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1 Introduction

A large body of experimental evidence suggests that consumers discount the future more in

the short-term than they do in the long-term (Ainslie, 1992). This phenomenon, captured by

the notion that households have hyperbolic discounting, suggests that consumers desire instant

gratification (Harris and Laibson, 2001) and that they value mechanisms that enable them to

better exercise self-control and/or to constrain their future selves (Strotz 1956; Laibson 1997).

When they discount the future hyperbolically, households value savings for the future income

and insurance that they provide, yet cannot resist splurging a little on consumption today while

planning to save for the future tomorrow. If they recognize that this behavior will repeat itself

day after day, leading them to over-consume and under-save, then today’s household will have

an incentive to purchase illiquid assets in order to constrain themselves from over-consuming

tomorrow. In principle, the same time-inconsistent behavior applies to other intertemporal

decisions, such as the purchase of durable goods, and it can be applied to price-setting, capital

accumulation, and inventory management decisions, where the firm is operating for the benefit

of its hyperbolic equity-holders.

Although hyperbolic discounting features importantly in behavioral economics (Wilkinson

and Klaes, 2017), there are relatively few instances of hyperbolic discounting appearing in gen-

eral equilibrium macroeconomic contexts. Where hyperbolic discounting is considered it invari-

ably appears in the form of quasi-hyperbolic discounting, which combines the usual geometric

discounting with a separate factor that discounts all future periods relative to today (Phelps

and Pollak, 1968; Laibson, 1997). Studies that have considered quasi-hyperbolic discounting in

macroeconomic models have largely concentrated on the stochastic growth model and focused on

the possibility of multiple equilibria arising through strategic interaction between the household

and its future self (Krusell and Smith, 2003; Maliar and Maliar, 2005, 2006a). Applications

of quasi-hyperbolic discounting include Krusell, Kuruşçu, and Smith (2002), who show that the

solution to the planner’s problem delivers lower welfare than the competitive equilibrium when

households have quasi-hyperbolic discounting, and Graham and Snower (2013), who examine a

sticky-wage New Keynesian model and demonstrate that quasi-hyperbolic discounting can over-

turn the Friedman rule. In Graham and Snower’s model households prefer positive inflation

because it erodes the real wage over time, leading them to work relatively less today and rela-

tively more in the (quasi-hyperbolically discounted) future. Maliar and Maliar (2006b) build on

Angeletos, Laibson, Repetto, Tobacman, and Weinberg (2001) and study a neoclassical growth

1



model with heterogeneous households facing idiosyncratic labor productivity shocks and a bor-

rowing constraint. They find that quasi-hyperbolic discounting has a large impact on the income

distribution. Maeda (2018) extends Krusell and Smith (2002) to a monetary economy with a

cash-in-advance constraint and shows that this constraint on cash-holdings prevents households

from over-consuming in equilibrium and, when the government can only control money growth

and not taxes, leads to the Friedman rule holding.

In this paper we examine quasi-hyperbolic discounting in a New Keynesian business cycle

model and we explore the implications this form of discounting has for how the central bank should

conduct monetary policy. The model is one in which monopolistically competitive firms employ

capital and labor to produce goods and who set prices subject to Rotemberg (1982) adjustment

costs. Households consume goods and supply labor and they have a portfolio of bonds and

equities in which to save. In our benchmark scenario, the central bank conducts monetary policy

optimally under discretion. Although the model is standard in many respects, quasi-hyperbolic

discounting introduces important complications because the household’s decision problem is no

longer time-consistent. These complications are compounded by the fact that monetary policy

is conducted with discretion. Most dynamic stochastic general equilibrium models with quasi-

hyperbolic discounting must be solved numerically, which can be challenging because the strategic

interactions between households and their future-selves can give rise to multiple equilibria (Krusell

and Smith, 2003). We avoid the indeterminacy associated with log-linearization (Maliar and

Maliar, 2006a) by solving our nonlinear model using a global solution method and we obtain a

unique stable equilibrium by computing the interior solution to a system of generalized Euler

equations (as recommended in Maliar and Maliar, 2005). Although the presence of sticky prices

and optimal policymaking greatly complicates our model, we obtain considerable simplification by

imposing symmetry on household and firm behavior in equilibrium, thereby precluding equilibria

that exhibit heterogeneity.

Unlike previous studies that have focused largely on the effect that quasi-hyperbolic discount-

ing has on consumption, saving, and labour supply, we focus on its implications for how the

central bank should conduct monetary policy. In the absence of an effi cient subsidy to offset the

monopolistic distortion, discretionary monetary policy gives rise to both an inflation bias and a

stabilization bias. We quantify the impact that the household’s quasi-hyperbolic discounting has

on how monetary policy is conducted and quantify the magnitude of the discretionary inflation

bias. Next, we allow the central bank to also have quasi-hyperbolic discounting and examine the

implications the central bank’s discounting has for monetary policy. Lastly, we ask whether it is
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desirable for the central bank to be benevolent, i.e., whether it is desirable for the central bank

to quasi-hyperbolically discount the future by more, less, or at the same rate as households. We

contrast our results for discretionary policymaking with those from a Taylor-type rule.

We obtain five main results. First, consistent with previous studies, we find that quasi-

hyperbolic households over-consume and under-save in equilibrium, leading to a capital stock that

is smaller than it would be if households discounted geometrically. Second, although discretionary

monetary policy continues to result in positive average inflation, because the central bank tries to

use inflation surprises to raise output (discretionary inflation bias), the size of the discretionary

inflation bias is somewhat smaller when households have quasi-hyperbolic discounting. This

result emerges because firms make their pricing and production decisions to maximize their equity-

value. Because it is costly to change prices and their equity-holders have quasi-hyperbolic

discounting, firms choose to make smaller price changes in response to shocks and to spread

price-changes out over time. Allowing the central bank to have quasi-hyperbolic discounting

operates in a qualitatively similar way, and also leads to a smaller inflation bias. Third, we

show that not only is it desirable for the central bank to have quasi-hyperbolic discounting,

but that it should discount by more than households do. By doing so average inflation is

lowered and becomes closer to the Ramsey optimal rate of zero, raising household welfare. This

result parallels Rogoff (1985), who showed that discretionary outcomes could be improved by

appointing an optimally conservative central banker that cares more about stabilizing inflation

than society. With quasi-hyperbolic discounting the central bank cares relatively more about

costly prices changes (inflation) in the present, leading it to behave as if it cares more about

stabilizing inflation than society does. Fourth, with quasi-hyperbolic discounting households

receive a pecuniary and a non-pecuniary return to owning stocks (or capital). For even small

amounts of quasi-hyperbolic discounting the non-pecuniary component can be big, leading to

a large total return that spills over to the return on bonds. Fifth, outcomes generated by the

Taylor rule often differ greatly from the optimal discretionary policy. From a welfare perspective,

greater hyperbolic discounting by households leads to greater ineffi ciency of the Taylor rule.

The remainder of the paper is organized as follows. In the following section we present our

model, outline the decision problems for households and firms and discuss the first-order condi-

tions that emerge in a symmetric equilibrium. Section 3 describes the central bank’s decision

problem and presents the generalized Euler equations associated with optimal discretionary pol-

icy. Section 4 focuses on interest rates and asset prices, illustrating how these are determined

when agents have quasi-hyperbolic discounting. Section 5 presents the model’s benchmark pa-
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rameterization. Section 6 presents our main simulation results. Section 7 looks at policy

delegation, examining the relationship between the household’s and the central bank’s discount

rates. Section 8 concludes. Appendices contain derivations of the model’s equilibrium conditions

under different assumptions regarding capital’s ownership, illustrate the solution strategy, and

present results on numerical accuracy.

2 The model

The economy is populated by households, firms, and a government. Households supply labor

and consume a bundle of differentiated goods. Households can save through purchasing (risk-

free one-period nominal) bonds and stocks, earning income from their wealth and from working.

