; Giannone et al., 2014; Litterman, 1986). We examine

whether Bayesian methods help reduce the MSPE of our VAR forecasts by using informative priors

that shrink our highly-parameterized unconstrained models toward a parsimonious benchmark, and

thus reduce estimation uncertainty. As in Baumeister and Kilian (2012), we rely on the data-based

procedure proposed in Giannone, Lenza, and Primiceri (2015) for selecting the optimal degree of

shrinkage in our recursively estimated Bayesian VARs (BVARs) based on the marginal data density.

Panel (a) of Table 3 compares VAR and BVAR forecasts for the real price of Brent obtained

with the same five models that we considered before.12 We find that Bayesian shrinkage leads to

substantial improvements for every specification with additional MSPE reductions of up to 7% at

short and long horizons relative to the unrestricted VAR.13 Among the set of alternative activity

indicators, column 6 shows that the BVAR forecast based on world industrial production is the

only one that outperforms the no-change forecast at every horizon. Using the commodity price

factor results in similar forecasts as world industrial production, a little better at longer horizons

and a little worse at short horizons, as can be seen in column 8. In particular, both models greatly

improve on the accuracy of medium-term forecasts of 6- to 12-months ahead with gains of up to

3% relative to the random walk. A comparison of columns 2 and 4 reveals that the BVAR with the

real shipping cost factor does much better than the one with the Kilian index which is dominated

by the random walk except at the 1-month horizon. Bayesian shrinkage also helps the performance

of the steel factor, though it is still dominated by world industrial production and the commodity

price factor.

While it is customary to model the global oil market from a supply-side perspective, given

our interest in developing an energy demand indicator, our goal is to develop a forecasting model

that emphasizes the final demand for petroleum products. For this purpose we replace global oil

production with a measure of petroleum consumption. The broadest available measure at the

global level is monthly total world consumption of liquid fuels provided in the Short-Term Energy

Outlook database of the U.S. Energy Information Administration. Since this time series is only

available from 1990.1 onward, we extend it back to 1982.1 using the growth rate of OECD petroleum

consumption and further back until 1973.1 at the rate of change of global crude oil production.14

12Given that our main focus for the remainder of the paper is on forecasting the real price of Brent, we only discuss

the findings for Brent. Results on the forecast accuracy of BVAR models for real RAC can be found in Table 2A,

panel (a), in the online appendix.
13The only exception is the model with the Kilian index where the ranking of the forecast performance between

VAR and BVAR alternates across horizons.
14Alternatively we could have used U.S. petroleum consumption which is available all the way back to 1973 but

given that global supply and demand have to balance eventually world oil production seems more relevant for global
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With the shift in focus from oil production to petroleum consumption, the pertinent measure for

inventories are OECD petroleum stocks which, as before, are backcast before 1988 with the growth

rate of U.S. petroleum stocks. The most important factor determining prices of petroleum products

are crude oil prices since they account for the largest share of the production costs.15 Thus, the

real Brent price remains the relevant price measure given that it serves as a global reference for

pricing petroleum products. This consumption-based VAR model is new to the oil price forecasting

literature and adds to the suite of models that are derived based on economic grounds. The notion

is that fluctuations in the demand for refined products will translate into changes in the demand

for crude oil and thus have predictive power for the future path of the real price of crude oil.

We evaluate the forecasting performance of this new model using all five indicators of global real

economic activity.

Table 3, panel (b), reports the MSPE results for the consumption-based models estimated by

unrestricted least squares and Bayesian shrinkage methods. Using oil consumption instead of oil

production leads to better forecasts of oil prices for most indicators and most horizons. Comparing

different indicators and estimation methods, the overall pattern is similar to the production-based

models. The BVAR forecasts dominate the VAR forecasts across almost all models and horizons,

and world industrial production is a very useful indicator of world economic activity for purposes

of any forecast, with significant gains in forecast accuracy of 12% at the 1-month horizon, 6% at

the 6-month horizon, and 8% at the 24-month horizon. Forecasts using the commodity price factor

are almost as good as industrial production for short horizons and a little better for long horizons.

Using oil consumption instead of oil production generally leads to additional MSPE reductions

of up to 4% for 6-months-ahead forecasts. The improvement from using consumption instead of

production is more modest at longer horizons, with less than a 1% improvement for Bayesian 1- to

2-year-ahead forecasts. Three out of five BVAR models consistently beat the random walk at all

forecast horizons (see columns 4, 6, and 10).

We conclude that Bayesian shrinkage can help improve forecasts in this setting and that using

petroleum consumption in place of oil production is promising. World industrial production and

the real commodity price factor are the most useful indicators of global economic activity.

2.3 The Role of Time Variation in Volatilities

Another important consideration is that energy markets have undergone substantial transforma-

tions over time that can affect the forecasting ability of our models. Examples include shifts in the

energy intensity of production and consumption, changes in the energy mix, technological progress,

capacity constraints in petroleum inventory holdings, and market turmoil that induces bouts of

consumption. Moreover, U.S. fuel consumption was experiencing strong fluctuations during the 1970s which are not

necessarily representative of the rest of the world.
15For example, in 2013 crude oil accounted for 68% of the average retail price of gasoline, while taxes (12%), refining

(11%), and distribution and marketing (9%) accounted for the rest (see U.S. Energy Information Administration,

Gasoline and Diesel Fuel Update, February 2014).
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volatility which are all likely to have an influence on the models’predictive accuracy. In addition,

Baumeister and Peersman (2013) document that heteroskedasticity is a pervasive feature in oil

market data.

The importance of modeling time variation in the volatilities for the forecasting performance

of macroeconomic variables is well established in other data sets (see, e.g., Carriero, Clark, and

Marcellino, 2019; Clark and Ravazzolo, 2015; D’Agostino, Gambetti, and Giannone, 2013). Clark

and Ravazzolo (2015) provide extensive empirical evidence that models with stochastic volatility

increase the accuracy of point forecasts relative to models assuming homoskedasticity. Earlier evi-

dence for forecasting energy prices is more mixed. Baumeister and Kilian (2014a) find that adding

time-varying parameters and stochastic volatility to the four-variable VAR model in column 1 of

Table 1 did not lead to better forecasts of quarterly RAC compared to the (monthly) no-change

forecast. On the other hand, Baumeister, Kilian, and Lee (2017) find that the unobserved com-

ponent stochastic volatility model, originally proposed by Stock and Watson (2007) for forecasting

inflation, does great for forecasting retail gasoline prices, especially at longer horizons. The question

is thus whether a more accurate modeling of time-varying uncertainty, while not explicitly mod-

eling changes in the reduced-form coeffi cients, leads to improvements in out-of-sample forecasting

of oil prices. As pointed out by Primiceri (2005), stochastic volatility is meant to capture possible

heteroskedasticity of the shocks and potential nonlinearities in the dynamic relationships of the

model variables, which are related to low-frequency changes in volatility.

To allow for time variation in the variance of the VAR residuals, we postulate that the error

term εt in equation (1) is normally distributed with mean zero and time-varying covariance matrix

Ωt. We factor the latter as Ωt = A−1Σt(A
−1)′ where A−1 is a lower triangular matrix with ones

on the main diagonal and Σt is a diagonal matrix that contains the stochastic volatilities such that

εt = A−1ut with ut ∼ N(0,Σt). Carriero, Clark, and Marcellino (2019) show these assumptions

allow the VAR to be written as a system of n univariate equations with the ith equation taking the

form:

yit = ci +

p∑
j=1

Φi,jyt−p +
i−1∑
`=1

a∗i,`u`t + uit, uit ∼ N(0, σ2it) (2)

where Φi,j is the ith row of the matrix Φj , a∗i,1, ..., a
∗
i,(i−1) denotes the parameters in the i

th row of

the triangular matrixA−1 for i = 2, ..., n, u`t are the residuals from the previous i−1 equations, and
σ2it are equation-specific time-varying variances. The benefit of this reparametrization is that we

can estimate the model equation by equation which is convenient for modeling stochastic volatility

and allows to specify independent priors for the reduced-form coeffi cients across equations. The

law of motion for the stochastic volatilities is lnσit = lnσit−1 + ηit with the vector of innovations

ηt ∼ N(0,Λ) where Λ is a full covariance matrix as in Primiceri (2005). Specification of the prior

distributions for the VAR parameters follows the Minnesota prior tradition (Doan, Litterman, and

Sims, 1984) that shrinks coeffi cients on persistent endogenous variables toward a univariate random

walk and those on variables in growth rates toward independent white noise, and at the same time

penalizes more distant lags of all endogenous variables. For details on the choices of priors and
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hyperparameters that control the amount of shrinkage, see Appendix A; for the Gibbs sampling

algorithm, the reader is referred to Carriero et al. (2019).

Table 4 compares the forecasting performance of specifications that allow for stochastic volatility

(SV-BVAR) with the homoskedastic BVAR from Section 2.2.16 Allowing for stochastic volatility

substantially improves the forecasting performance of the models based on shipping costs, but only

the one using the shipping cost factor is competitive with any of the other three indicators of global

economic activity. The most striking result is that stochastic volatility achieves impressive gains

in forecast accuracy at longer horizons for the four competitive models. Carriero et al. (2019)

make the case that time-varying volatilities should improve the point forecasts especially at longer

horizons. The reason is that the heteroskedastic model will provide more effi cient estimates given

that the predictive means will gradually deviate from their homoskedastic counterparts as the

predictive densities cumulate nonlinearly with the forecast horizon. This is consistent with what

we find. The reductions in MSPE range between 10-14% at the one-year horizon and 23-29% at the

two-year horizon compared to only 2-3% and 6-10% in models without stochastic volatility. These

large MSPE reductions for long-run forecasts come at the expense of a small loss of at most 3%

in predictive accuracy at near horizons for the models using world industrial production and the

commodity price factor relative to forecasts with constant variance.17 In contrast, the forecasts

based on the global steel production factor benefit at all horizons from adding stochastic volatility.

We also see from Table 4 that consumption-based models still generally outperform production-

based specifications for purposes of forecasting oil prices. We conclude that stochastic volatility is

an important ingredient for long-horizon forecasts of the real Brent price.18

2.4 Pooling Forecasts and Information

Another approach to guard against forecast failures due to structural change and other model

misspecifications is to pool forecasts. It has long been known that combining forecasts not only

can lead to superior forecasting performance but also hedges against varying accuracy of individual

forecasting models over time (see, e.g., Timmermann, 2006). There is ample evidence that forecast

combinations work well for oil price forecasting and help improve forecast accuarcy especially at

longer horizons (see, e.g., Baumeister and Kilian, 2014a, 2015; Baumeister et al., 2014; Funk, 2018;

Garrett et al., 2019; Manescu and van Robays, 2016). This section explores the benefits of pooling

in our setting in three ways.

16Point forecasts for the SV-BVAR are based on the mean of the predictive density generated from a sample of

4, 000 draws from the posterior distribution of the VAR parameters; for the stochastic volatility component, we use

the univariate volatility estimates of the latest in-sample period as an estimate of the out-of-sample variances.
17A similar pattern arises if forecasts are generated with the homoskedastic counterpart of the SV-BVAR model,

i.e., using the exact same Minnesota-style prior instead of data-driven shrinkage; see Table 3A in the online appendix

for a direct comparison. This is in line with Carriero et al. (2015) who note that on average changes in forecast

accuracy from optimally selecting the shrinkage parameters tend to be rather small.
18For completeness we report the results for real RAC for the production-based models with stochastic volatility

in Table 2A, panel (b), in the online appendix.
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First, we consider an equal-weighted average of the forecasts from the five consumption-based

BVARs with stochastic volatility whose individual results were reported in Table 4(b).19 The MSPE

for this combination of forecasts is reported in the first column of Table 5. For short horizons,

these pooled forecasts are always dominated by the individual BVAR forecasts coming from either

world industrial production or the commodity price factor. For long horizons, the combination

forecasts are always dominated by the individual SV-BVAR forecasts coming from either industrial

production or commodity prices. We conclude that although simple averaging has often been found

to be a useful strategy, its success in the current setting is not convincing.

Why does forecast pooling fail to improve on the forecast accuracy of individual models? One

possible explanation is that the models only differ in the measure of global economic activity, while

existing evidence on the superiority of forecast combinations is based on a more diverse set of

forecasting models. Pooling in this case amounts to treating shipping-based measures of world

economic activity as on a par with the other measures we have investigated. If the goal is to

forecast oil prices, they do not appear to be.

This interpretation motivates a second way we might try to pool information, which is by

aggregating alternative proposed indicators of global economic activity directly before including

that measure in the VAR. To investigate this, we consider the cross-section of variables underlying

the different indicators in Table 2 and extract the first principal component from this unbalanced

dataset containing a total of 93 variables using the EM algorithm. We then include this factor in

the SV-BVAR in place of the individual economic indicators. The forecasting result of combining

information sets is reported in column 2 of Table 5. This specification again turns out typically to be

dominated by the BVAR or SV-BVAR based on industrial production alone. The interpretation may

again be that the world industrial production index is itself a broad aggregate with weights guided

by the importance of different sectors in different countries. Using those weights for aggregation

may be superior to simple principal components.