Unlike many business cycle models, the households in our model have hyperbolic preferences

(Laibson, 1997)– applying different discount factors at different points in time. Drawing on

Phelps and Pollak (1968) and Laibson (1997), we approximate hyperbolic discounting by the

quasi-hyperbolic discounting sequence
{

1, βθ, βθ2, βθ3, ...
}
, where θ ∈ (0, 1) reflects the usual

geometric discounting and β allows short-term payoffs to be discounted more or less heavily

relative to geometric discounting. If β ∈ (0, 1), then the short-run discount rate is higher than

the long-run discount rate; the opposite is true if β > 1.

We assume that firms own the capital stock– whose initial level was financed through a stock

issuance– and that firms finance capital’s accumulation over time through retained earnings.

The labor market is perfectly competitive, however firms produce differentiated goods that are

aggregated and sold to households. Constraining a firm’s pricing decision is a Rotemberg-style

(Rotemberg, 1982) quadratic cost to changing prices. The government consists primarily of a

central bank that is assumed to conduct policy under discretion by setting the nominal return

on the bond in order to maximize household welfare. We also consider the case where monetary

policy is conducted according to a Taylor-type rule.

Although our main analysis is conducted on the basis that firms own the capital stock, we could

alternatively have assumed that households own the capital stock and that they rent it to firms

in a perfectly competitive rental market. We show in Appendices A and B that both ownership

structures are equivalent, even when households quasi-hyperbolically discount the future.

2.1 Households

There is a unit-measure of identical infinitely-lived households who derive utility from consump-

tion and leisure. The representative household’s expected discounted lifetime utility from period

4



t onward is given by

Ut = Et
[
ut + β

(
θut+1 + θ2ut+2 + θ3ut+3 + ...

)]
, (1)

where ut represents the instantaneous, or momentary, utility obtained in period t, Et denotes the

mathematical expectation operator conditional upon period-t information, and the parameters

satisfy θ ∈ (0, 1) and β > 0. Equation (1) distinguishes between the rate at which households

discount the utility obtained in period t + 1 relative to period t, which is given by βθ, from the

rate at which they discount the utility obtained in period t+k relative to period t+k−1 (k > 1),

which is given by θ. Following (Krusell and Smith, 2003), equation (1) represents a form of

quasi-hyperbolic, or quasi-geometric, discounting. Notice that when β = 1 the standard case

of geometric discounting is restored while when β 6= 1 there is Strotz-style (Strotz, 1956) time

inconsistency embedded in household preferences. In the case that β < 1, households are more

impatient today than they are in the future and vice-versa when β > 1.

We assume that momentary utility is described by the additively-separable function

ut = u (ct, ht) =
c1−σt − 1

1− σ − χ h
1+υ
t

1 + υ
, (2)

where ht represents hours worked and ct is an aggregate good formed as a Dixit-Stiglitz bundle

(Dixit and Stiglitz, 1977) of differentiated goods

ct =

[∫ 1

0
ct (j)

εt−1
εt dj

] εt
εt−1

, (3)

where ct (j) denotes goods purchased from the j’th firm and the elasticity of substitution between

goods satisfies εt > 1, ∀ t. In equation (2), the parameters are assumed to satisfy σ > 0, υ > 0,

and χ > 0.

Expressed in terms of aggregate goods, the household’s real flow-budget-constraint is

ct +
bt+1

1 +Rt
+Qtst+1 = wtht +

bt
1 + πt

+Qtst (1 + rst ) ,

where Rt is the net nominal interest rate, wt is the real wage rate, πt is the aggregate good’s

inflation rate, Qt is the relative price of stocks, bt is the real value of non-state-contingent nominal

bonds, st is the number of stocks, and rst is the dividend yield. With the aggregate consumption

good produced according to equation (3), the demand for the j’th firm’s good, j ∈ [0, 1], is

ct (j) =

(
Pt (j)

Pt

)−εt
ct,
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with the price of the aggregate good given by

Pt =

[∫ 1

0
Pt (j)1−εt dj

] 1
1−εt

.

We assume that the representative household cannot precommit to future plans. With the

economy’s state vector summarized by the vector Zt, the state variables for the household’s

problem are bt, st, and Zt. Adopting the apparatus of a recursive competitive equilibrium,

we formulate the household’s decision problem through the following Lagrangian, which will be

extremized with respect to {ct, ht, bt+1, st+1, λt},

U (bt, st,Zt) =


c1−σt −1
1−σ − χh

1+υ
t
1+υ + βθEt [U (bt+1, st+1,Zt+1)]

+λt

(
w (Zt)ht + bt

1+π(Zt)
+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

−Q (Zt) st+1

)  , (4)

taking the equilibrium law-of-motion for Zt as given. In equation (4) the continuation value

U (bt+1, st+1,Zt+1) satisfies the recursion

U (bt, st,Zt) =


c1−σt −1
1−σ − χh

1+υ
t
1+υ + θEt [U (bt+1, st+1,Zt+1)]

+λt

(
w (Zt)ht + bt

1+π(Zt)
+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

−Q (Zt) st+1

)  .
We close our description of the household’s problem by noting that the elasticity of substitution

between goods is stochastic, with εt = εeζt and ζt obeying

ζt+1 = ρζζt + εζt+1,

with ρζ ∈ (0, 1) and εζt ∼ i.i.d. N
(

0, σ2ζ

)
. The elasticity shock, ζt, is common to all firms and

forms one element in the economy’s state vector, Zt.

2.2 Firms

There is a unit-continuum of monopolistically competitive firms. The j’th firm, j ∈ [0, 1], owns

capital, kt (j), and employs labour, ht (j), using both inputs to produce their output, yt (j),

according to the Cobb-Douglas production function

yt (j) = eatkt (j)α ht (j)1−α , (5)

where α ∈ (0, 1) and at is an aggregate technology shock that obeys

at+1 = ρaat + εat+1,
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with ρa ∈ (0, 1) and εat ∼ i.i.d. N
(
0, σ2a

)
. The aggregate technology, at, is another element in

the economy’s state vector, Zt.

The firm’s capital evolves over time according to the law-of-motion

kt+1 (j) = (1− δ) kt (j) + it (j) ,

where the depreciation rate, δ ∈ [0, 1], is common to all firms. The aggregate capital stock, Kt,

is the final element in the economy’s state vector, Zt.

Firms face a Rotemberg-style (Rotemberg, 1982) price adjustment cost, where the adjustment-

cost is governed by ω ≥ 0. Each period every firm chooses how much labor to employ, how much

investment to undertake, and the price at which to sell their good in order to maximize its

equity-value. Profits are paid to the firm’s equity-holders (households) in the form of a dividend.

After substituting the production function (equation 5) into the profit function (and dropping

the j-index for notational convenience), the decision problem for the representative firm can be

written recursively in the form

W (kt, pt−1,Zt) = max
{pt,kt+1}


p1−εtt Y (Zt)− w(Zt)

(
p
−εt
t Y (Zt)
eatktα

) 1
1−α
− (kt+1 − (1− δ) kt)

−ω
2

(
pt
pt−1

(1 + π(Zt))− 1
)2
Y (Zt)

+βθEt
[
C(Zt+1)

−σ

C(Zt)
−σ W (kt+1, pt,Zt+1)

]

 , (6)

taking the equilibrium law-of-motion for Zt as given, where C(Zt) denotes aggregate consump-

tion, Y (Zt) denotes aggregate output, and pt denotes the firm’s price relative to the aggregate

good’s price. Complementing equation (6) is the following recursive expression for the firm’s

continuation value

W (kt, pt−1,Zt) =


p1−εtt Y (Zt)− w(Zt)

(
p
−εt
t Y (Zt)
eatktα

) 1
1−α
− (kt+1 − (1− δ) kt)

−ω
2

(
pt
pt−1

(1 + π(Zt))− 1
)2
Y (Zt)

+θEt
[
C(Zt+1)

−σ

C(Zt)
−σ W (kt+1, pt,Zt+1)

]

 .

2.3 Equilibrium conditions and aggregation

In our model all households and all firms are identical and they are of unit mass. We focus our

attention on symmetric equilibria for which aggregation across agents implies kt = Kt, ct = Ct,

ht = Ht, bt = Bt, and st = St, where capital letters indicate aggregate quantities. The bonds

7



and stocks that are traded among households are assumed to be in zero-net-supply and fixed-net-

supply, respectively, so we have Bt = 0, ∀ t and St = 1, ∀ t, where our normalization that stocks
equal 1 is without loss of generality.

We examine the household’s decision problem in Appendix A.1. There we show that after

aggregating across households the first-order conditions for a symmetric equilibrium from the

household’s problem can be written as

C−σt wt = χHυ
t , (7)

C−σt
1 +Rt

= βθEt

[
C−σt+1

1 + πt+1

]
, (8)

QtC
−σ
t = βθEt

[
C−σt+1Qt+1

(
1 + rst+1

)]
. (9)

Equation (7) is an intra-temporal optimality condition for which the quasi-hyperbolic dis-

counting parameter does not enter. Which is to say that the household’s quasi-hyperbolic

discounting does not change the trade-off that it faces when making its labor-leisure choice. The

same cannot be said for equations (8) and (9), which are intertemporal optimality conditions asso-

ciated with saving through purchasing bonds and stocks, respectively. For these saving-decisions,

the quasi-hyperbolic discounting alters the rate at which household’s discount the future relative

to today. To the extent that β < 1, quasi-hyperbolic discounting serves to increase the compen-

sation that households require in order to defer consumption.

Turning to the firm’s decision problem, we show in Appendix A.2 that after aggregating across

firms the first-order conditions for a symmetric equilibrium can be expressed as

C−σt = βθEt

[
C−σt+1

(
rkt+1 + 1− δ +

(1− β)

β
KK(Zt+1)

)]
, (10)

πt (1 + πt) =
(1− εt)

ω
+
εtxt
ω

+ βθEt

[
C−σt+1
C−σt

Yt+1
Yt

πt+1 (1 + πt+1)

]
, (11)

rkt = αxt
Yt
Kt
, (12)

wt = (1− α)xt
Yt
Ht
, (13)

where xt represents real marginal costs, rkt represents the shadow real rental rate of capital,

and KK (Zt) is the derivative of the decision rule for next-period’s capital, Kt+1 = K (Zt), with

respect to Kt. Equations (12) and (13) are intra-temporal conditions that simply define capital’s

shadow rental rate and the real wage and do not depend on the household’s quasi-hyperbolic

discounting. Equation (11) is the economy’s Phillips curve. The structure of the Phillips curve
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is affected by the quasi-hyperbolic discounting, but only to the extent that it changes the rate at

which next-period’s outcomes are discounted relative to today. The household’s quasi-hyperbolic

discounting does not have a larger effect on the Phillips curve’s structure because we are focusing

on a symmetric equilibrium in which all firms set the same price, which means that in equilibrium

the relative goods-price for all firms always equals one.

The household’s quasi-hyperbolic discounting does, however, impact equation (10), which

characterizes the firm’s intertemporal decision about capital accumulation and takes the form of

a consumption-Euler equation, much like equations (8) and (9). Interestingly, in equation (10)

quasi-hyperbolic discounting manifests itself in two ways. First, quasi-hyperbolic discounting

changes the rate at which firms discount next-period relative to today, changing the compensation

that the firm requires to be enticed to purchase an additional unit of capital rather than pay

households a higher dividend. Second, quasi-hyperbolic discounting adds a term involving the

derivativeKK (Zt+1). This additional term, which disappears when β = 1, says that when making

its capital decision, the firm takes into account how the acquisition of an additional unit of capital

today changes next-period’s capital-acquisition decision, an effect that arises because the firm’s

equity holders do not have time-invariant preferences. If the household owns the capital stock,

then this term, KK (Zt+1), arises in the consumption-Euler equation for the capital decision as

households use capital accumulation to constrain their future-selves. While the (shadow) rental

rate represents a pecuniary return that households receive through owning stocks the derivative

term, KK (Zt+1), represents a non-pecuniary return.

In addition to these first-order conditions, aggregating across firms and households gives us

the aggregate production function

Yt = eatKα
t H

1−α
t ,

the resource constraint

Kt+1 = (1− δ)Kt − Ct +
(

1− ω

2
π2t

)
Yt,

and the following expression for the dividend yield, rst , which accounts for the pecuniary return

on owning stocks

Qtr
s
t =

(
1− xt −

ω

2
π2t

)
Yt + rktKt − (Kt+1 − (1− δ)Kt) . (14)

Equation (14) says that the dividend yield rises with an increase in the shadow rental rate of

capital, rkt , and with a reduction in real marginal costs, xt, or inflation, πt.
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3 Central bank

We assume that the central bank shares the household’s momentary utility function and that it

also has quasi-hyperbolic preferences, which is to say that we allow the central bank’s discount

factors, γ and ξ, to potentially differ from the household’s, β and θ. Further, we assume that

the central bank does not have access to a commitment technology and that it conducts policy

under discretion. With monetary policy conducted under discretion, and with the central bank

possessing quasi-hyperbolic preferences, the central bank’s decision problem can be summarized

by the Bellman equation

V(Zt) = max
{πt}

(
C1−σt − 1

1− σ − χH
1+υ
t

1 + υ
+ γξEt [V (Zt+1)]

)
,

where the continuation value can be expressed recursively in the form

V (Zt) =
C1−σt − 1

1− σ − χ

1 + υ
H1+υ
t + ξEt [V (Zt+1)] ,

subject to the constraints

C−σt = θEt [L(Zt+1)] , (15)

πt (1 + πt)C
−σ
t Yt =

εt
ω

(
xt +

1− εt
εt

)
C−σt Yt + θEt [M(Zt+1)] , (16)(

1− ω

2
π2t

)
Yt = Ct +Kt+1 − (1− δ)Kt, (17)

Yt = eatKα
t H

1−α
t . (18)

Among these four constraints, two are forward-looking: equations (15) and (16). In each

of these forward-looking constraints we have introduced an auxiliary variable, L(Zt) and M(Zt),

respectively, which are defined according to

L(Zt) = C−σt

(
β

(
αxt

Yt
Kt

+ 1− δ
)

+ (1− β)KK(Zt)

)
,

M(Zt) = βπt (1 + πt)C
−σ
t Yt.

Making these auxiliary variables functions of the economy’s state in the central bank’s decision

problem reflects the assumption that policy is set with discretion. Specifically, while able to

influence the economy’s aggregate state, the discretionary central bank is unable to use policy

to influence the process by which private-agents form expectations and must take the functions

L(Zt) and M(Zt) as given when formulating policy.

It is notable from equations (15)– (18) that the key constraints on the central bank’s pol-

icy decision are the production technology, the resource constraint, the Phillips curve, and the
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consumption-Euler equation associated with the optimal capital decision. The consumption-

Euler equations associated with bonds (equation 8) and stocks (equation 9) are not binding con-

straints, but simply serve to determine equilibrium outcomes for Rt and Qt, with rst determined

by equation (14).

The central bank’s decision problem is treated in Appendix C, where we show that the first-

order conditions for the optimal discretionary policy are

∂

∂Ct
: C−σt +

σχ

υ + α

H1+υ
t

Ct
− φ1t

(
1 + σ

1− α
υ + α

(
1− ω

2
π2t

) Yt
Ct

)
− φ2tσC−σ−1t

−σ 1 + υ

α+ υ
φ3t

(
(1− εt) + εtxt

ω
− πt (1 + πt)

)
C−σ−1t Yt = 0, (19)

∂

∂πt
: −φ3t (1 + 2πt)C

−σ
t − φ1tωπt = 0, (20)

∂

∂xt
: − χ

υ + α

H1+υ
t

xt
+ φ1t

1− α
υ + α

(
1− ω

2
π2t

) Yt
xt

+φ3t

(
εtxt
ω

+
1− α
υ + α

(1− εt) + εtxt
ω

− 1− α
υ + α

πt (1 + πt)

)
C−σt

Yt
xt

= 0, (21)

∂

∂Kt+1
: − γξαχ

υ + α
Et

[
H1+υ
t+1

Kt+1

]
+ ξEt

[
φ1t+1

(
α

1 + υ

υ + α

(
1− ω

2
π2t+1

) Yt+1
Kt+1

+ 1− δ
)]