Third, we explore a market-based approach to pooling information. Some might argue that

the futures market is already pooling in a rational, optimal way all the information that could be

relevant for forecasting the price of oil. We follow Baumeister and Kilian (2012, 2014a) and use the

following futures-spread model:

Rt+h|t = Rt (1 + f
h
t − st − Et(πt+h))

where Rt denotes the current level of the real Brent price, fht denotes the log of the current Brent

futures price for a contract with maturity h, st denotes the log of the Brent spot price, and Et(πt+h)

denotes the expected inflation rate over the next h periods.20 We approximate expected inflation
19We also allowed the weights for the forecast combinations to evolve over time based on each model’s recent

forecasting performance. Using inverse MSPE weights based on recursive MSPEs of each model did not improve the

forecast accuracy relative to constant equal weights, however.
20We use the monthly average of daily Brent futures prices obtained from Bloomberg and of the daily Brent spot

prices obtained from the U.S. EIA website for the period 1991.12 to 2018.8. Data for Brent futures contracts with

maturity h = 12 start in 1994.4 and for h = 18, 24 in 1998.2.
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by the average inflation rate over the post-1986 period which is updated recursively. Our question

is how does Rt+h|t perform as a predictor of the real Brent price compared to the other methods

we have considered.

The results are reported in column 3 of Table 5. The Brent futures spread actually does a

worse job at forecasting the real price for near horizons than one would get from a random walk.

The futures market does a reasonable job at longer horizons, but still is outperformed by the

information-combination approach. For example, at the 2-year horizon the futures-spread model

reduces the MSPE by 16% relative to the no-change forecast, while the SV-BVAR model with the

common factor from all existing activity measures improves the MSPE by 29%.

This evidence suggests that some popular ideas about pooling information from different sources

using either a model-based or a market-based approach do not work particularly well in our context.

We will explore in Section 4 some alternative approaches to pooling that may hold more promise.

Before doing so, however, we first evaluate our set of models in terms of an alternative dimension

that has received little attention in the literature, which is forecasting petroleum consumption.

3 Forecasting Global Petroleum Consumption

Up to this point in the paper we have been considering using models like the SV-BVAR for purposes

of forecasting a single variable, which is the real price of oil. However, price forecasts are only

one aspect of future developments in energy markets. Government agencies like the U.S. Energy

Information Administration (EIA), intergovernmental organization like the International Energy

Agency (IEA) and OPEC, and oil companies such as BP also regularly release short-term and long-

term projections for oil and liquid fuels consumption as a complement to their price outlook and key

component of their overall assessment of global energy demand. For example, the EIA publishes

monthly consumption forecasts in its Short-Term Energy Outlook but the length of the forecast

horizon varies each month from a maximum of 24-months-ahead to a minimum of 13-months-ahead.

However, it is not clear how these forecasts are generated. To the best of our knowledge, there are

currently no model-based forecasts for global petroleum consumption available. We use the set of

VAR models that have been shown to work well for forecasting the real Brent price to also produce

forecasts for global petroleum consumption. While it would seem natural to evaluate the accuracy

of our forecasts against those of the EIA, this is not possible since there are no publicly available

records of the EIA’s historical forecasts of monthly global petroleum consumption for our entire

evaluation period that would enable such a comparison. Moreover, their maximum forecast horizon

that is consistently available each month from October 2007 onward is one year, while we focus

on a forecast horizon of two years. Absent an alternative forecast as benchmark, we follow the

macroeconomic forecasting literature and consider a univariate linear autoregressive (AR) model

which is the standard when evaluating forecasts of real economic variables (see, e.g., Chauvet and
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Potter, 2013; Alquist et al., 2013).21 We set the lag length to p = 12 to be consistent with our VAR

models. While all models are estimated with petroleum consumption entering in growth rates, we

evaluate the forecasts in levels since both the EIA and the IEA report their consumption forecasts

in terms of million barrels per day.

Table 6 presents the recursive MSPE ratios for forecasts of global petroleum consumption ob-

tained with the BVAR models with and without stochastic volatility using the same five economic

activity indicators as before and the two model-based pooling methods. Panel (a) shows that none

of the BVAR models beats the AR(12) benchmark. All the MSPE ratios are above 1, and their

performance quickly deteriorates as the forecast horizon lengthens. Adding stochastic volatility

improves the forecast accuracy considerably but the models still only outperform the benchmark at

the one-month-ahead horizon with MSPE reductions between 3% and 7% as summarized in panel

(b). The only model showing any promise beyond the one-month horizon is the one that features the

world industrial production index which consistently produces the lowest MSPE ratios being essen-

tially tied with the benchmark model for horizons 3 months to a year. The WIP model is also more

accurate than either forecast combination or a specification exploiting the large dataset of all dis-

aggregated data underlying the existing economic activity indicators (panel c). This disappointing

forecasting performance suggests that our vector autoregressions may be missing important predic-

tor variables that carry useful information for future global petroleum consumption, a possibility

that we explore in the next section.

4 Towards A New Indicator of Global Economic Conditions

So far the literature has focused on developing indicators that capture cyclical variation in global real

economic activity. These measures are rather limited in scope since they are all constructed based

on a single category of variables such as shipping freight rates, commodity prices, steel production

or industrial production. The question to which we now turn is whether global economic conditions

as they relate to energy markets can be represented by any narrow set of variables or combinations

thereof or whether there is value in diversifying the basket of variables to include new categories

that cover additional dimensions of the global economy. While the forecasting success for the real

price of Brent suggests that the information contained in existing activity measures is suffi cient,

there is reason to believe that considering other types of data might help improve the forecast

accuracy for global petroleum consumption. Moreover, since the predictive content of different

variables can change over time, relying on a more diverse dataset reduces the risk of obtaining

results that are too heavily affected by the idiosyncratic behavior of individual measures in specific

periods. Using a broader variety of predictor variables to form a global indicator also exonerates

21This standard was suggested to us by James Stock. We also evaluated our model forecasts relative to a random-

walk benchmark, using which the superiority of our model becomes even more stark. Since some of that superiority

may come from seasonality and mean reversion that one sees in the consumption data, we use the AR(12) as a tougher

benchmark.
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the forecaster from having to choose one specific measure of economic activity.

The next section describes the set of variables that we investigate for whether they could capture

important information about the global economy as it relates to energy markets.

4.1 A Multi-Dimensional Approach

We compile the set of 16 indicators summarized in Table 7 that cover a broad spectrum of variables

tied to energy demand.22 The variable selection is guided by four principles. First, the set of vari-

ables should represent different categories of data in order to span multiple dimensions of the global

economy. We broadly define eight categories: real economic activity, commodity prices, financial

indicators, transportation, uncertainty, expectations, weather, and energy-related measures. Sec-

ond, each individual variable should matter for energy demand on economic grounds. Third, it

should have the broadest possible coverage geographically, conceptually and in time. Fourth, the

number of variables should be kept at a manageable size to ensure that the dataset can be easily

updated in a real-time setting. In fact, many energy market analysts, financial traders, investment

banks, and government institutions tend to track a relatively small number of indicators to as-

sess the current and future state of economic conditions related to energy markets. For example,

the EIA’s December 2019 Short-Term Energy Outlook considers developments of U.S. real GDP,

China’s Purchasing Managers’Index, the S&P500 equity index, and the copper-to-gold ratio as a

measure of market sentiment on global economic growth as important factors in their assessment of

energy markets. Investment banks like Morgan Stanley and Merrill Lynch often base their outlook

on global manufacturing indicators, measures of business confidence, sales of commercial vehicles,

and U.S. leading economic indicators, among others.

Real economic activity. As discussed above, current and future economic activity are a key

determinant of global economic conditions and energy demand. We include the world industrial

production index as the broadest measure of real output in the industrial sector at a global scale.

The world industrial production index is also important to include because it includes production

measures from manufacturing, mining, and utilities, sectors that are closely tied to energy in

that they use oil and refined petroleum products in the production process. We also include the

Conference Board Leading Economic Index. This is a closely watched leading indicator with a

proven track record of signaling peaks and troughs in the business cycle. While it is U.S.-specific, it

consists of a range of measures that are key for capturing future economic trends. A third measure

we use is the OECD consumer confidence index, which is the broadest available measure to gauge

future outlook for households’ consumption spending and savings. This survey-based indicator

summarizes whether the attitude of consumers is optimistic or pessimistic by asking households

about their expected financial situation, their sentiment about the general economic situation,

unemployment and capability of savings.

22Please refer to Table 7 for the start date of each series, the data transformation, and the data source.
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Commodity prices. Among commodity prices, copper stands out in its importance in manu-

facturing, construction, and infrastructure. Copper prices have been used in a number of studies

as a representative commodity price and barometer of future global growth (see, for example, Hu

and Xiong, 2013; Hamilton, 2015; Bernanke, 2016). The nominal price of copper is deflated by the

U.S. consumer price index.

Financial indicators. Our two main financial indicators are foreign exchange and stock returns.

Exchange rate fluctuations reflect trade and financial flows and changes in economic activity. They

also are tightly linked to energy demand (see, for example, De Schryder and Peersman, 2015). We

select the broad real trade-weighted U.S. dollar index not only because this series extends furthest

back in time, but also because oil prices are quoted in dollars and changes in the exchange rate

often translate into changes in petroleum consumption in oil-importing countries. Our measure for

stock returns is based on the MSCI world index which contains stocks from companies throughout

the world and represents a broad cross-section of global markets. We also use a third financial

indicator that is more specific to energy demand, which is the excess return earned on the Fama-

French (FF) portfolio for the transportation sector. The transportation sector is obviously the most

energy-intensive sector, so excess returns in this sector should provide forward-looking information

for energy consumption.

Transportation. We also use two real indicators of transportation demand. Registrations of

vehicles are indicative of the future demand for gasoline and diesel. The longest available series

with the broadest coverage is for passenger cars in OECD countries which covers the number

of newly registered private cars and commercial vehicles. Given that the automobile industry is a

large sector in many major economies, car sales which precede registration also matter for aggregate

fluctuations. To complement this stock variable, we also include a flow measure of traffi c volume

represented by U.S. total vehicle miles traveled.

Uncertainty measures. Crude oil production and prices are often driven by geopolitical events.

These events can matter not just for the oil market but can also influence the global economy

more broadly. We use the geopolitical risk index developed by Caldara and Iacoviello (2018).

This should reflect increasing supply disruption risks and translate into rising concerns about

the future availability of oil which will influence energy demand behavior worldwide. Long-run

oil price uncertainty is another important determinant of energy-related spending by consumers

and businesses (see, e.g., Bernanke, 1983; Pindyck, 1991; Jo, 2014). Here it is defined as realized

volatility computed based on daily returns for WTI futures contracts with a maturity of 12 months.

Expectations measures. Our set of variables also includes the index of consumer expectations

from the University of Michigan Consumer Survey which aggregates households’assessment of the

short-term and long-term outlook of the general economy. We also construct a measure of oil price

expectations based on the difference between WTI futures prices with 3 and 12 months to maturity.

This market-based measure should signal the direction of expected price changes which will likely

influence spending on energy-dependent goods and services.

Weather indicators. A key global weather-related variable is El Niño. We use the Oceanic
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Niño Index (ONI) which is available from the National Oceanic and Atmospheric Administration’s

(NOAA) National Climatic Data Center.23 Cashin, Mohaddes, and Raissi (2017) discuss the im-

portance of this complex weather phenomenon for global macroeconomic performance. It also has

direct implications for energy demand as higher temperatures associated with El Niño episodes lead

to more fuel demand for power generation. Another weather-related indicator provided by NOAA

is the Residential Energy Demand Temperature Index (REDTI) which is based on population-

weighted heating and cooling degree days in the United States, and as such, is a valuable tool for

measuring fluctuations in energy demand for residential heating and cooling.

Energy-related indicators. The broadest energy-specific measure is energy production and elec-

tricity distribution for the EU28. This is not only directly tied to energy demand but is also an

indicator for the overall intensity of economic activity since the production of most goods and

services requires electricity (see Arora and Lieskovsky, 2014).

We extract the first principal component from this unbalanced panel of 16 variables by applying

the EM algorithm recursively and use this estimated factor to replace the economic activity measure

in our four-variable consumption-based BVAR(12) model with stochastic volatility. Row 1 of Table

8 shows that this factor-augmented model produces forecasts of the real Brent price that are

marginally less accurate than forecasts from the set of models with existing measures of global

real activity. At horizons up to 9 months MSPEs are at most 3% higher compared to the best-

performing individual model in Table 4(b). This difference shrinks to at most 1% for longer horizons

with the factor-augmented VAR being the most accurate 24 months ahead. This small loss in

forecasting performance for oil prices is more than made up for by the dramatic improvement in

forecasts of global petroleum consumption. Row 6 of Table 8 shows that the factor-augmented model

outperforms the AR(12) benchmark at all horizons with impressive MSPE reductions between 6%

and 13% some of which are statistically significant.

We conclude that while the forecasting performance for the real Brent price is comparable across

indicators, the forecasting success for global petroleum consumption confirms our earlier conjecture

that existing global economic activity measures miss information that is relevant for determining

energy demand. The obvious next question is whether including additional variables from each

data category can improve the joint forecast accuracy further.