+ξα
1 + υ

υ + α
Et

[
φ3t+1

(
(1− εt) + εtxt+1

ω
− πt+1 (1 + πt+1)

)
Yt+1
Kt+1

C−σt+1

]
−ξ (1− γ)Et

[(
C−σt+1 +

σχ

υ + α

H1+υ
t+1

Ct+1

)
CK(Zt+1)

]

+
ξ (1− γ)χ

υ + α
Et

[
H1+υ
t+1

xt+1
XK(Zt+1)

]
−φ2tθEt [LK(Zt+1)] + φ3tθEt [MK(Zt+1)]− φ1t = 0. (22)

where

Ht =

((
1− α
χ

)
eatxtK

α
t C
−σ
t

) 1
υ+α

, (23)

Yt =

((
1− α
χ

)1−α
e(1+υ)atx1−αt K

α(1+υ)
t C

−σ(1−α)
t

) 1
υ+α

, (24)

L(Zt) = C−σt

(
β

(
αeatxt

Yt
Kt

+ 1− δ
)

+ (1− β)KK(Zt)

)
, (25)

M(Zt) = βπt (1 + πt)C
−σ
t Yt. (26)

As a counterpoint, we also solve the model for the case where monetary policy is conducted
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according to the following Taylor-type rule

1 +Rt =
1 + π

βθ

(
1 + πt
1 + π

)φπ ( Yt
Yt−1

)φy
, (27)

where π represents the inflation target, φπ > 1 and φy > 0. Following Fernández-Villaverde, et

al. (2015) and Dennis (2018), this Taylor rule has the central back setting the nominal interest

rate in response to movements in inflation and real output growth.

4 Interest rates and the return on capital

From the household’s optimal bond-holding decision, the net nominal interest rate, Rt, is governed

by the Euler equation

1

1 +Rt
= βθEt

[
C−σt+1
C−σt

1

1 + πt+1

]
,

where the effect of the household’s quasi-hyperbolic discounting is seen to cause the future to be

discounted more sharply, raising the equilibrium interest rate on average. We can also compute

the shadow return on a risk-free real bond, rt, which must satisfy

1

1 + rt
= βθEt

[
C−σt+1
C−σt

]
,

From the firm’s decision problem the shadow rental rate of capital is given by

rkt = αxt
Yt
Kt
,

where household’s quasi-hyperbolic discounting has indirect-effects through the economy’s real

allocation. Where the shadow rental rate of capital represents the pecuniary return that house-

holds receive from owning stocks, the total net return they receive, rcapt , satisfies

1 + rcapt = rkt + 1− δ +
(1− β)

β
KK(Zt). (28)

According to equation (28), the total gross return on capital, 1 + rcapt , is the sum of two compo-

nents: the gross pecuniary return, rkt + 1− δ, and the gross non-pecuniary return, (1−β)β KK(Zt).

As we will see below, even for relatively small amounts of quasi-hyperbolic discounting the non-

pecuniary component can be large.
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5 Parameterization

We assume that a period in the model corresponds to one quarter of a year and parameterize

the model to this frequency. We set the household’s (geometric) discount factor, θ, to 0.99,

which in the absence of quasi-hyperbolic discounting implies a steady state annual real interest

rate of about 4 percent. As is common, we assume log-utility with respect to consumption,

i.e. σ = 1, and we set the relative weight on the disutility of labor, χ, equal to 1. The Frisch

labor supply elasticity, ν, is set equal to 1, which is consistent with a host of studies, including

Fernández-Villarerde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), Guerrieri and Ia-

coviello (2017), and Chetty, Guren, Manoli, and Weber (2011), but smaller than Gust, Herbst,

López-Salido, and Smith (2017) and Gavin, Keen, Richter, and Throckmorton (2015), who set

this elasticity to 2 and 3, respectively. As Fernández-Villarerde, et al, (2015) comment, a lower

value for ν (implying a higher labor-supply elasticity) is generally more appropriate for models

that do not differentiate between the intensive and extensive margins.

In the production technology, values for α generally range from about 0.3 (Guerrieri and

Iacoviello, 2017) to 0.40 (Cooley and Prescott, 1995). We set α equal to 0.33, in line with

Gavin, et al, (2015) and Sala, Söderström, and Trigari (2008). In the capital accumulation

equation, we set the depreciation rate, δ, to 0.025, which implies that capital depreciates at a 10

percent annualized rate. We set the steady state elasticity of substitution between goods, ε, to

11, implying a steady state mark-up of 10 percent. This value for ε has been used previously

in a range of studies, including Krause, López-Salido, and Lubik (2008a) and Dennis (2018),

and is consistent with the findings of Basu and Fernald (1997). Other recent studies have

set ε to 6 (Christiano, Eichenbaum, and Evans, 2005) or 21 (Fernández-Villarerde et al, 2015;

Krause, López-Salido, and Lubik, 2008b), implying much larger and much smaller steady-state

markups, respectively, however we found that these values gave implausible values for steady

state inflation. Turning to the price adjustment parameter, ω, we set it to 100, consistent with

Gust, et al, (2017). In a log-linearized environment, this value for ω makes the Rotemberg model

quantitatively similar to a Calvo model where the average frequency of price adjustment equals

one year. Elsewhere in the literature, Gavin, et al, (2015) estimate ω to be 59.1, Ireland (2001)

estimates it to be about 80, while the estimates in Gertler, Sala, and Trigari (2008) and Sala,

Söderström, and Trigari (2008) imply a value closer to 150.

There are two shocks in the model, those to aggregate technology, at, and the elasticity of

13



Table 1: Benchmark Parameterization
Parameter Value Parameter Value Parameter Value

θ 0.99 α 0.33 ρa 0.95
σ 1.0 ε 11.0 ρζ 0.85

χ 1.0 ω 100.0 σa 0.008
ν 1.0 δ 0.0025 σζ 0.06
β 1.0

substitution among goods, ζt. As is common, these shocks are assumed to follow AR(1) processes:

at+1 = ρaat + εat+1, εat ∼ i.i.d. N
(
0, σ2a

)
,

ζt+1 = ρζζt + εζt+1, εζt ∼ i.i.d. N(0, σ2ζ).

For the aggregate technology shock, we follow convention (see Faia (2009) and the references

therein) and set the persistence parameter, ρa, to 0.95 and the standard deviation for the tech-

nology innovation, σa, to 0.008. For the elasticity of substitution shock, the estimates vary across

the literature. Gertler, Sala, and Trigari (2008) estimate ρζ and σζ to be 0.81 and 0.008, Smets

and Wouters (2007) estimate them to be 0.89 and 0.1, while Ichiue, Kurozumi, and Sunakawa

(2013) estimate them to be 0.7 and 0.05. We set ρζ and σζ to 0.85 and 0.06, respectively, implying

that 90 percent of the distribution for εt lies in the interval [9.1, 13.3].

In our benchmark model the central bank’s discount factor and its quasi-hyperbolic discount

factor are assumed to be the same as for the household, implying that the central bank is benev-

olent. We summarize our benchmark parameterization in Table 1.

For the simulations based on the Taylor-type rule, equation (27), we assume π = 2.5, φπ = 1.5,

and φy = 0.5/4.

6 Results

In this section we present simulation results for a range of different model specifications. We

begin with the benchmark model in section 6.1 in which households have geometric discounting

and the central bank is benevolent, sharing the household’s discount factors. In section 6.2 we

allow households to have quasi-hyperbolic discounting while maintaining the assumption that the

central bank shares the household’s discount factors. Section 7 treats the case where households

and the central bank have quasi-hyperbolic discounting and their discount factors are not equal.
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Figure 1: Steady state as function of the price markup.

6.1 The benchmark model

Before analyzing the stochastic economy it is useful to examine the effect that monopolistic compe-

tition has on production, consumption, and inflation, in a deterministic environment. Switching

the model’s stochastic elements off, the effect of varying ε on the model’s nonstochastic steady

state outcomes, through its consequences for the price markup, are presented in Figure 1. To

better interpret the effects of monopolistic competition, we also report in Figure 1 the steady state

results for the flex-price version (ω = 0) of the model. For this exercise, we assume monetary

policy is conducted under discretion.