4.2 Is More Information Better?

To address this question, we collect an additional 150 variables listed in Table 9 to form a very large

dataset, which substantially expands the coverage of each of the 8 broad categories in Table 7.24

We also add all the disaggregated data from the existing real economic activity indices, bringing

23The term El Niño refers to the large-scale ocean-atmosphere climate interaction linked to a periodic warming

in sea surface temperatures across the central and east-central Equatorial Pacific. The ONI is NOAA’s primary

indicator for monitoring El Niño and La Niña, which are opposite phases of this climate pattern and it is based on

the average sea surface temperature in the Niño region.
24Note that the cross-section of commodity prices is already included in Table 2.
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the total up to 256 variables. Row 2 of Table 8 shows that substantially increasing the size of the

panel does not improve the usefulness of the first principal component for forecasting the real Brent

price, and row 7 shows that it leads to a deterioration of the forecast performance for petroleum

consumption for all but the one-month-ahead forecast. At the one to two-year horizons relying on

a factor extracted from the larger dataset results in an increase in the MSPE of 6%.

It is conceivable that for such a large cross-section of variables one factor is simply not suffi cient

to capture the features influencing oil prices and consumption. We therefore extract additional

factors and include them in our forecasting model. As can be seen from rows 3 and 4 of Table

8, adding more factors worsens the forecast accuracy for the real Brent price considerably. In

particular, the model with three factors implies a loss of 10-15% in MSPE reductions beyond the

one-year horizon. Rows 8 and 9 show that for global petroleum consumption the forecasting gains

vanish from horizon 6 onward with all MSPE ratios above 1. One potential issue with using more

factors to construct the forecasts is that the informational advantage of incorporating additional

factors can be outweighed by the increased parameter uncertainty which penalizes out-of-sample

forecasting accuracy. Overall these findings are in line with Boivin and Ng (2006) who show that

factors extracted from a larger panel do not necessarily improve forecasting performance and can

actually lead to inferior forecasting performance. The reason why it is not always optimal to use all

available data to extract factors is that as more series from the same data category are added, the

possibility of cross correlation in the idiosyncratic errors increases which leads to a loss in forecast

effi ciency. We conclude that what matters most for the joint forecasting success is the composition

not the size of the dataset.

The 16 variables in Table 7 were chosen based on their economic relevance and broadness of

coverage to be representative of different aspects of the global economy. Our larger 256-variable

dataset offers an alternative possibility for selecting the most relevant variables using statistical

criteria. Specifically, we use the 16 variables with the highest loadings in absolute value on the

first principal component. To mimic the choice a forecaster would have made at the beginning of

the evaluation period, the dataset from which the factor is extracted ends in 1991.12.25 Row 5

of Table 8 shows that the statistical variable selection leads to additional gains for the real Brent

price forecasts yielding further MSPE reductions of up to 3% at long horizons. However, these

gains come at the expense of the forecast accuracy for petroleum consumption (row 10). This

model has much higher MSPE at all horizons and from horizon 12 onward it no longer beats the

AR(12) benchmark.

Based on this analysis, we conclude that our smaller, economically-motivated set of 16 variables

25This reduces the number of series to 191. The variables selected are the following in the order of the magnitude

of loadings: long-run oil price uncertainty, spread of oil price expectations, real freight rates for fertilizer (potash)

from Germany to India, short-run gasoline price uncertainty, Conference Board Leading Economic Index, FF indus-

try portfolio: utilities, MSCI world index, FF industry portfolio: chemicals, FF industry portfolio: oil, FF industry

portfolio: transportation, FF industry portfolio: cars, Composite Leading Indicator for Japan, OECD business con-

fidence index, real freight rates for fertilizer (phosrock) from West Africa to India, Australian unemployment rate,

and Chinese consumer confidence index.
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gives the most reliable signal and results in the best overall forecasts.

4.3 A Global Economic Conditions Indicator

Panel A of Figure 4 displays the first principal component of the 16 variables in Table 7 over the

period 1973.2 to 2019.8. We will refer to this series as our global economic conditions indicator

(GECON).26 The series is normalized so that it has a mean of zero and a standard deviation of

one which facilitates the interpretation. Thus a value of zero corresponds to economic conditions

characterized by normal trend growth. Given that the underlying monthly data series are some-

what volatile we report the 6-month moving average to get a better summary of the persistent

movements in the global economy. The indicator tracks known episodes of worldwide contractions

and expansions well. The downturn related to the 2008-2009 financial crisis is the most severe

with the indicator being five standard deviations below its long-run average followed by the world-

wide recession of 1974-75. The second half of the eighties and the mid-2000s are periods of strong

economic conditions. The indicator signals an improvement in global economic conditions in 2013

followed by a period of sluggish growth in 2015-17.

It is useful to take a closer look at the contributions of different data categories to the movements

in the global indicator to appreciate the value of a diverse dataset. This decomposition can be found

in panel B of Figure 4 which shows the contributions of the four most important categories over

time. As can be seen, the relative importance of different categories varies over time. For example,

most of the boom in the mid-80s is captured by the financial indicators. Real activity accounts for

the largest share of the downturns in 1974-75 and the early 1980s as well as in the Great Recession,

while financial indicators also help identify the early 2000s slowdown. Uncertainty is a major factor

in the early 1990s slump. Financial indicators and uncertainty are the most important measures of

the most recent fluctuations. Transportation contributes a small share overall and matters more in

the early part of the sample than in more recent times.

4.4 The Role of Real-Time Data Constraints

Up to this point in the paper our forecasts have been generated using a pseudo real-time setting

which relies on the most recent vintage of data and assumes that all data are available up to the

point in time when the forecasts are produced. In practice, forecasters often face real-time data

constraints in the form of data becoming available only with a lag and preliminary data being

revised for some time after the first release. One concern is that not accounting for delays and

revisions in data releases may result in overly optimistic assessments of the ability to forecast oil

prices (see Alquist et al., 2013).

How severe are real-time data constraints for oil price forecasting? Baumeister and Kilian (2012)

address this question by developing a real-time dataset for the oil market and investigating for which

26This series is available at https://sites.google.com/site/cjsbaumeister/research.
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variables the real-time data aspects matter most. They provide evidence that having more accurate

and timely data for the refiner acquisition cost of imported oil has the highest payoff in terms of out-

of-sample forecasting performance, while both data revisions and lags in data availability for global

oil production and OECD crude oil inventories play a negligible role. They confirm this finding by

replacing the RAC with the West Texas Intermediate (WTI) spot price which is available in final

form in real time and conclude that abstracting from real-time data constraints has little effect on

the measures of forecast accuracy for the real WTI. Since we are using the Brent price, which is

also available in real time and not subject to revisions, we would not expect differences in forecast

accuracy to be driven by the energy market variables.

This leaves us with the series underlying the global economic conditions indicator which are

released with varying degrees of delay. Six out of the 16 series are available in real time and based

on data that are not subsequently revised.27 The broad real trade-weighted U.S. dollar index is

also released without delay but is subject to some minor revisions due to the inflation component.

The update of the Fama-French industry portfolio is lagging by two months, but data for this series

are final. The remaining eight series become available with a delay and are subsequently revised.28

Baumeister and Kilian (2012) show that lags in data availability are a much bigger concern than

revisions to preliminary data. This is reassuring since we can assess the relevance of publication

delays, while it is not feasible to construct a true real-time version of our dataset that tracks data

revisions over time. Moreover, it is likely that for the variables underlying the global economic

conditions indicator data revisions would be picked up as idiosyncratic noise that is filtered out by

extracting a principal component.

We investigate the role of lags in data releases by assuming that the most recent value for variable

i for month t (yit) is the value observed for yi,t−mi where mi is the delay parameter associated with

that variable indicated in Table 7. This parameter was determined based on the number of missing

observations for each series at the end of April 2019 when this dataset was originally assembled.

To fill in gaps at the end of the sample, we follow Baumeister and Kilian (2012, 2014a) who show

that simple nowcasting techniques based on the time series properties of the data perform best.29

Table 10 compares the recursive MSPE ratios for forecasts of the real Brent price and global

petroleum consumption using observed and nowcasted values at the end of the sample for all

forecast horizons from 1 to 24 months. As can be seen, taking data delays into account makes little

difference overall. The forecast accuracy for the real Brent price suffers slightly for horizons up to

27These include the MSCI world index, copper prices, long-run oil price uncertainty, the index of consumer expec-

tations, the spread between short-run and long-run oil price expectations, and the geopolitical risk indicator.
28For details on the delays in data availability for each variable, see Table 7.
29Please refer to Table 7 for a summary of the nowcasting rules for each variable entering the GECON index.

Alternatively, we could make use of the EM algorithm to fill in the missing data. While the results turn out to be

very similar for the price forecasts, the simple rules work slightly better for consumption forecasts. For petroleum

consumption which becomes available with a delay of 2 months and for OECD petroleum stocks which are lagging

3 months, we extrapolate the missing values based on their average growth rates. While the nominal Brent price is

available in real time, the release of the U.S. CPI is delayed by 1 month. To deflate the Brent price, we nowcast the

CPI based on past average inflation.
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9 months when nowcasted data are used registering an average loss of 2% in MSPE reductions,

but is basically unaffected at longer horizons. Interestingly, the real-time nature of the data has

a positive effect on global petroleum consumption forecasts leading to gains in MSPE ratios of up

to 3% for short horizons. In contrast to the pseudo real-time setting, these MSPE reductions are

highly statistically significant. The likely reason for this finding is that in the case of petroleum

consumption, the gaps in data availability not only affect the SV-BVAR model forecast but also

the AR benchmark so that it is not clear a priori which way the MSPE ratios go. From the

results it is clear that the nowcasted data for consumption are putting the benchmark model at a

slight disadvantage in the short run. In the medium term, this ranking is reversed and the pseudo

real-time model performs slightly better.

5 Assessing Energy-Market Conditions

Based on our preferred forecasting model that takes real-time data constraints into account, we

propose a set of monitoring tools to summarize expected future conditions in energy markets.

First we introduce an energy demand indicator based on our preferred model’s forecast of global

petroleum consumption. Next we quantify oil price risks by forming an oil price pressure index.

5.1 A Barometer for Future Energy Demand

An important concern for energy market participants, industry analysts, policymakers, government

agencies like the EIA, and international organizations like the IEA and the IMF is how demand for

energy will evolve in the near term. How can we gauge what demand conditions are expected to

prevail in the future? We propose to look at the difference between the 13-month-ahead forecast of

the level of consumption and the 1-month-ahead forecast of the level of consumption. This measure

summarizes the slope of the forecasts as a function of horizon. An increase in this forecast measure

can be viewed as signaling rising demand pressures over the next year. Figure 5 shows the 6-month

moving average of our energy demand indicator over the period 1992.1 to 2019.8. Each point in

the graph tells us whether demand conditions are expected to be tight or loose relative to the past.

The figure shows strong anticipated growth in demand after the East Asian crisis in 1997. A sharp

tightening in demand conditions is also evident before the Great Recession. Demand pressures ease

with the recession but growth in energy demand is predicted to pick up again afterwards. Demand

conditions are anticipated to loosen as a result of the European double-dip recession. Expected

demand pressures have been mounting again since 2012 with steep predicted growth in demand

in mid-2014 when oil prices fell dramatically. Recently there is an indication that energy demand

growth in the world is expected to slow down amid weakening economic conditions.
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5.2 Measuring Oil Price Risks

Policymakers and other users of oil price forecasts are typically not only interested in the expected

future path of the real oil price but would also like to assess the likelihood that prices exceed a

certain upper threshold or fall below a certain lower threshold. This matters because a predicted

increase in the probability of higher or lower prices relative to the recent past can affect firms’

and consumers’spending plans with the potential to influence macroeconomic performance in the

short run (see, e.g., Hamilton, 1996, 2003). Our Bayesian forecasting model delivers an entire

distribution of forecasts for each horizon based on which we compute the probability that the

forecast will fall outside a specific price range. While oil companies, households, and firms may

differ in the thresholds they care about, we calculate probabilities that the oil price will end up

outside the upper and lower bounds of recent experience.30

5.2.1 The Construction of Oil Price Pressure Measures

We propose a new measure that signals the likelihood of a build-up of upward and downard oil price

pressures relative to the recent past. Specifically, we compute the probabilities that the expected

price will remain within the range of values experienced recently, rise above or fall below this

range. For this purpose, we estimate the predictive density and allow for dynamically-changing

cutoff points based on the minimum and maximum values of oil price levels over the past year. The

resulting measures will indicate the risk of unusually high or low prices.

Our model implies a probability based on information It observed in month t that oil prices h

months from now will exceed the highest value seen over the last year:

Pr([poilt+h > max{poilt , poilt−1, poilt−2, ..., poilt−11}]|It].

Following Jackson, Kliesen, and Owyang (2015), we can calculate an average value of this proba-

bility over the coming year,

PPMoil,+
t = (1/12)

12∑
h=1

Pr([poilt+h > max{poilt , poilt−1, poilt−2, ..., poilt−11}]|It].

This measure is plotted in the middle panel of Figure 6. Similarly we can calculate a probability

that prices on average over the next year will fall below the lowest value seen over the last 12

months:

PPMoil,−
t = (1/12)

12∑
h=1

Pr([poilt+h < min{poilt , poilt−1, poilt−2, ..., poilt−11}]|It].

This measure is plotted in the last panel of Figure 6. The probability of staying within the recent

range is

PPMoil,neutral
t = 1− PPMoil,+

t − PPMoil,−
t ,

30Baumeister and Kilian (2014b) also conduct an analysis of the risks embodied in oil price forecasts, but they

propose a different set of risk measures based on a structural model of the global oil market. In particular, they

focus on risks associated with hypothetical events about future oil supply and demand conditions summarized in

probability-weighted predictive densities.
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plotted in the top panel of Figure 6.

A number of well-known historical episodes stand out in Figure 6. In the aftermath of the Asian

financial crisis, the probability that oil prices would fall below the lowest price over the past 12

months remained consistently high at 40% over a period of two years before plummeting to zero

in early 2000. After oil prices reached a record low in December 1998, the likelihood of upward

price pressures spiked resulting in a 55% probability that the Brent price will on average surpass

its highest value during the past year over a 12-month horizon. At the onset of the Great Recession

the average probability that the Brent price would exceed the previous year’s price maximum over

the next 12 months dropped from around 40% to essentially zero, while chances of prices falling

below the lower threshold jumped up to 50% followed by an all-time high of staying within the

new lower price range of close to 80% in mid-2009. From 2012 onward, the odds that the Brent

price would drop below its most recent lower bound gradually increased reaching a peak of 70%

in early 2015. Starting in 2016 it becomes more and more likely that oil prices will top the price

ceiling in place during the preceding 12 months in the coming year. As of August 2019, the price

pressure measures indicate on average a 20% probability of the Brent price exceeding the recent

upper threshold of $81 and a 30% probability of falling below the recent lower threshold of $57 in

the period up to August 2020.

5.2.2 A Historical Perspective on Expected Oil Price Pressures

So far we have focused on the average probability that oil prices will rise above or drop below a

recent price band over the next 12 months. It is also useful to look at the risk assessment implied

by the model over a two-year horizon at a given point in time. Figure 7 displays the probabilities

based on the forecast distributions for the real Brent price up to 24 months ahead for three selected

historical episodes. ‘Status quo’refers to the probability of the future oil price fluctuating within

last year’s price range, ‘upward price pressure’indicates the probability of exceeding the maximum

price of last year, and ‘downward price pressure’measures the probability of falling below the

minimum price of last year. While the forecasts are produced for the real price, in what follows we

discuss historical episodes in terms of dollar prices since they are more easily remembered.

Panel A shows the expected price pressures as of May 2004, just before the oil price started its

gradual ascent to new highs. Between June 2003 and May 2004 the Brent price fluctuated between

$27 and $38. The predictive probabilities signal elevated risks that the oil price will surpass the

upper bound remaining consistently above 50% throughout the forecasting horizon. While the odds

of oil prices staying within the previous price range increase slightly during the first three months,

this tendency is reversed and probabilities decrease from a high of 40% to about 20%. The model

assigns a fairly low chance of oil prices dropping below the lower bound of $27. In May 2006 the

Brent price was $70.

Another interesting point in time is June 2014. In the year before the onset of the oil price

slump, Brent prices were pretty stable and fluctuated narrowly between $107 and $112. Panel
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B indicates a rapid build-up of downward price pressures which surpasses 50% after the first six

months and reaches a probability as high as 75% at the end of the two-year forecasting horizon.

The probability for oil prices continuing their calm ride subsides quickly falling from 60% at the

one-month horizon to below 10% in the long run. The odds for upward price pressures remain

fairly constant at around 20%. The observed price for Brent crude in June 2016 turned out to be

$48.

After bottoming out in early 2016, the Brent price showed strong signs of recovery which in

June 2016 led to the question of how likely it was that oil prices would continue to climb, hold

steady around that new level, or begin another slide. In the year preceding this third episode, the

Brent price ranged from $31 to $57. As can be seen in Panel C, our model attaches a very high

probability to the status quo in the short run which declines gradually over the next two years to

a low of 40%. Instead, the chances for upward oil price pressures increase steadily reaching about

40% after one year. Risks for oil prices falling below $31 are predicted to be minimal for the first

couple of months but rise to a robust 20% in the medium to long run. In June 2018 the Brent price

reached $74.

This analysis illustrates that the model can be used to derive accurate and timely measures

of risks related to future price developments and of the expected tightness of energy demand

conditions. These measures should help guide policymakers, market analysts, firms, and consumers

in their assessment of the likely future state of energy markets.

6 Conclusions

Global economic conditions are a key driver of energy markets. In this paper we evaluated the

usefulness of several existing measures of global real economic activity that have been proposed in

the literature in terms of their out-of-sample forecasting performance for the real price of oil and

global petroleum consumption. We also compared them to alternative measures derived from a

diverse set of observations on global variables that influence energy demand collected specifically

for this study. Our results imply the following main takeaways. First, for short-horizon oil price

forecasts consumption-based models using world industrial production perform best. Second, for

long-horizon oil price forecasts allowing for stochastic volatility leads to considerable improvements

in forecast accuracy across all indicators. Third, for forecasting the real price of Brent and global

petroleum consumption jointly, the most accurate model uses our newly-developed global economic

conditions indicator based on a set of 16 variables that cover multiple dimensions of the global econ-

omy. We show how the real-time forecasts for price and consumption generated by this model can

be used to derive measures that provide policymakers and markets with a quantitative assessment

of expected oil price pressures and future energy demand conditions.
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A Prior Specifications

To estimate the model in equation (2), we need to form priors for the unobserved volatility states σit
and the set of coeffi cients Π = {B,A,Λ} where Bi = [ci,Φi,1, ...,Φi,p]

′ for i = 1, ...n contains the

VAR coeffi cients, Ai = [a
∗
i,1, ..., a

∗
i,(i−1)]

′ for i = 2, ..., n contains the covariances of the reduced-form

residuals, and Λ is the full covariance matrix of the vector of innovations ηt to the law of motion of

the volatilities. Following Carriero, Clark, and Marcellino (2019), we postulate the following prior

distributions: Bi ∼ N (mB,VB), Ai ∼ N (mA,VA), and Λ ∼ IW (νS, ν).

The prior mean mB and prior variance VB for the VAR coeffi cients Bi in equation i are set

according to the Minnesota prior beliefs:

mB =

{
δ for first own lag

0 otherwise
, VB =


λ1
jλ3

for own lags
λ1λ2
jλ3

s2i
s2k

for all other lagged predictor variables (k 6= i)

s2iλ4 for intercept

,

where k = 1, ..., n are the number of endogenous variables (n = 4), j = 1, ..., p indicates the lag

length (p = 12), and si and sk denote the estimated standard deviations of the residuals from a

univariate autoregression fit to variables i and k (see, for example, Litterman, 1986; Sims and Zha,

1998). The ratio s2i /s
2
k accounts for the possibility that variables yi and yk may have different

scales. We set the prior mean for the real price of oil to δ = 0.99 given its persistence and for

all other endogenous variables to δ = 0 given that they enter either in growth rates or changes.

The hyperparameter λ1 controls the overall tightness of the prior and λ2 ≤ 1 allows for additional
shrinkage on the coeffi cients of lagged endogenous variable k in VAR equation i for k 6= i (cross

shrinkage). We set λ1 = 0.05 and λ2 = 0.5 as recommended by Carriero et al. (2019). The

shrinkage parameter λ1 is scaled by jλ3 such that it gets smaller with increasing lag length which

incorporates the belief that coeffi cients on more distant observations are more likely to be zero.

The hyperparameter λ3 governs the rate of the lag decay. For i = 2, ..., n, we postulate a quadratic

decay by setting λ3 = 2, and for i = 1, we set λ3 = 1 for own lags which amounts to a linear decay,

and λ3 = 6 for variables other than the dependent variable. λ4 determines the tightness of the

prior for the constant term and is set to 10 which is pretty uninformative.

The prior mean mA for the covariances of the error terms is set to 0 and and the prior variance

VA is a diagonal matrix with entries on the diagonal set to 106 which implies an uninformative

prior on the coeffi cients in Ai.

The prior for the covariance matrix Λ is inverse Wishart with scale matrix νS and ν degrees of

freedom. We set the degrees of freedom equal to ν = n+ 3 and S = 0.15In where In is an (n× n)
identity matrix.

As in Carriero et al. (2019), the model is closed by forming a prior for the initial value of the

state variables which is set to independent Gaussian: σ2i ∼ N(0, 100).

27



References

Alquist, Ron, Saroj Bhattarai, and Olivier Coibion (2019). "Commodity-Price Comovement

and Global Economic Activity," Journal of Monetary Economics, forthcoming.

Alquist, Ron, Lutz Kilian, and Robert Vigfusson (2013). "Forecasting the Price of Oil," in:

Graham Elliott and Allan Timmermann (eds.), Handbook of Economic Forecasting, Volume 2A,

Amsterdam: North-Holland, 427-507.

Arora, Vipin, and Jozef Lieskovsky (2014). "Electricity Use as an Indicator of U.S. Economic

Activity," EIA Working Paper.

Baker, Scott, Nicholas Bloom, and Steve Davis (2016). "Measuring Economic Policy Uncer-

tainty," Quarterly Journal of Economics 131(4): 1593-1636.

Baumeister, Christiane, and James D. Hamilton (2019). "Structural Interpretation of Vector

Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand

Shocks," American Economic Review 109(5): 1873-1910.

Baumeister, Christiane, and Lutz Kilian (2012). "Real-Time Forecasts of the Real Price of Oil,"

Journal of Business and Economic Statistics 30(2): 326-336.

Baumeister, Christiane, and Lutz Kilian (2014a). "What Central Bankers Need to Know About

Forecasting Oil Prices," International Economic Review 55(3): 869-889.

Baumeister, Christiane, and Lutz Kilian (2014b). "Real-Time Analysis of Oil Price Risks Using

Forecast Scenarios," IMF Economic Review 62(1): 119-145.

Baumeister, Christiane, and Lutz Kilian (2015). "Forecasting the Real Price of Oil in a Chang-

ing World: A Forecast Combination Approach," Journal of Business and Economic Statistics 33(3):

338-351.

Baumeister, Christiane, Lutz Kilian, and Thomas K. Lee (2014). "Are There Gains from

Pooling Real-Time Oil Price Forecasts?" Energy Economics 46: S33-S43.

Baumeister, Christiane, Lutz Kilian, and Thomas K. Lee (2017). "Inside the Crystal Ball: New

Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics 32(2):

275-295.

Baumeister, Christiane, and Gert Peersman (2013). "The Role of Time-Varying Elasticities

in Accounting for Volatility Changes in the Crude Oil Market," Journal of Applied Econometrics

28(7): 1087-1109.

Bai, Jushan, and Serena Ng (2002). "Determining the Number of Factors in Approximate

Factor Models," Econometrica 70(1): 191-221.

Bernanke, Ben S. (1983). "Irreversibility, Uncertainty, and Cyclical Investment," Quarterly

Journal of Economics 98(1): 85-106.

28



Bernanke, Ben S. (2006). "Energy and the Economy," speech to the Economic Club of Chicago,

June 15.

Bernanke, Ben S. (2016). "The Relationship between Stocks and Oil Prices," Brookings Institu-

tion, https://www.brookings.edu/blog/ben-bernanke/2016/02/19/the-relationship-between-stocks-

and-oil-prices/.

Bernard, Jean-Thomas, Lynda Khalaf, Maral Kichian, and Clement Yelou (2018). "Oil Price

Forecasts for the Long Term: Expert Outlooks, Models, or Both?"Macroeconomic Dynamics 22(3):

581-599.

Boivin, Jean, and Serena Ng (2006). "Are More Data Always Better for Factor Analysis?"

Journal of Econometrics 132(1): 169-194.

Caldara, Dario, and Matteo Iacoviello (2018). "Measuring Geopolitical Risk," mimeo, Federal

Reserve Board of Governors.

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2015). "Bayesian VARs: Spec-

ification Choices and Forecast Accuracy," Journal of Applied Econometrics 30(1): 46-73.

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2019). "Large Vector Autore-

gressions with Stochastic Volatility and Non-Conjugate Priors," Journal of Econometrics, forth-

coming.

Cashin, Paul, Kamiar Mohaddes, and Mehdi Raissi (2017). "Fair Weather or Foul? The

Macroeconomic Effects of El Niño," Journal of International Economics 106: 37-54.

Chauvet, Marcelle, and Simon Potter (2013). "Forecasting Output," in: Graham Elliott and

Allan Timmermann (eds.), Handbook of Economic Forecasting, Volume 2A, Amsterdam: North-

Holland, 141-194.

Clark, Todd E., and Michael W. McCracken (2015). "Nested Forecast Model Comparisons: A

New Approach to Testing Equal Accuracy," Journal of Econometrics 186(1): 160-177.