The effect that the price markup has on steady state inflation is shown in Figure 1, panel

F. When prices are costly to change and there is no production subsidy in place to offset the

monopolistic distortion a higher markup leads to higher inflation, with annualized inflation reach-

ing exceedingly high levels as the markup approaches 100 percent. The inflation that occurs as

the markup rises is a product of the discretionary central bank’s behavior. With monopolistic

competition generating ineffi ciently low output, the central bank lowers the nominal interest rate

in order to stimulate demand and raise output. But to meet higher demand for their good firms

need to employ more workers, which boosts the demand for labour and pushes up the nominal
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wage and nominal marginal costs. Facing higher nominal marginal costs firms raise prices, caus-

ing inflation. As the markup gets bigger the central bank’s efforts to stimulate aggregate demand

intensify, giving rise to higher steady state inflation.

Because there are costs to changing prices, non-zero inflation has real costs. These real

costs are illustrated in panels A– E through the difference between the solid line, representing

the sticky-price model, and the dashed line, representing the flex-price model. Looking at

the behavior of the flex-price model, as the markup increases output (panel A), capital (panel

B), consumption (panel C), labour (panel D), and real marginal costs (panel E) all decrease

monotonically. The higher markup is associated with firms having greater market power and

leads to lower production. Lower production means less demand for capital and labour and also

leads to declines in consumption and investment. The fact that real marginal costs decrease as

the markup increases (panel E) simply reflects the increase in profits associated with firms having

greater market power.

When the price markup is not too large, the steady state behavior of the sticky price model

is similar to that for the flex-price model. However, as the markup becomes increasingly large

important differences between the two models emerge. These differences are driven by the

magnitude of inflation and with the output lost due to price-adjustment costs. Specifically,

as the markup gets bigger, in order to partly offset the output lost due to price-adjustment

costs, firms in the sticky-price model increase their production levels in order to maintain their

profitability. As a result, the demand for capital and labour rises in the sticky-price model

relative to the flex-price model.1 Thus, unlike for the flex-price model, where output and labour

decline monotonically, in the sticky-price model an increase in the markup causes output and

labour to rise, following an initial fall. For a given markup, steady state output, capital, and

labour are all higher in the sticky-price model than in the flex-price model, but this is not the

case for consumption, which suffers as goods are devoted to covering price-adjustment costs and

to supporting the capital stock. It is also worth noting that real marginal costs are higher

in the sticky-price model than the flex-price model, indicating that inflation and the resulting

price-adjustment costs have an adverse impact on profits.

Turning to the stochastic model, Table 2 reports the mean (standard deviation in brackets)

of the stationary distributions for the sticky-price economy under both discretion (column 1)

and the Taylor rule (column 2) to those for the flex-price economy (column 3). Comparing

the sticky-price and flex-price economies, the main effect of sticky prices is to generate a positive

1See also the discussion in Ascari and Rossi (2012).
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Table 2: Characteristics of the Stationary Distribution
Sticky prices Flexible prices

Discretion Taylor rule
(1) (2) (3)

Output Y 2.540
[0.104]

2.539
[0.103]

2.534
[0.104]

Capital K 21.734
[0.936]

21.722
[0.929]

21.664
[0.935]

Consumption C 1.992
[0.062]

1.991
[0.062]

1.993
[0.062]

Investment I 0.543
[0.053]

0.543
[0.053]

0.542
[0.053]

Labour H 0.881
[0.010]

0.881
[0.010]

0.880
[0.011]

Real wage w 1.756
[0.063]

1.755
[0.063]

1.753
[0.064]

Real marginal cost x 0.909
[0.008]

0.909
[0.011]

0.909
[0.010]

Annualized inflation π 2.580
[0.527]

2.519
[0.253]

−

Household welfare U 29.957
[0.989]

29.960
[0.992]

30.163
[0.988]

Nominal interest rate R 6.782
[0.497]

6.720
[0.660]

4.097
[0.399]

Real interest rate r 4.097
[0.384]

4.098
[0.411]

4.097
[0.399]

Rental rate rk 4.098
[0.427]

4.098
[0.431]

4.098
[0.447]

Return on capital rcap 4.098
[0.427]

4.098
[0.431]

4.098
[0.447]

Note: Statistics calculated using 106 simulated observations;
standard deviations in brackets.

inflation rate (an inflation bias) when policy is conducted under discretion, consistent with Figure

1. With the (stochastic) price markup averaging just over 10 percent, the discretionary central

bank’s efforts to offset the monopolistic distortion results in higher inflation and a higher nominal

interest rate.

Figure 2 plots impulse responses for technology shocks under both discretionary policy (solid

lines) and the Taylor-rule policy (dashed lines) in the model with sticky prices. Looking at

the responses under discretion, a positive technology shock raises the productivity of capital and

labour, causing firms to demand more of these inputs, which raises the quantities of capital (panel

B) and labour (panel E) traded and increases the real wage (panel F) and the real interest rate

(panel J). With more capital and labour employed for production, real output rises (panel A) and

the resulting increase in households’real income boosts consumption (panel C). Real marginal

costs (panel G) are little-changed by the shock because the productivity increase is captured by
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higher factor prices. Because real marginal costs are little-affected, firms face minimal pressure

to change prices, so inflation too is little-changed by the shock (panel H). As a consequence,

monetary policy responds to the shock largely by accommodating it. The higher real return on

capital boosts the real return on bonds and the central bank responds by allowing the nominal

interest rate to rise in line with the higher real interest rate. Qualitatively, the results for the

Taylor-rule policy are very similar to the discretionary policy, however it is noticeable that the

discretionary policy leads to a much smaller inflation response, at the cost of greater movement

in labour (panel E), the real wage (panel F) and output (panel A) when the shock hits.

Turning to Figure 1, under discretionary policymaking, a positive shock to the elasticity of

substitution among goods leads to a decline in the markup, which has a direct negative impact

on inflation (panel H). Greater competition among firms causes output to rise (panel A) and

leads to greater demand for capital (panel B) and labour (panel E). Consumption rises (panel

C) as a consequence of higher real income. Increased demand for capital and labour causes the

real wage to rise (panel F) and this in turn causes real marginal costs to increase (panel G).

Although real marginal costs have gone up, because there is greater competition among firms

prices actually fall and inflation goes down (panel H). However, with greater costs and lower

prices, firms profitability is adversely affected, which is reflected in a lower stock price. The

central bank responds to the shock by lowering the nominal interest rate, but by less than the

decline in inflation, allowing the real interest rate to rise and bring the real return on bonds into

line with the higher real return on capital. The greatest differences between the discretionary

policy and the Taylor rule policy can be seen in the behavior of inflation (panel H), which falls

under discretion and rises under the Taylor rule. But this differences in behavior translates into a

relatively small difference in the real interest rate (panel J) and the behavior of the real economy

is qualitatively similar for the two policies.

6.2 Quasi-hyperbolic discounting

The previous section assumed that household’s and the central bank used geometric discounting

to discount the future. In this section we examine the effect that quasi-hyperbolic discounting

by households and the central bank has for macroeconomic and financial outcomes. When

introducing quasi-hyperbolic discounting, we impose θ = ξ and γ = β (so that household’s and

the central bank discount symmetrically) to maintain the assumption that the central bank is

benevolent. We consider cases where β 6= γ in section 7.

In line with the standard mechanism discussed in Krusell and Smith (2003) and elsewhere,
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Figure 2: Responses to a technology shock under discretion and the Taylor-rule
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Figure 3: Responses to a price-elasticity shock under discretion and the Taylor rule
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greater quasi-hyperbolic discounting results in households increasing their current consumption

and reducing their current saving. As a result, less capital accumulation takes place and output,

capital, and consumption are all lower on average. The effect is quantitatively substantial, as

illustrated in Table 3.