Clark, Todd E., and Francesco Ravazzolo (2015). "Macroeconomic Forecasting Performance

Under Alternative Specifications of Time-Varying Volatility," Journal of Applied Econometrics

30(4): 551-575.

D’Agostino, Antonello, Luca Gambetti, and Domenico Giannone (2013). "Macroeconomic Fore-

casting and Structural Change," Journal of Applied Econometrics 28(1): 82-101.

Delle Chiaie, Simona, Laurent Ferrara, and Domenico Giannone (2017). "Common Factors of

Commodity Prices," mimeo, Federal Reserve Bank of New York.

De Schryder, Selien, and Gert Peersman (2015). "The U.S. Dollar Exchange Rate and the

Demand for Oil," Energy Journal 36(3): 263-285.

Diebold, Francis X., and Roberto S. Mariano (1995). "Comparing Predictive Accuracy," Journal

of Business and Economic Statistics 13(3): 253-263.

29



Doan, Thomas, Robert B. Litterman, and Christopher A. Sims (1984). "Forecasting and Con-

ditional Projection Using Realistic Prior Distributions," Econometric Reviews 3(1): 1-100.

Ferrari, Davide, Francesco Ravazzolo, and Joaquin Vespignani (2019). "Forecasting Energy

Commodity Prices: A Large Global Dataset Sparse Approach," CAMP Working Paper Series No

11/2019.

Funk, Christoph (2018). "Forecasting the Real Price of Oil — Time-Variation and Forecast

Combination," Energy Economics 76: 288-302.

Garratt, Anthony, Shaun P. Vahey, and Yunyi Zhang (2019). "Real-Time Forecast Combina-

tions for the Oil Price," Journal of Applied Econometrics 34(3): 456-462.

Giannone, Domenico, Michele Lenza, Daphne Momferatou, and Luca Onorante (2014). "Short-

term Inflation Projections: A Bayesian Vector Autoregressive Approach," International Journal of

Forecasting 30(3): 635-644.

Giannone, Domenico, Michele Lenza, and Giorgio Primiceri (2015). "Prior Selection for Vector

Autoregressions," Review of Economics and Statistics 97(2): 436-451.

Hamilton, James D. (1996). "This is What Happened to the Oil Price-Macroeconomy Rela-

tionship," Journal of Monetary Economics 38(2): 215-220.

Hamilton, James D. (2003). "What is an Oil Shock?" Journal of Econometrics 113(2): 363-398.

Hamilton, James D. (2015). "What’s Driving the Price of Oil Down?" https://econbrowser.com/

archives/2015/01/whats-driving-the-price-of-oil-down-2

Hamilton, James D. (2019). "Measuring Global Economic Activity," Journal of Applied Econo-

metrics, forthcoming.

Hu, Conghui, and Wei Xiong (2013). "Are Commodity Futures Prices Barometers of the Global

Economy?" in: Weyl, Glen E., Edward L. Glaeser, and Tano Santos (eds.), Apres le Deluge: Finance

and the Common Good after the Crisis.

Jackson, Laura E., Kevin L. Kliesen, and Michael T. Owyang (2015). "A Measure of Price

Pressures," Federal Reserve Bank of St. Louis Review, First Quarter, 25-52.

Jo, Soojin (2014). "The Effects of Oil Price Uncertainty on Global Real Economic Activity,"

Journal of Money, Credit, and Banking 46(6): 1113-1135.

Kilian, Lutz (2009). "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply

Shocks in the Crude Oil Market," American Economic Review 99(3): 1053-1069.

Kilian, Lutz (2019). "Measuring Global Economic Activity: Do Recent Critiques Hold Up to

Scrutiny?" Economics Letters 178: 106-110.

Kilian, Lutz, and Xiaoqing Zhou (2018). "Modeling Fluctuations in the Global Demand for

Commodities," Journal of International Money and Finance 88: 54-78.

Litterman, Robert B. (1986). "Forecasting with Bayesian Vector Autoregressions —Five Years

of Experience," Journal of Business and Economic Statistics 4(1): 25-38.

30



Manescu, Cristiana, and Ine van Robays (2016). "Forecasting the Brent Oil Price: Addressing

Time-Variation in Forecast Performance," mimeo, European Central Bank.

Pindyck, Robert S. (1991). "Irreversibility, Uncertainty, and Investment," Journal of Economic

Literature 29(3): 1110-1148.

Plante, Michael D. (2019). "OPEC in the News," Energy Economics 80: 163-172.

Primiceri, Giorgio E. (2005). "Time Varying Structural Vector Autoregressions and Monetary

Policy," Review of Economic Studies 72(3): 821-852.

Ravazzolo, Francesco, and Joaquin Vespignani (2019). "World Steel Production: A New

Monthly Indicator of Global Real Economic Activity," Canadian Journal of Economics, forth-

coming.

Sims, Christopher A., and Tao Zha (1998). "Bayesian Methods for Dynamic Multivariate

Models," International Economic Review 39(4): 949-968.

Stock, James H., and Mark W. Watson (2002). "Macroeconomic Forecasting Using Diffusion

Indexes," Journal of Business and Economic Statistics 20(2): 147-162.

Stock, James H., and Mark W. Watson (2007). "Why Has Inflation Become Harder to Fore-

cast?" Journal of Money, Credit, and Banking 39(S1): 3-33.

Timmermann, Allan (2006). "Forecast Combinations," in: Graham Elliott, Clive W.J. Granger,

and Allan Timmermann (eds.), Handbook of Economic Forecasting, Volume 1, Amsterdam: North-

Holland, 135-196.

West, Kenneth D., and Ka-Fu Wong (2014). "A Factor Model for Co-movements of Commodity

Prices," Journal of International Money and Finance 42: 289-309.

31



Figure 1: Kilian’s corrected real economic activity index (REA), 1973.1-2019.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: Linearly detrended real shipping cost index. The vertical line indicates the trough of the financial crisis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Alternative monthly indicators of global real economic activity, 1973.2-2018.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NOTES: The real shipping cost factor is extracted from an unbalanced panel of the monthly growth rates of freight 
rates for different shipping routes deflated by the U.S. CPI. World industrial production is shown in month-on-month 
growth rates. The real commodity price factor is extracted from a balanced panel of monthly growth rates of industrial 
and agricultural commodity prices deflated by the U.S. CPI. The global steel production factor is extracted from a 
cross-section of monthly growth rates of crude steel production data for individual and groups of countries with 
different starting dates. See Table 2 for more details on the data underlying these global economic activity indicators. 

 



Figure 3. Recursive mean-squared prediction errors for 3-month-ahead forecast of the  
real refiner acquisition cost, 1992.1-2018.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: The VAR forecasts are generated with a VAR(12) model estimated recursively by least squares using 
either the Kilian index (REA) or the world industrial production index (WIP) as indicator of global real 
economic activity. 

 

 

 

 

 



Figure 4: Global Economic Conditions Indicator (panel A) and its main contributors (panel B), 
1973.2-2019.8, 6-month moving average, expressed in standard deviations from long-run average 

                                                                         Panel A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         Panel B 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5: Energy demand indicator, 1992.1-2019.8 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: This indicator of expected demand pressures is computed as the difference between the 13-month-ahead and 
the 1-month-ahead forecast of global petroleum consumption. The plot shows the six-month moving average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6: Price pressure measures, 1992.1-2019.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: These price pressure indices measure the average probability that the expected price level for Brent crude oil 
over the next 12 months stays within, exceeds or falls below the range of oil price fluctuations over the past year. The 
plots show the six-month moving average. 

 

 

 

 

 



Figure 7: Expected price pressures over the next 24 months for selected historical episodes 
 

Panel A: May 2004 
 
 
 
 

 

 

 

 

 
Panel B: June 2014 

 

 

 

 

 

 

 

 
Panel C: June 2016 

 

 

 

 

 

 

 

 
NOTES: This figure is based on the real-time forecasts obtained with the SV-BVAR(12) model using the Global 
Economic Conditions Indicator. Status quo refers to the probability of the oil price staying within the price range over 
the past year, upward price pressure indicates the probability of exceeding the maximum price over the past year, and 
downward price pressure indicates the probability of falling below the minimum price over the past year.   



         Table 1. Recursive MSPE Ratios Relative to No-Change Forecast of Real Oil Prices in VAR(12) Models with  
                        Alternative Monthly Indicators of Global Real Economic Activity 
 

Monthly 
horizon 

Kilian index 
(REA) 

Real shipping cost 
factor 

World IP index 
(WIP) 

Real commodity 
price factor 

Global steel 
production factor 

 (1) (2) (3) (4) (5) 
 

(a) Real refiner acquisition cost of crude oil imports: 1992.1-2010.6 
1    0.679**    0.703**    0.657**    0.723**   0.694** 
3 0.779 0.806 0.728 0.780 0.776 
6 0.989 0.956 0.867 0.912 0.925 
9 1.115 1.025 0.988 1.048 1.000 
12 1.099 0.992 0.975 1.021 0.940 
18 1.083 0.962 0.975 0.956 0.946 
24 1.122 1.071 1.095 0.995 1.054 

 
(b) Real refiner acquisition cost of crude oil imports: 1992.1-2018.8 

1 0.865  0.804*    0.765**    0.781**    0.795** 
3 0.955 0.911 0.852 0.841 0.911 
6 1.074 1.008 0.972 0.933 1.025 
9 1.154 1.044 1.061 1.036 1.067 
12 1.159 1.031 1.069 1.038 1.045 
18 1.087 0.997 0.979 0.948 0.967 
24 1.045 1.000 0.941 0.925 0.946 
 

(c) Real Brent price of crude oil: 1992.1-2018.8 
1 1.075 0.998 0.946 0.961 0.997 
3 1.072 1.027 0.953 0.970 1.044 
6 1.172 1.087 1.060 1.021 1.105 
9 1.208 1.065 1.088 1.069 1.101 
12 1.215 1.045 1.070 1.037 1.052 
18 1.161 1.031 0.994 0.965 0.990 
24 1.095 1.019 0.938 0.922 0.944 

          NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level based on the 
          Diebold-Mariano test. Red indicates the best model among the shipping-based indices and blue the best model among the three alternative indicators. 



Table 2. Monthly Indicators of Global Real Economic Activity and Underlying Disaggregated Data 

Global Economic Activity 
Indicator Components Transformation Data 

source 
Start 
date 

Kilian index (REA) Log of the nominal shipping cost 
index calculated as described in 
Hamilton (2019) 

Deflated with U.S. CPI and linearly 
detrended (recursively) 

JDH 1968.1 

Real shipping cost factor Freight rates for 61 shipping routes 
for different commodities (grain, 
coal, fertilizer, iron ore, scrap metal, 
oilseeds) – see Table 1A for details 

Nominal dollar prices deflated with U.S. 
CPI, growth rates computed as first log 
differences, and missing observations 
filled with EM algorithm 

SI 1973.1 

World industrial production 
index (WIP) 

Industrial production of OECD,  
Brazil, China, India, Indonesia, the 
Russian Federation and South Africa 
aggregated as described in 
Baumeister and Hamilton (2019)  

First log difference BH 1958.1 

Real commodity price factor Aluminum Nominal dollar prices deflated with U.S. WB 1972.5 
 Barley CPI and growth rates computed as WB 1960.1 
 Beef first log differences WB 1960.1 
 Coffee, Arabica  WB 1973.1 
 Coffee, Robusta  WB 1973.1 
 Copper  WB 1964.1 
 Cotton, A Index  WB 1971.1 
 Lead  WB 1960.1 
 Logs, Malaysian  WB 1971.5 
 Maize  WB 1972.1 
 Nickel  WB 1973.1 
 Palm Oil  WB 1964.1 
 Rice, Thai 5%  WB 1960.1 
 Rubber, SGP/MYS  WB 1960.1 
 Sawnwood, Malaysian  WB 1971.5 
 Soybeans  WB 1973.1 
 Soybean Meal  WB 1973.1 



NOTES: The codes for the data sources are as follows: BH – Baumeister and Hamilton (2019) update of discontinued OECD series (https://sites.google.com/site/ 
cjsbaumeister/OECD_plus6_industrial_production.xlsx?attredirects=0&d=1), JDH – Hamilton (2019) (http://econweb.ucsd.edu/~jhamilto/shipping_costs.xlsx), SI 
– Drewry’s Shipping Insight, WB – World Bank Commodity Price Data, The Pink Sheet (http://pubdocs.worldbank.org/en/561011486076393416/CMO-Historical-
Data-Monthly.xlsx), WSA – World Steel Association, Steel Statistical Yearbook (https://www.worldsteel.org/). The groupings for the crude steel production data 
comprise the following countries: EU and other reporting countries include Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, 
Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Turkey, the United Kingdom, former Yugoslavia (now consisting of Bosnia-Herzegovina, 
Croatia, Macedonia, Serbia, and Slovenia), Canada, Argentina, Brazil, Chile, Mexico, Venezuela, Australia, India, Republic of Korea, South Africa, and Taiwan; 
Eastern Europe includes the Czech Republic, Hungary, Poland, and the Slovak Republic; Middle East includes Egypt, Iran, and Saudi Arabia. The start date 
indicates the earliest available observation; however, in estimation the common start date is 1973.1. 

 

  

 
 
 
 

 Soybean Oil  WB 1971.1 
 Sugar, US  WB 1973.1 
 Sugar, World  WB 1973.1 
 Tin  WB 1960.1 
 Wheat, US HRW  WB 1973.1 
 Zinc  WB 1973.1 
Global steel production factor Crude Steel Production, US Growth rates computed as first log  WSA 1968.1 
 Crude Steel Production, Japan differences and missing observations WSA 1968.1 
 Crude Steel Production, EU and other 

reporting countries (29 in total) 
filled with EM algorithm WSA 1968.1 

 Crude Steel Production, China  WSA 1990.1 
 Crude Steel Production, Eastern 

Europe 
 WSA 1990.1 

 Crude Steel Production, Middle East  WSA 1990.1 
 Crude Steel Production, Russia and 

Ukraine 
 WSA 1992.1 

https://sites.google.com/site/
https://www.worldsteel.org/


Table 3. Recursive MSPE Ratios Relative to No-Change Forecast of Real Brent Price in VAR(12) and Bayesian VAR(12) Models 
Evaluation Period: 1992.1-2018.8 

 

Monthly 
horizon 

Kilian index 
(REA) 

Real shipping cost 
factor 

World IP index 
(WIP) 

Real commodity price 
factor 

Global steel 
production factor 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

(a) Production-based models 
 VAR BVAR VAR BVAR VAR BVAR VAR BVAR VAR BVAR 

1 1.075 0.983 0.998 0.930 0.946  0.893* 0.961  0.896* 0.997 0.934 
3 1.072 1.063 1.027 0.965 0.953 0.910 0.970 0.918 1.044 0.983 
6 1.172 1.158 1.087 1.003 1.060 0.972 1.021 0.967 1.105 1.032 
9 1.208 1.211 1.065 1.006 1.088 0.999 1.069 1.006 1.101 1.033 
12 1.215 1.237 1.045 0.974 1.070 0.971 1.037 0.968 1.052 0.983 
18 1.161 1.179 1.031 0.954 0.994 0.947 0.965 0.932 0.990 0.955 
24 1.095 1.092 1.019 0.927 0.938 0.922 0.922 0.898 0.944 0.927 
 

(b) Consumption-based models 
 VAR BVAR VAR BVAR VAR BVAR VAR BVAR VAR BVAR 

1 1.078 0.964 0.986  0.918* 0.932    0.884** 0.943    0.888** 0.951  0.904* 
3 1.075 1.045 0.984 0.942 0.892 0.888 0.938 0.906 0.950 0.943 
6 1.164 1.138 1.019 0.966 0.962 0.932 0.978 0.938 0.984 0.978 
9 1.237 1.219 1.032 0.987 1.028 0.976 1.061 1.002 1.001 0.994 
12 1.287 1.267 1.041 0.979 1.033 0.979 1.061 0.985 0.980 0.977 
18 1.242 1.209 1.022 0.957 0.945 0.943 0.978 0.934 0.943 0.955 
24 1.152 1.114 1.018 0.938 0.911 0.919 0.934 0.903 0.928 0.932 

NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level based on the Diebold-Mariano test. 
Red indicates the best model among the shipping-based indices and blue the best model among the three alternative indicators. Green indicates whether the VAR or the 
Bayesian VAR (BVAR) performs better. 

 



Table 4. The Role of Stochastic Volatility for the Accuracy of Recursive Forecasts of the Real Brent Price in BVAR(12) Models 
Evaluation Period: 1992.1-2018.8 

 

Monthly 
horizon 

Kilian index 
(REA) 

Real shipping cost 
factor 

World IP index 
(WIP) 

Real commodity price 
factor 

Global steel 
production factor 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

(a) Production-based models 
 BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR 

1 0.983    0.911** 0.930    0.913**  0.893*    0.905**  0.896*    0.919** 0.934  0.924* 
3 1.063 0.972 0.965 0.942 0.910 0.942 0.918 0.954 0.983 0.952 
6 1.158 1.024 1.003  0.949* 0.972 0.966 0.967 0.963 1.032 0.972 
9 1.211 1.039 1.006  0.931* 0.999  0.939* 1.006 0.952 1.033 0.943 
12 1.237 1.046 0.974   0.899** 0.971  0.910* 0.968    0.913** 0.983  0.906* 
18 1.179 0.940 0.954   0.837** 0.947   0.839** 0.932    0.831** 0.955   0.844** 
24 1.092 0.827 0.927   0.765** 0.922   0.768** 0.898    0.767** 0.927   0.762** 
 

(b) Consumption-based models 
 BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR 

1 0.964  0.920*  0.918*    0.907**    0.884**   0.905**    0.888**   0.911**  0.904*    0.912** 
3 1.045 0.958 0.942 0.909 0.888  0.918* 0.906  0.939* 0.943 0.929 
6 1.138 1.018 0.966    0.910** 0.932  0.926* 0.938  0.943* 0.978  0.925* 
9 1.219 1.063 0.987   0.897* 0.976  0.911* 1.002  0.937* 0.994  0.909* 
12 1.267 1.072 0.979    0.874** 0.979   0.869** 0.985   0.887** 0.977   0.864** 
18 1.209 0.951 0.957    0.789** 0.943   0.790** 0.934   0.783** 0.955   0.791** 
24 1.114 0.821 0.938    0.719** 0.919   0.710** 0.903   0.718** 0.932   0.710** 

NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level based on the Diebold-Mariano test. 
Red indicates the best model among the shipping-based indices and blue the best model among the three alternative indicators. Green indicates whether the BVAR or the 
BVAR with stochastic volatility (SV-BVAR) performs better. 

 



Table 5. The Role of Pooling for the Accuracy of Recursive Forecasts of the Real Brent Price 
Evaluation Period: 1992.1-2018.8                   

 

  Model-Based Pooling: SV-BVAR(12)  Market-Based Pooling 

Monthly 
horizon  

Equal-weighted forecast 
combination (5 models)  

Factor from disaggregated 
data of all existing indices 

 Brent futures spread 

1     0.903**   0.919**  1.052 
3  0.921  0.921*  1.064 
6  0.943   0.923**  1.034 
9  0.948  0.902*  0.973 
12  0.925   0.870**   0.920* 
18  0.878   0.782**    0.854** 
24  0.833   0.710**   0.836* 

                     NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level  
                     based on the Diebold-Mariano test. The evaluation period for Brent futures for h=12 starts in 1994.4 and for h=18, 24 in 1998.2 due to  
                     data availability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6. Recursive MSPE Ratios Relative to AR(12) Forecast for Global Petroleum Consumption 
Evaluation Period: 1992.1-2018.8 

 

 Monthly horizon 
1 3 6 9 12 18 24 

(a) BVAR(12)  
Kilian index (REA) 1.103 1.445 2.062 2.558 3.131 3.838 4.122 
Real shipping cost factor 1.046 1.134 1.310 1.421 1.521 1.781 2.055 
World IP index (WIP) 1.002 1.252 1.511 1.532 1.635 1.870 2.043 
Real commodity price factor 1.054 1.173 1.335 1.440 1.523 1.759 1.977 
Global steel production factor 1.255 1.609 1.794 1.834 2.007 2.437 2.553 
        
(b) SV-BVAR(12)  
Kilian index (REA) 0.968 1.073 1.213 1.274 1.369 1.561 1.645 
Real shipping cost factor  0.962* 1.036 1.064 1.087 1.114 1.178 1.208 
World IP index (WIP)   0.933** 0.984 1.009 0.995 1.013 1.048 1.052 
Real commodity price factor   0.949** 1.017 1.070 1.108 1.154 1.245 1.304 
Global steel production factor   0.954** 1.026 1.059 1.065 1.095 1.130 1.141 
        
(c) Model-based pooling using SV-BVAR(12)   

Equal-weighted forecast combination (5 models)    0.946**  1.016 1.066 1.086 1.128 1.213 1.258 
Factor from disaggregated data of all existing indices  0.955* 1.028 1.072 1.095 1.129 1.208 1.266 
        

       NOTES: Boldface indicates improvements relative to AR(12) forecast. ** denotes significance at the 5% level and * at the 10% level based on the Diebold-Mariano test.   
        

 
 
 
 
 
 



Table 7. Key Indicators Affecting Energy Markets 

NOTES: Tcode indicates the transformation of the variable where 1 indicates the variable is included in its original units, 5 refers to taking first log differences, 7 stands for annual 
growth rates. The delay in data release is measured in months. Nowcasts are based on the average growth rate (AG), the most recent change (RC), and no change (RW). 

Data category Variable Geographic 
coverage 

Start 
date Tcode Data source Data 

delay 
Nowcast 

rule 
Data 

revisions 
Real economic 
activity 

World Industrial Production 
Index 

OECD + 6 non-  
member countries 

1973.1 5 Baumeister-Hamilton 
(2019) 

2 AG Y 

 Conference Board Leading 
Economic Index 

US 1973.1 5 Datastream 1 AG Y 

 Consumer Confidence Index OECD 1974.1 5 OECD MEI 1 RW Y 
Commodity 
prices 

Copper Price World 1973.1 5 World Bank  0  N 

Financial 
indicators 

Real Trade-Weighted U.S. Dollar 
Index: Broad 

World 1973.1 5 FRED 0  Y 

 MSCI World Stock Price Index World 1972.1 7 Global Financial Data 0  N 
 Excess Returns on Fama-French 

Portfolio: Transportation 
World 1973.1 7 Ken French’s website 2 RW N 

Transportation Passenger Car Registrations OECD 1973.1 5 OECD MEI 8 AG Y 
 Total Vehicle Miles Travelled US 1973.1 5 FRED 2 AG Y 
Uncertainty 
measures 

Caldara-Iacoviello Geopolitical 
Risk Index 

World 1973.1 5 Caldara-Iacoviello 
(2018) 

0  N 

 Long-Run Oil Price Uncertainty World 1989.4 1 Bloomberg 0  N 
Expectations 
measures 

University of Michigan Index of 
Consumer Expectations 

US 1978.1 5 Michigan Survey 0  N 

 Spread between Long-Run and 
Short-Run Oil Price Expectations 

World 1988.11 1 Bloomberg 0  N 

Weather 
indicators 

Oceanic Niño Index World 1973.1 1 NOAA 2 RC Y 

 Residential Energy Demand 
Temperature Index 

US 1973.1 1 NOAA 1 RW Y 

Energy-related 
indicators 

Energy Production and Electricity 
Distribution 

EU28 1991.1 5 FRED 3 AG Y 



Table 8. The Role of Different Information Sets for the Accuracy of Recursive Forecasts of the Real Brent Price and Global  
               Petroleum Consumption in Bayesian VAR(12) Models with Stochastic Volatility Evaluated over 1992.1-2018.8 

NOTES: Boldface indicates improvements relative to no-change forecast (panel a) or AR(12) forecast (panel b). ** denotes significance at the 5% level and * at 
the 10% level based on the Diebold-Mariano test. The Global Economic Conditions Indicator is based on 16 variables covering different dimensions of the global 
economy as they relate to energy markets (see Table 7). The large dataset contains 256 variables (see Tables 2, 7 and 9 for details). The statistical variable selection 
uses the 16 variables with the highest loadings on the factor extracted from the large dataset. The variables selected are the following in the order of the magnitude 
of loadings: long-run oil price uncertainty, spread of oil price expectations, real freight rates for fertilizer (potash) from Germany to India, short-run gasoline price 
uncertainty, Conference Board Leading Economic Index, FF industry portfolio: utilities, MSCI world index, FF industry portfolio: chemicals, FF industry portfolio: 
oil, FF industry portfolio: transportation, FF industry portfolio: cars, Composite Leading Indicator for Japan, OECD business confidence index, real freight rates 
for commodity/route 2, Australian unemployment rate, and Chinese consumer confidence index (see Table 9 for more details on each variable). 