Focusing on the model’s stationary distribution, Table 3 shows the mean (standard deviations

in parentheses) outcomes for the model’s key macroeconomic and financial variables for different

values of β = γ, allowing policy to be conducted either under discretion (columns (1)– (4)) or

according to a Taylor rule (columns (5)– (8)). Looking at average outcomes, the table shows

that as greater quasi-hyperbolic discounting takes place (β = γ get smaller)– biasing household

and central bank decision-making toward the present– output falls. Specifically, lowering β = γ

from 1.0 to 0.9 causes output to decline by approximately 10 percent.2 Although greater quasi-

hyperbolic discounting causes output, capital, consumption, labour, and the real wage to fall

there are important differences in how each of these variables is affected. For example, although

lowering β = γ from 1.0 to 0.9 causes output to fall by 10.02 percent, capital falls by much more

(24.55 percent) and labour falls by much less (1.84 percent). Labour does not decline to the

same extent as output because households sacrifice some leisure in order to prevent a large decline

in consumption. As a consequence, consumption falls by 6.02 percent, considerably less than

output. The large decline in capital combined with a smaller decline in labour means that the

capital-labour ratio goes down, and with relatively less capital, labour’s productivity diminishes

and real wages go down (by 7.77 percent).

Looking at real marginal costs, Table 3 shows that greater quasi-hyperbolic discounting causes

real marginal costs to rise slightly under both discretionary policy and the Taylor-rule policy. The

effect that quasi-hyperbolic discounting has on real marginal costs is related to the decline that

firms face in the demand for their good, which causes them to lower their price markup. To

understand the impact quasi-hyperbolic discounting has on inflation for the discretionary policy,

note that quasi-hyperbolic discounting implies that costs to changing prices today are weighted

more heavily than those to changing prices in the future. As a consequence, when responding to

shocks firms find it beneficial to spread price changes out over time, making smaller price changes

in the current period and deferring the remaining price change (and its associated cost) to the

future. With smaller price changes taking place today, greater quasi-hyperbolic discounting

acts somewhat like an increase in price rigidity. From the central bank’s perspective, with

2Cutting β from 1.0 to 0.7 causes output to fall by about 30 percent, suggesting a linear relationship between
the percent by which β falls and the percent by which output falls.
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Table 3: Stationary Distribution as a Function of the Quasi-Hyperbolic Discount factor
Discretion Taylor rule

Discounting β = γ 1.00 0.99 0.95 0.90 1.00 0.99 0.95 0.90
(1) (2) (3) (4) (5) (6) (7) (8)

Output Y 2.540
[0.104]

2.516
[0.103]

2.415
[0.099]

2.286
[0.094]

2.539
[0.103]

2.509
[0.102]

2.387
[0.097]

2.231
[0.091]

Capital K 21.734
[0.936]

21.181
[0.916]

19.009
[0.837]

16.398
[0.740]

21.722
[0.929]

21.049
[0.903]

18.437
[0.799]

15.367
[0.674]

Consumption C 1.992
[0.062]

1.981
[0.062]

1.935
[0.062]

1.872
[0.061]

1.991
[0.062]

1.978
[0.062]

1.922
[0.061]

1.842
[0.060]

Investment I 0.543
[0.053]

0.530
[0.052]

0.475
[0.048]

0.410
[0.044]

0.543
[0.053]

0.526
[0.051]

0.461
[0.047]

0.384
[0.041]

Labour H 0.881
[0.010]

0.880
[0.009]

0.873
[0.009]

0.865
[0.008]

0.881
[0.010]

0.879
[0.010]

0.871
[0.010]

0.867
[0.010]

Real wage w 1.756
[0.063]

1.743
[0.063]

1.690
[0.062]

1.619
[0.060]

1.755
[0.063]

1.739
[0.063]

1.674
[0.061]

1.587
[0.059]

Real marginal costs x 0.909
[0.008]

0.910
[0.008]

0.912
[0.008]

0.915
[0.007]

0.909
[0.011]

0.910
[0.011]

0.912
[0.011]

0.915
[0.011]

Annualized inflation π 2.580
[0.527]

2.559
[0.520]

2.478
[0.493]

2.385
[0.462]

2.519
[0.253]

2.519
[0.254]

2.520
[0.258]

2.522
[0.267]

Household welfare U 29.957
[0.989]

29.270
[0.980]

26.432
[0.942]

22.685
[0.895]

29.960
[0.992]

29.180
[0.981]

25.924
[0.937]

21.457
[0.881]

Nominal interest rate R 6.782
[0.497]

11.139
[0.516]

30.969
[0.608]

62.443
[0.760]

6.720
[0.660]

11.098
[0.692]

31.026
[0.847]

62.664
[1.111]

Real interest rate r 4.097
[0.384]

8.367
[0.403]

27.804
[0.489]

58.660
[0.634]

4.098
[0.411]

8.368
[0.432]

27.804
[0.531]

58.660
[0.700]

Rental rate rk 4.098
[0.427]

4.342
[0.433]

5.413
[0.460]

7.019
[0.502]

4.098
[0.431]

4.392
[0.440]

5.713
[0.480]

7.756
[0.542]

Return on capital rcap 4.098
[0.427]

8.369
[0.447]

27.805
[0.543]

58.662
[0.704]

4.098
[0.431]

8.368
[0.453]

27.805
[0.558]

58.618
[0.740]

Note: Statistics calculated using 106 simulated observations; standard deviations in brackets.
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quasi-hyperbolic discounting operating similarly to an increase in price rigidity, it calculates that

smaller inflation surprises are suffi cient to boost output to the effi cient level. In equilibrium,

then, greater quasi-hyperbolic discounting leads to less inflation.

Turning to the financial variables, the most pronounced and obvious effect of quasi-hyperbolic

discounting is to raise the real returns on capital and bonds. With quasi-hyperbolic discounting

shifting demand from future- to current-consumption the relative price of current-consumption

rises causing the pecuniary return on capital, as reflected in the (shadow) rental rate of capital, to

rise. In addition, greater quasi-hyperbolic discounting increases greatly the non-pecuniary return

on capital, which causes the (net) total return on capital, rcap, to balloon. With households

substituting between stocks and bonds (which do not offer a non-pecuniary return because they

are in zero-net-supply) based on their total return, the rise in rcap leads to a commensurate rise

in the real interest rate.

6.2.1 Impulse responses

Although it is clear from Table 3 that quasi-hyperbolic discounting has an important impact on

average outcomes, here we focus on dynamics. We compute impulse response functions for the

discretionary response to technology shocks (Figure 4) and price-elasticity shocks (Figure 5) while

allowing the extent of the quasi-hyperbolic discounting to vary.

Looking first at the responses to technology shocks, Figure 4 reveals that it is the financial

variables that quasi-hyperbolic discounting affects most. The solid lines in Figure 4 correspond

to β = γ = 1, the baseline case displayed in Figure 2. With quasi-hyperbolic discounting causing

households to discount the entire future relative to today, increased quasi-hyperbolic discounting

leads to an increased focus on today’s consumption and leisure. Accordingly, relative to the

baseline case, consumption (panel C) rises by more and labour (panel E) rises by less in response

to the technology shock. Higher technology boosts the demand for labour, and with the supply

of labour increasing by less relative to the baseline case, the real wage (panel F) rises by more,

which pushes up real marginal costs (panel G). Because real marginal costs increase by more

with quasi-hyperbolic discounting than they do for the baseline case, the firm’s production costs

are higher and their profitability is lower. At the same time, the real interest rate (panel J) rises

by more than the baseline case, due to the increased demand for current consumption relative to

future consumption. The discretionary policy response is to increase the nominal interest rate

(panel I) by more than the baseline case, primarily due to the higher real interest rate.

Figure 5 shows how quasi-hyperbolic discounting alters the model’s dynamic behavior follow-
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Figure 4: Responses to a technology shock with quasi-geometric discounting, β = γ, and discre-
tionary policy
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ing price-elasticity shocks. Relative to the baseline case in which β = γ = 1 (solid lines), with

quasi-hyperbolic discounting the impulse responses are (generally) a little more muted. House-

holds value leisure and consumption more today relative to the future, so labour (panel E) rises

by less following the shock and consumption rises by more (panel C). Similarly, quasi-hyperbolic

discounting makes firms want to defer costly price changes, so inflation (panel H) falls by less

than the baseline case. The variables for which the effects of quasi-hyperbolic discounting are

most pronounced are the real interest rate (panel J) and the nominal return on bonds (panel I).

Quasi-hyperbolic discounting makes all of these variables more sensitive to the price-elasticity

shock because it changes the relative demand for current consumption such that a bigger change

in the relative price of consumption (the real interest rate) is required to induce households to

defer consumption.

Although quasi-hyperbolic discounting affects the dynamic behavior of the macroeconomic

variables, Figures 4 and 5 reveal that its greatest impact is on asset returns. This finding is

consistent with the simulation results in Table 3, which show that the volatilities of asset returns

and asset prices rise importantly as quasi-hyperbolic discounting increases.

7 Policy delegation

In the previous section we allowed the central bank to have quasi-hyperbolic preferences, but we

restricted its discount factors to equal those of the representative household. This restriction

forced the discretionary central bank to be benevolent, i.e., to conduct policy under discretion

in order to maximize the welfare of the representative household. Here, we allow the central

bank’s quasi-hyperbolic discounting to differ from the representative household. We do this

exercise for two reasons. First, by allowing the central bank’s discounting to differ from the

household’s we can assess the degree to which the central bank’s quasi-hyperbolic discounting

affects economic outcomes. Second, because policy is being conducted under discretion and

discretion is suboptimal, it is possible that the government should optimally delegate monetary

policy to a central banker whose discounting differs from the household. If this is the case, then

a related question is whether the central bank should discount the future by more or less than

the household.

Table 4 summarizes equilibrium outcomes when the household and the central bank have

different discount factors, assuming monetary policy si conducted under discretion. Beginning

with the discretionary-policy case, comparing columns (1) and (2) we see that the central bank’s

quasi-hyperbolic discounting (γ = 0.9) causes it to conduct monetary policy in order to encourage
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Figure 5: Responses to a price-elasticity shock with quasi-geometric discounting, β = γ.
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greater consumption and leisure and discourage inflation. Because the central bank places greater

emphasis on the present relative to the future, monetary policy is used to encourage households

to bring consumption and leisure forward in time while also shifting price changes (which are

costly) to the future, where they are discounted more heavily. With greater consumption and

leisure taking place, investment and capital fall slightly, which leads to a decline in output. For

the financial variables, the real returns on assets are barely affected while the stock price rises.

Where columns (1) and (2) allow us to identify what happens when the central bank has

greater quasi-hyperbolic discounting than households (which are not quasi-hyperbolic discounters

for that comparison), columns (3) and (4) relate to the opposite comparison: in column (3)

both households and the central bank have quasi-hyperbolic discounting whereas in column (4)

only the household does. As a consequence, relative to column (3), in column (4) the central

bank uses monetary policy to encourage households to defer consumption and leisure, while

bringing forward price changes, which raises inflation. In this particular case, the household’s

labour supply response is large, which increases output and permits consumption to actually rise.

Although allowing the central bank’s discounting to differ from the household’s has effects on real

variables, these effects are relatively small. However, the effects on nominal variables are larger

and quantitatively significant.

Importantly, one consequence of the central bank’s quasi-hyperbolic discounting is to raise

household welfare. Household welfare is higher in column (2) than in column (1) and in column

(3) than in column (4). In other words, it is desirable from a welfare perspective for the central

bank to have quasi-hyperbolic discounting even if household’s do not. This finding parallels other

situations where distorting the central bank’s objectives can raise welfare when monetary policy

is conducted under discretion. For example, Dennis (2014) showed that having monetary policy

conducted by a discretionary central bank with risk-sensitive preferences could improve welfare

(lower loss) because the risk-sensitivity rendered feasible policies that were otherwise infeasible.

Here, the central reason why the central bank’s quasi-hyperbolic discounting raises household

welfare is that it emphasizes the current-period cost of changing prices, in much the same way as

greater price rigidity or greater concern for price changes. The outcome is less volatile inflation

and an average inflation rate that is lower, closer to zero. Due to the greater emphasis placed on

inflation appointing a central banker with quasi-hyperbolic discounting is similar to appointing a

conservative central banker (Rogoff, 1985).

Finally, we note from Table 4 that the finding that the central bank’s quasi-hyperbolic dis-

counting can raise household welfare relies on the economy’s steady state being ineffi cient. If
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Table 4: The Effect of the Central Bank’s Quasi-Hyperbolic Discounting
Discretion

Household β 1.00 1.00 0.90 0.90
Central bank γ 1.00 0.90 0.90 1.00

(1) (2) (3) (4)
Output Y 2.540

[0.104]
2.536
[0.104]

2.286
[0.094]

2.302
[0.095]

Capital K 21.734
[0.936]

21.681
[0.934]

16.398
[0.740]

16.592
[0.746]

Consumption C 1.992
[0.062]

1.993
[0.062]

1.872
[0.061]

1.876
[0.061]

Investment I 0.543
[0.053]

0.542
[0.053]

0.410
[0.044]

0.415
[0.044]

Labour H 0.881
[0.010]

0.880
[0.010]

0.865
[0.008]

0.869
[0.008]

Real wage w 1.756
[0.063]

1.754
[0.064]

1.619
[0.060]

1.630
[0.060]

Real marginal cost x 0.909
[0.008]

0.909
[0.009]

0.915
[0.007]

0.919
[0.006]

Inflation π 2.580
[0.527]

0.703
[0.312]

2.385
[0.462]

4.015
[0.633]

Household welfare U 29.957
[0.989]

30.155
[0.988]

22.685
[0.895]

22.555
[0.895]

Nominal interest rate R 6.782
[0.497]

4.828
[0.388]

62.443
[0.760]

65.029
[0.947]

Real interest rate r 4.097
[0.384]

4.097
[0.390]

58.660
[0.634]

58.660
[0.622]

Rental rate rk 4.098
[0.427]

4.098
[0.435]

7.019
[0.502]

7.016
[0.490]

Return on capital rcap 4.098
[0.427]

4.098
[0.435]

58.662
[0.704]

58.662
[0.687]

Note: Statistics calculated using 106 simulated observations;
standard deviations in brackets.

we were to introduce a production subsidy (financed by a lump-sum tax) to make the econ-

omy’s steady state effi cient, then there would be no discretionary inflation bias. In that case,

the decline in inflation generated by the central bank’s quasi-hyperbolic discounting would drive

drive inflation away from zero, which would lower household welfare.

To explore more fully whether it is desirable for the central bank to discount the future at a

rate that differs from households, Table 5 reports the optimal value for the central bank’s quasi-

hyperbolic discount factor γ∗ and the household’s welfare level at this point (with the standard

deviation for welfare given in square brackets) as a function of the household quasi-hyperbolic

discount factor, β. Several interesting and important results are apparent from Table 5. First,

it is desirable for the central bank’s quasi-hyperbolic discounting to be stronger than that of the

household (γ∗ < β). Second, even when the household does not have quasi-hyperbolic discounting
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Table 5: Impact of Quasi-Geometric Discounting on Household Welfare
β γ∗ Welfare
0.90 0.865 22.6818

[0.8910]

0.92 0.865 24.2281
[0.9098]

0.94 0.865 25.7494
[0.9285]

0.96 0.866 27.2448
[0.9472]

0.98 0.868 28.7130
[0.9660]

1.00 0.873 30.1468
[0.9846]

(β = 1), the central bank should (γ∗ < 1). Third, the optimal value for γ∗ is relatively insensitive

to changes to β.

8 Conclusion

In this paper we study the conduct of discretionary monetary policy in an economy where eco-

nomic agents have quasi-hyperbolic discounting. Households gain utility through consumption

and leisure and save by purchasing bonds and equities. With the exception of the goods market,

which is characterized by monopolistic competition and Rotemberg-prices, all other markets are

assumed to be perfectly competitive. As is well-known, by weighting the present more than the

future, relative to geometric discounting, quasi-hyperbolic discounting has important implications

for the equilibrium return on savings, and hence on the capital stock and the level of production.

However, in a model where there are costs to changing prices, quasi-hyperbolic discounting also

has important consequences for the inflation rate.