 
 

Monthly horizon 
 1 3 6 9 12 18 24 

  (a) Real Brent Price 
(1) Global Economic Conditions Indicator  0.918** 0.930 0.940 0.920  0.876*  0.795** 0.704** 
 

Large dataset 
       

(2) 1 factor  0.922** 0.939 0.947 0.932  0.886*  0.802* 0.715** 
(3) 2 factors 0.939*  0.947* 0.955 0.950 0.934   0.835** 0.756** 
(4) 3 factors 0.939* 0.967 0.982 0.987 0.976 0.930 0.857** 
         
(5) Statistical variable selection 0.915** 0.925 0.930* 0.906* 0.854* 0.766** 0.686** 
         

        (b) Global Petroleum Consumption 
(6) Global Economic Conditions Indicator 0.934** 0.945 0.926 0.880* 0.875 0.907 0.884 
 

Large dataset 
       

(7) 1 factor 0.921** 0.973 1.005 0.965 0.936 0.968 0.949 
(8) 2 factors 0.926** 0.981 1.048 1.081 1.156 1.349 1.461 
(9) 3 factors 0.937** 0.985 1.076 1.104 1.180 1.378 1.530 
         
(10) Statistical variable selection 0.946** 0.997 1.004 0.981 1.023 1.049 1.045 



Table 9. Extended Dataset 
 

No Variable description Units Tcode Data source Start date 
REAL ECONOMIC ACTIVITY 
1 Leading Indicator: Business Situation, Canada Percent 1 FRED 1973.1 
2 Composite Leading Indicator, Japan Index 5 CEIC 1985.1 
3 Leading Indicator: Sales Expectations, Japan Percent 1 FRED 1985.1 
4 Leading Indicator, Korea Index 4 CEIC 1973.1 
5 Leading Indicator: Business Situation, Korea Percent 1 FRED 1991.7 
6 Leading Indicator: Production, UK Percent 1 FRED 1975.1 
7 Leading Indicator: Order Books, Brazil Percent 1 FRED 1980.1 
8 Leading Indicator: Production, Brazil Percent 1 FRED 1980.1 
9 Composite Leading Indicator, Mexico Index 1 CEIC 1980.1 
10 Composite Leading Indicator, Russia Percent 1 CEIC 1997.9 
11 Composite Leading Indicator, South Africa Index 1 CEIC 1973.1 
12 U.S. Recession Indicatora Index 1 DS, UMS 1978.1 
13 Chicago Fed National Activity Indicator Index 1 FRED 1973.1 
14 U.S. Index of Consumer Sentiment Index 5 UMS 1978.1 
15 Eurocoin Index 1 CEPR 1999.1 
16 Euro Area Business Climate Indicator Index 1 TE 1985.1 
17 Euro Area Economic Sentiment Indicator Index 1 EC 1980.1 
18 ISM Manufacturing PMI, US Index 5 B 1973.1 
19 PMI Manufacturing, EA Index 5 B 1997.6 
20 Developed Markets PMI: Manufacturing Index 5 B 1998.1 
21 Emerging Markets PMI: Manufacturing Index 5 B 2004.4 
22 ISM U.S. Manufacturing: New Export Orders Index 5 B 1988.1 
23 Global PMI Manufacturing: New Export Orders Index 5 B 1998.1 
24 Consumer Confidence, Brazil Index 5 OECD 1994.6 
25 Consumer Confidence, China Index 5 OECD 1990.1 
26 Consumer Confidence, Russia Index 5 OECD 1998.11 
27 Consumer Confidence, South Africa Index 5 OECD 1982.6 

                                                           
a This recession indicator is constructed as the difference between the index of consumer sentiment from the Michigan survey and the Conference Board consumer 
confidence index. This composite indicator typically reaches a low prior to recessions. 



28 Business Confidence, OECD Index 5 OECD 1974.6 
29 Business Confidence, Brazil Index 5 OECD 1995.4 
30 Business Confidence, China Index 5 OECD 2000.2 
31 Business Confidence, Russia Index 5 OECD 1992.9 
32 Business Confidence, South Africa Index 5 OECD 1974.6 
33 Sales: Retail Trade, OECD Index 5 OECD 1973.1 
34 Sales: Retail Trade, Russia Index 5 OECD 1994.12 
35 Sales: Retail Trade, South Africa Index 5 OECD 1977.1 
36 Unemployment Rate, Australia Percent 1 OECD 1978.2 
37 Unemployment Rate, EU18 Percent 1 EC 1998.4 
38 Unemployment Rate, Japan Percent 1 OECD 1973.1 
39 Unemployment Rate, UK Percent 1 FRED+EC 1973.1 
40 Unemployment Rate, US Percent 1 FRED 1973.1 
41 Real Disposable Personal Income, US Billions of chained 2012 

dollars 
5 FRED 1973.1 

42 Real PCE: New Motor Vehicles, US Quantity index 5 BEA 1973.1 
43 Real PCE: Motorcycles, US Quantity index 5 BEA 1973.1 
44 Real PCE: Pleasure Boats, Aircraft and Other 

Recreational Vehicles, US 
Quantity index 5 BEA 1973.1 

45 Real PCE: Motor Vehicle Fuels, US Quantity index 5 BEA 1973.1 
46 Real PCE: Fuel Oil and Other Fuels, US Quantity index 5 BEA 1973.1 
47 Real PCE: Motor Vehicle Services, US Quantity index 5 BEA 1973.1 
48 Real PCE: Public Transportation, US Quantity index 5 BEA 1973.1 
49 Current Buying Conditions, Durables, US Index 5 UMS 1978.1 
50 Current Buying Conditions, Vehicles, US Index 5 UMS 1978.1 
51 IP: Consumer Energy Products, US Index 5 FRB 1973.1 
52 IP: Commercial Energy Products, US Index 5 FRB 1971.1 
53 IP: Oil and Gas Well Drilling, US Index 5 FRB 1973.1 
54 IP: Petroleum and Coal Products, US Index 5 FRB 1973.1 
55 IP: Motor Vehicles and Parts, US Index 5 FRB 1973.1 
56 IP: Aerospace and Transportation Equipment, US Index 5 FRB 1973.1 
57 IP: Mining, US Index 5 FRB 1973.1 
58 IP: Autos (Consumer),US Index 5 BEA 1973.1 



59 IP: Fuels (Consumer), US Index 5 FRB 1973.1 
60 IP: Converted Fuel (Materials), US Index 5 FRB 1973.1 
61 IP: Primary Energy (Materials), US Index 5 FRB 1973.1 
62 PPI: Motor Vehicles and Equipment, US Index 5 BLS 1973.1 
63 PPI: Aircraft and Aircraft Equipment, US Index 5 BLS 1973.1 
64 Real Manufacturing Inventories: Petroleum Products, US Millions of chained 2012 

dollars 
5 BEA 1973.1 

65 Real Manufacturing Inventories: Motor Vehicles, US Millions of chained 2012 
dollars 

5 BEA 1973.1 

66 Real Value of Manufacturer’s New Orders: Motor 
Vehicles and Parts, US 

Millions of chained 2012 
dollars 

5 FRED 1992.2 

67 Capacity Utilization: Petroleum and Coal Products, US Percent 5 FRB 1973.1 
68 Capacity Utilization: Mining, US Percent 5 FRB 1973.1 
69 Capacity Utilization: Automobile and Light Duty 

Vehicle, US 
Percent 5 FRB 1973.1 

FINANCIAL INDICATORSb 
70 S&P GSCI Energy Index Index 7 GFD 1983.1 
71 S&P 500 Utilities Index 7 GFD 1972.1 
72 S&P 500 Energy Index 7 GFD 1972.1 
73 S&P 500 Air Freight and Logistics Index 7 GFD 1972.1 
74 S&P 500 Airlines Index 7 GFD 1972.1 
75 S&P 500 Railroad Index 7 GFD 1972.1 
76 S&P 500 Automobiles Index 7 GFD 1972.1 
77 S&P 500 Oil, Gas and Consumable Fuels Index 7 GFD 1972.1 
78 Dow Jones: Transportation Index 7 B 1972.1 
79 Dow Jones: Utilities Index 7 B 1972.1 
80 Dow Jones: Industrials Index 7 B 1972.1 
81 FF: Oil Index 7 FF 1972.1 
82 FF: Chemicals Index 7 FF 1972.1 
83 FF: Cars Index 7 FF 1972.1 
84 FF: Utilities Index 7 FF 1972.1 
85 NYSE Arca Oil Index Index 7 GFD 1984.11 

                                                           
b All returns for sub-categories of S&P 500, DJ, and FF are calculated as excess returns relative to the respective overall market performance. 



86 Real Broad Effective Exchange Rate: Australia Index 5 FRED 1994.1 
87 Real Broad Effective Exchange Rate: Canada Index 5 FRED 1994.1 
88 Real Broad Effective Exchange Rate: Chile Index 5 FRED 1994.1 
89 Real Broad Effective Exchange Rate: Norway Index 5 FRED 1994.1 
90 Real Broad Effective Exchange Rate: South Africa Index 5 FRED 1994.1 
91 Real Broad Effective Exchange Rate: New Zealand Index 5 FRED 1994.1 
92 Real Broad Effective Exchange Rate: Euro Area Index 5 FRED 1994.1 
93 Real Broad Effective Exchange Rate: China Index 5 FRED 1994.1 
94 Real Broad Effective Exchange Rate: India Index 5 FRED 1994.1 
95 Real Broad Effective Exchange Rate: UK Index 5 FRED 1994.1 
96 Real Broad Effective Exchange Rate: Japan Index 5 FRED 1994.1 
97 Chicago Fed Adjusted Financial Conditions Index 1 FRED 1973.1 
98 10Y/1Y Treasury Yield Spread Percent 1 FRED 1973.1 
99 Moody’s Baa/Aaa Corporate Bond Yield Spread Percent 1 FRED 1973.1 
100 Real Rate: 1Y Treasury Constant Maturity Rate – CPI 

Inflation Rate Over Preceding Year 
Percent 1 FRED 1973.1 

TRANSPORTATION 
101 Passenger Car Registrations, EU28 Index 5 OECD 1973.1 
102 Passenger Car Registrations, US Index 5 OECD 1973.1 
103 Passenger Car Registrations, Canada Index 5 OECD 1973.1 
104 Passenger Car Registrations, Japan Index 5 OECD 1974.1 
105 Passenger Car Registrations, Norway Index 5 OECD 1973.1 
106 Passenger Car Registrations, New Zealand Index 5 OECD 1974.1 
107 Passenger Car Registrations, South Africa Index 5 OECD 1973.1 
108 Passenger Car Registrations, India Index 5 OECD 2001.5 
109 Passenger Car Registrations, Korea Index 5 OECD 1993.1 
110 Passenger Car Registrations, Turkey Index 5 OECD 1989.1 
111 Vehicle Production, Brazil (de-trended) Quantity 1 CEIC 1984.1 
112 Vehicle Production, China* Quantity 5 CEIC 1986.1 
113 Vehicle Production, Mexico* Quantity 5 CEIC 1983.1 
114 U.S. Real Transportation Costs  Index 5 FRED 1973.1 
115 U.S. Truck Sales Index 5 BEA 1973.1 
116 U.S. Electric Car Sales Number 5 EV 2010.12 



117 Rail Freight Intermodal Traffic, US Ton miles 5 FRED 2000.1 
118 Rail Freight Carloads, US Carloads 5 FRED 2000.1 
119 Truck Tonnage, US Index 5 FRED 2000.1 
120 Tonnage Carried on Internal U.S. Waterways Millions of short tons 5 FRED 2000.1 

UNCERTAINTY MEASURES 
121 Global Economic Policy Uncertainty Index Index 5 BBD 1997.1 
122 OPEC Newspaper Index Index 5 P 1986.1 
123 CBOE S&P 500 Volatility Index Index 5 GFD 1986.1 
124 Short-Run Gasoline Price Uncertaintyc  1 B 1987.1 
125 Long-Run Natural Gas Price Uncertaintyc  1 B 1990.6 

EXPECTATIONS MEASURES 
126 Expected Change in Personal Financial Situation, US Index 5 UMS 1978.1 
127 Expected Change in Real Family Income, US Index 5 UMS 1978.1 
128 Expected Change in Interest Rates, US Index 5 UMS 1978.1 
129 Expected Change in Unemployment, US Index 5 UMS 1978.1 
130 Expected Change in Business Conditions, US Index 5 UMS 1978.1 
131 Expected Average Increase in Gasoline Prices Over the 

Next 5 Years, US 
Cents per gallon 5 UMS 1992.11 

132 Spread between Long-Run and Short-Run Heating Oil 
Price Expectationsd 

 1 B 1989.8 

133 Spread between Long-Run and Short-Run Natural Gas 
Price Expectationsd 

 1 B 1990.6 

WEATHER INDICATORS 
134 Global Temperature Anomalies Degrees Celsius 5 NOAA 1973.1 
135 Heating Degree Days, US* Index 1 EIA MER 1973.1 
136 Heating Degree Days, EU28* Index 1 EC 1974.1 

                                                           
c Price uncertainty is defined as realized volatility and is calculated as follows: 𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑚𝑚 = 100 ∗ �252

𝑛𝑛
∗ (∑ (∆𝑓𝑓𝑑𝑑𝑚𝑚)2𝑛𝑛

𝑑𝑑=1 )  where ∆𝑓𝑓𝑑𝑑𝑚𝑚 is the daily return for the oil 

futures contract on day 𝑑𝑑 in month 𝑚𝑚 computed as the log difference between the futures price on day 𝑑𝑑  and 𝑑𝑑 − 1, and 𝑛𝑛 is the number of trading days in a given 
month. Long-run refers to futures with 12-month maturity and short-run to futures with 3-month maturity. 
d Price expectations are proxied by log futures prices where short-run refers to contracts with 3 months to maturity and long-run refers to contracts with 12 months 
to maturity. 
 



137 Cooling Degree Days, US* Index 1 EIA MER 1973.1 
138 Cooling Degree Days, EU28* Index 1 EC 1974.1 
139 Heating Degree Days, Deviation from Normal, US Index 1 HA 1997.5 
140 Cooling Degree Days, Deviation from Normal, US Index 1 HA 1998.7 
141 Temperature Fluctuations for 48 US States Index 1 HA 1973.1 

ENERGY-RELATED INDICATORS 
142 Electricity Consumption, China* Billion kWh 5 CEIC 1986.4 
143 Electricity Consumption, India* Million kWh 5 CEIC 1987.9 
144 Electricity Consumption, Korea* Million kWh 5 CEIC 1979.1 
145 Electricity Consumption, South Africa* GWh 5 CEIC 1985.1 
146 Electricity Consumption, UK* TWh 5 UKBEIS 1995.1 
147 Electricity Consumption, US* Million kWh 5 EIA MER 1973.1 
148 Total Energy Carbon Dioxide Emissions* Million metric tons 5 EIA MER 1973.1 
149 U.S. Motor Gasoline Stocks Million barrels 5 EIA MER 1973.1 
150 U.S. Total Petroleum Stocks Million barrels 5 EIA MER 1973.1 

NOTES: The end of the sample for all data series is 2018.8. If data are available at a frequency higher than monthly, we obtain monthly data by averaging. Tcode 
indicates the stationarity transformation code for each variable where Tcode = 1 indicates that the variable is included in its original units, Tcode = 4 stands for 
log-levels, Tcode = 5 refers to taking first log differences, and Tcode = 7 stands for year-on-year growth rates. An asterisk indicates that the series has been 
seasonally adjusted using the X13-ARIMA procedure. The codes for the data sources are as follows: B – Bloomberg, BBD – Baker, Bloom, and Davis (2016) 
(http://www.policyuncertainty.com/), BEA – Bureau of Economic Analysis, BLS – Bureau of Labor Statistics, CEIC (https://www.ceicdata.com), CEPR – Centre 
for Economic Policy Research (https://cepr.org/data), DS – Datastream, EC – European Commission Eurostat, EIA MER – U.S. Energy Information Administration 
Monthly Energy Review, EV – Monthly Plug-In Electric Vehicles Sales Scorecard (https://insideevs.com/monthly-plug-in-sales-scorecard/), FF – Fama-French 17 
Industry Portfolios (average value-weighted returns) (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), FRB – Federal Reserve Board 
of Governors Database, FRED – Federal Reserve Bank of St. Louis Economic Database, GFD – Global Financial Database, HA – Haver Analytics, UMS – Survey 
of Consumers, University of Michigan (http://www.sca.isr.umich.edu/), NOAA – U.S. National Oceanic and Atmospheric Administration, National Climatic Data 
Center (https://www.noaa.gov/), OECD – OECD Main Economic Indicators Database, P – data generously updated and provided by Mike Plante from Plante 
(2019), TE – Trading Economics, UKBEIS – U.K. Department of Business, Energy & Industrial Strategy. 

 
 
 
 
 

https://insideevs.com/monthly
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/


Table 10. The Role of Real-Time Data Constraints for the SV-BVAR(12) with the Global Economic Conditions Indicator 
Evaluation Period: 1992.1-2018.8 

 

  Real Brent Price  Global Petroleum Consumption 
Monthly 
horizon 

 Pseudo real time Real-time data  Pseudo real time Real-time data 

1    0.918**  0.925*     0.934**   0.937** 
2   0.921* 0.937     0.924**   0.904** 
3  0.930 0.945  0.945  0.957* 
4  0.941 0.951  0.927   0.913** 
5  0.940 0.953  0.936   0.912** 
6  0.940 0.955  0.926  0.919* 
7  0.940 0.955  0.912   0.865** 
8  0.929 0.948  0.891   0.864** 
9  0.920 0.932   0.880*  0.905* 
10  0.911 0.926  0.891   0.890** 
11   0.892* 0.906  0.904  0.909* 
12   0.876*  0.881*  0.875 0.922 
13   0.870*  0.877*  0.889 0.901 
14   0.850*  0.856*  0.883 0.912 
15   0.832*  0.835*  0.884 0.910 
16    0.817**   0.822**  0.896 0.889 
17    0.808**   0.800**  0.910 0.932 
18    0.795**   0.792**  0.907 0.935 
19    0.785**   0.784**  0.901 0.906 
20    0.771**   0.764**  0.913 0.919 
21    0.750**   0.746**   0.892* 0.911 
22    0.730**   0.727**  0.890 0.908 
23    0.721**   0.713**  0.877 0.895 
24    0.704**   0.703**  0.884 0.899 

                    NOTES: Boldface indicates improvements relative to no-change forecast (left panel) or AR(12) forecast (right panel). ** denotes  
                    significance at the 5% level and * at the 10% level based on the Diebold-Mariano test. 



NOT-FOR-PUBLICATION APPENDIX 
 
Table 1A. Dry Cargo Single Voyage Rates  
 

No Commodity shipped Shipping route First observation 
 

1 Dry cargo index n/a 1973.1 
2 Dry cargo index n/a 1975.12 
3 Grain USG Japan (20-40) 1979.12 
4 Grain USG-Japan (50-60) 1982.1 
5 Grain USG-ARA (50-65) 1984.4 
6 Grain USG-AH Range (65-85) 1982.1 
7 Grain USNP-Japan (45-55) 1984.4 
8 Grain USNP-Japan (50-55) 1990.7 
9 Grain USG-EC Mexico (20-25) 1998.10 
10 Grain USG-Venezuela (15-30) 1993.4 
11 Grain USG-Algeria (20-25) 1993.4 
12 Grain USG-Casablanca/Agadir (25-30) 1993.4 
13 Grain Australia-Taipei, Chinese (55) 2015.2 
14 Grain EU-North Africa (55) 2015.2 
15 Coal USG-Taiwan (50-60) 1990.6 
16 Coal Richards Bay-ARA (100-150) 1990.6 
17 Coal Richards Bay-ARA (150) 2015.2 
18 Coal East Australia-South Korea (120-160) 1995.6 
19 Coal Hay Pt.-Japan (100-150) 2010.12 
20 Coal East Australia-ARA (100-150) 1988.1 
21 Coal Puerto Bolivar-ARA (100-150) 1993.7 
22 Coal HR-Japan (50-60) 1979.12 
23 Coal USAC-ARA (100-150) 1998.7 
24 Coal USNH-ARA (80-100) 1990.6 
25 Coal HR/RB-Japan (100-150) 1984.4 
26 Coal USAC-South Korea (120-160) 1998.9 
27 Coal East Australia-Japan (100-150) 1990.8 
28 Coal USNH-Cont. (60-80) 1982.1 
29 Coal Richards Bay-China (160) 2015.2 
30 Coal Queensland-Netherlands (150) 2015.2 
31 Coal Bolivar-China (150) 2015.2 
32 Coal USG-Rotterdam (65) 2015.2 
33 Coal Indonesia-India (70) 2015.2 
34 Coal Newcastle-Qingdao (74) 2014.7 
35 Coal East Australia-Japan (60-70) 2007.1 
36 Coal Richards Bay-Mediterranean (60-70) 2007.1 
37 Iron ore Narvik-ARA (100-150) 1990.10 
38 Iron ore Brazil-ARA (100-150) 1990.6 
39 Iron ore Brazil-China (100-150) 1995.5 
40 Iron ore West Australia-China (120-160) 1998.7 
41 Iron ore West Australia-ARA (120-160) 1990.6 



42 Iron ore Saldanha Bay-China (100-150) 1993.5 
43 Iron ore Nouadhibou-ARA (80-120) 1990.6 
44 Iron ore East Canada-ARA (80-125) 1998.5 
45 Iron ore Monrovia-Cont. (60-90) 1982.1 
46 Iron ore Brazil-Cont. (60-80) 1979.12 
47 Iron ore Brazil-Cont. (125-175) 1982.1 
48 Iron ore Brazil-South Korea (100-140) 1984.4 
49 Iron ore Brazil-Japan (120-160) 1988.5 
50 Iron ore West Australia-Japan (100-150) 1990.7 
51 Iron ore West Australia-UK (100-140) 1984.4 
52 Oilseeds British Columbia-Japan (20-30) 1988.1 
53 Fertilizer (dap) USG-India (15-25) 1984.4 
54 Fertilizer (potash) Germany-India (15-25) 1984.4 
55 Fertilizer (phosrock) Aqaba-India (10-15) 1984.4 
56 Fertilizer (dap) USG-West Coast India (20-30) 1990.6 
57 Fertilizer (phosrock) West Africa-India (15-25) 1990.6 
58 Fertilizer (dap) RS/AG-India (10-15) 1995.5 
59 Scrap G-H Range-Turkey (25-35) 1995.5 
60 Scrap WCUS-South Korea (30-40) 1999.12 
61 Scrap USAC-South Korea (30-50) 1993.5 

NOTES: The numbers in brackets indicate Deadweight Cargo Tons (DWCT) or the weight of cargo to be transported 
under a charter party. The abbreviations for the shipping routes are as follows: ARA: Antwerp-Rotterdam-Amsterdam 
range of ports; Cont.: Continent or Europe; G-H Range: Gibraltar-Hamburg range of ports; HR/RB: Hampton Roads 
or Richards Bay; RS/AG: Red Sea or Arabian Gulf; USAC: United States Atlantic Coast; USG: United States Gulf of 
Mexico; USNH: United States North of (Cape) Hatteras; USNP: United States North Pacific; USWC: United States 
West Coast; WCUS: West Coast United States. The first two series are dry cargo indices compiled by Drewry’s 
Shipping Consultants. 

 



Table 2A. Recursive MSPE Ratios Relative to No-Change Forecast of Real Refiner Acquisition Cost of Imported Crude Oil 
Evaluation Period: 1992.1-2018.8 

 

Monthly 
horizon 

Kilian index 
(REA) 

Real shipping cost 
factor 

World IP index 
(WIP) 

Real commodity 
price factor 

Global steel 
production factor 

 (1) (2) (3) (4) (5) 
 

(a) BVAR(12) 
1    0.820**    0.781**   0.750**   0.745**   0.770** 
3 0.964 0.892 0.835 0.835 0.886 
6 1.080 0.970 0.939 0.930 0.986 
9 1.169 1.002 0.998 0.998 1.019 
12 1.174 0.968 0.972 0.971 0.979 
18 1.109 0.936 0.922 0.923 0.944 
24 1.048 0.927 0.918 0.901 0.927 
 

(b) BVAR(12)-SV 
1    0.784**   0.763**  0.788** 0.787**  0.800** 
3    0.906**  0.867* 0.885* 0.895** 0.900* 
6 0.981  0.914* 0.937* 0.937** 0.937* 
9 0.998   0.904**  0.923** 0.930** 0.923* 
12 1.001   0.864**  0.897** 0.884**  0.871** 
18 0.887   0.802**  0.815** 0.801**  0.808** 
24   0.759**   0.699**  0.702** 0.698**  0.705** 

          NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level based on the  
          Diebold-Mariano test. Red indicates the best model among the shipping-based indices and blue the best model among the three alternative indicators. 
 
 
 
 
 
 
 
 



Table 3A. The Role of Stochastic Volatility for the Accuracy of Recursive Forecasts of the Real Brent Price When the Same Prior is Used 
Evaluation Period: 1992.1-2018.8 

 

Monthly 
horizon 

Kilian index 
(REA) 

Real shipping cost 
factor 

World IP index 
(WIP) 

Real commodity price 
factor 

Global steel 
production factor 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

(a) Production-based models 
 BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR 

1 0.950    0.911**  0.878*    0.913**    0.886**    0.905**    0.885**    0.919**  0.905*  0.924* 
3 1.026 0.972 0.930 0.942 0.896 0.942 0.909 0.954 0.952 0.952 
6 1.102 1.024 0.972  0.949* 0.942 0.966 0.946 0.963 0.985 0.972 
9 1.163 1.039 0.975  0.931* 0.967  0.939* 0.986 0.952 0.985 0.943 
12 1.191 1.046 0.944   0.899** 0.950  0.910* 0.955    0.913** 0.948  0.906* 
18 1.135 0.940 0.933   0.837** 0.932   0.839** 0.917    0.831** 0.930   0.844** 
24 1.041 0.827 0.909   0.765** 0.908   0.768** 0.886    0.767** 0.902   0.762** 
 

(b) Consumption-based models 
 BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR BVAR SV-BVAR 

1 0.933  0.920*    0.856**    0.907**    0.868**   0.905**    0.870**   0.911**    0.881**    0.912** 
3 1.020 0.958 0.923 0.909 0.899  0.918* 0.900  0.939* 0.932 0.929 
6 1.109 1.018 0.949    0.910** 0.936  0.926* 0.927  0.943* 0.957  0.925* 
9 1.183 1.063 0.966   0.897* 0.960  0.911* 0.969  0.937* 0.969  0.909* 
12 1.225 1.072 0.944    0.874** 0.951   0.869** 0.956   0.887** 0.949   0.864** 
18 1.158 0.951 0.935    0.789** 0.928   0.790** 0.918   0.783** 0.928   0.791** 
24 1.045 0.821 0.910    0.719** 0.905   0.710** 0.892   0.718** 0.903   0.710** 

NOTES: Boldface indicates improvements relative to no-change forecast. ** denotes significance at the 5% level and * at the 10% level based on the Diebold-Mariano test. 
Red indicates the best model among the shipping-based indices and blue the best model among the three alternative indicators. Green indicates whether the BVAR or the 
BVAR with stochastic volatility (SV-BVAR) both using the same Minnesota-style prior performs better. 
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