With the central bank conducting monetary policy optimally under discretion, we show that

the household’s quasi-hyperbolic discounting changes the economy’s average inflation rate, with

greater quasi-hyperbolic discounting giving rise to lower average inflation. The economy’s average

inflation rate declines because the household’s greater emphasis on the present (relative to the

future) strengthens the incentive for firms to spread price-changes out over time, benefiting their

equity-holders by making smaller price changes today and shifting the remaining price-change to

the future (when it is discounted more heavily). This qualitative mechanism continues to hold

when the economy’s steady state is effi cient, although its magnitude in reduced.

Our model also allows the central bank to have quasi-hyperbolic discounting, and for its
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discounting to differ from the household. We show that a benevolent central bank– one that

shares household’s preferences– is able to keep steady state inflation under control for a wide range

of discount factors. If the central bank, however, does not adopt the household’s time discounting

and tries to discourage early consumption and delayed saving, then the resulting equilibrium

produces only a small increase in output while generating a substantial rise in inflation. Indeed,

we show that it is optimal for the central bank to (quasi-hyperbolically) discount the future more

heavily than the household, and that doing so decreases inflation and increases welfare.
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A Appendix: The model where firms own capital

This section presents our benchmark model in which firms own the capital stock. We present

an alternative formulation in which household’s own the capital stock in Appendix B. The

equivalence of these two formulations can be seen by comparing Appendices A.3. and B.3. The

central bank’s decision problem is presented in Appendix C.

A.1 Household’s problem

The household’s decision problem is described by the Lagrangian

U (bt, st,Zt) = min
{λt}

max
{ct,ht,bt+1,st+1}


c1−σt −1
1−σ − χh

1+υ
t
1+υ + βθEt [U (bt+1, st+1,Zt+1)]

+λt

(
w (Zt)ht + bt

1+π(Zt)
+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

−Q (Zt) st+1

)  ,
where

U (bt, st,Zt) =


c1−σt −1
1−σ − χh

1+υ
t
1+υ + θEt [U (bt+1, st+1,Zt+1)]

+λt

(
w (Zt)ht + bt

1+π(Zt)
+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

−Q (Zt) st+1

)  . (29)
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The aggregate state vector, Zt, contains ζt, at, and Kt, and its equilibrium law-of-motion is taken

as given. The first-order conditions with respect to ct, ht, bt+1, and st+1 are

∂U (bt, st,Zt)

∂ct
: c−σt − λt = 0, (30)

∂U (bt, st,Zt)

∂ht
: −χhυt + λtwt = 0, (31)

∂U (bt, st,Zt)

∂bt+1
: − λt

1 +Rt
+ βθEt [Ub (bt+1, st+1,Zt+1)] = 0, (32)

∂U (bt, st,Zt)

∂st+1
: −λtQt + βθEt [Us (bt+1, st+1,Zt+1)] = 0. (33)

In equilibrium, the decision rules for bonds, stocks, labor and consumption take the form

bt+1 = B (bt, st,Zt) , (34)

st+1 = S (bt, st,Zt) , (35)

ht = H (bt, st,Zt) , (36)

ct = C (bt, st,Zt) . (37)

We now substitute equations (34)– (37) into equation (29) and differentiate the resulting

identity with respect to bt and st to get

Ub (bt, st,Zt) = c−σt

(
1

1 + πt
+

1− β
β

(
Bb (bt, st,Zt)

1 +Rt
+QtSb (bt, st,Zt)

))
, (38)

Us (bt, st,Zt) = c−σt

(
Qt (1 + rst) +

1− β
β

(
Bs (bt, st,Zt)

1 +Rt
+QtSs (bt, st,Zt)

))
. (39)

Substituting equations (38) and (39) into equations (31)– (33), using equation (30) to elimi-

nate the Lagrange multiplier, and aggregating across the unit-mass of identical households gives

C−σt wt = −χHυ
t , (40)

C−σt
1 +Rt

= θEt

[
C−σt+1

(
β

1 + πt+1
+ (1− β)

(
BB(Bt+1,St+1,Zt+1)

1+Rt+1

+Qt+1SB (Bt+1, St+1,Zt+1)

))]
(41)

C−σt Qt = θEt

C−σt+1
 βQt+1 (1 + rst+1)

+ (1− β)

(
BS(Bt+1,St+1,Zt+1)

1+Rt+1

+Qt+1SS (Bt+1, St+1,Zt+1)

) 
 , (42)

where Ct and Ht represent aggregate consumption and labor, respectively. Finally, with bonds

in zero-net-supply (Bt = 0 ∀ t) and stocks in fixed-net-supply (St = 1 ∀ t, where this normaliza-
tion is without loss of generality), we have that BB (Bt+1, St+1,Zt+1) = BS (Bt+1, St+1,Zt+1) =

SB (Bt+1, St+1,Zt+1) = SS (Bt+1, St+1,Zt+1) = 0, and equations (40)– (42) simplify to equations

(7)– (9) in the main text. The fact that these derivatives all equal zero simply means that

households cannot use the accumulation of bonds and/or stocks to constrain their future selves.
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A.2 Firm’s problem

To formulate the representative firm’s decision problem, we first substitute the production func-

tion and the demand function for the firm’s good into its profit function. With these substitutions,

the firm’s decision problem takes the form

W (kt, pt−1,Zt) = max
{pt,kt+1}


p1−εtt Y (Zt)− w (Zt)

(
p−εtt Y (Zt) e

−atk−αt
) 1
1−α

− (kt+1 − (1− δ) kt)− ω
2

(
pt
pt−1

(1 + π (Zt))− 1
)2
Y (Zt)

+βθEt
[
C(Zt+1)

−σ

C(Zt)
−σ W (kt+1, pt,Zt+1)

]
 ,

where

W (kt, pt−1,Zt) =


p1−εtt Y (Zt) (1− τ)− w (Zt)

(
p−εtt Y (Zt) e

−atk−αt
) 1
1−α

− (kt+1 − (1− δ) kt)− ω
2

(
pt
pt−1

(1 + π (Zt))− 1
)2
Y (Zt)

+θEt
[
C(Zt+1)

−σ

C(Zt)
−σ W (kt+1, pt,Zt+1)

]
 , (43)

and where the aggregate state is Zt =
[
ζt at Kt

]′
and its equilibrium law-of-motion is taken

as given.

The first-order conditions can be written as

∂W (kt, pt−1,Zt)

∂kt+1
: −1 + βθEt

[
C−σt+1
C−σt

Wk (kt+1, pt,Zt+1)

]
= 0, (44)

∂W (kt, pt−1,Zt)

∂pt
: (1− εt) p−εtt Yt +

εt
1− αwtp

−εt( α
1−α)

t

(
Yte
−atk−αt

) 1
1−α (45)

−ω
(

pt
pt−1

(1 + πt)− 1

)
Yt

1 + πt
pt−1

+ βθEt

[
C−σt+1
C−σt

Wp (kt+1, pt,Zt+1)

]
= 0.

In order to find Wk (kt, pt−1,Zt) and Wp (kt, pt−1,Zt) we substitute the solution

kt+1 = K (kt, pt−1,Zt) ,

pt = P (kt, pt−1,Zt) ,

into equation (43) and differentiate the resulting identity with respect to kt and pt−1. From the
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first-order conditions we obtain

Wk (kt, pt−1,Zt) =
α

1− αwt
ht
kt

+ 1− δ +
1− β
β
Kk (kt, pt−1,Zt)

+
1− β
β

(
ω
(

pt
pt−1

(1 + πt)− 1
)
Yt
1+πt
pt−1

− (1− εt) p−εtt Yt − εt
1−α

wt
pt
ht

)
Pk (kt, pt−1,Zt) , (46)

Wp (kt, pt−1,Zt) = ω

(
pt
pt−1

(1 + πt)− 1

)
pt
p2t−1

(1 + πt)Yt +
1− β
β
Kp (kt, pt−1,Zt)

+
1− β
β

(
− (1− εt) p−εtt Yt − εt

1−α
wt
pt
ht

+ω
(

pt
pt−1

(1 + πt)− 1
)
Yt
1+πt
pt−1

)
Pp (kt, pt−1,Zt) . (47)

We next substitute equations (46) and (47) into equation (44) and (??), and aggregate across

firms. In a symmetric equilibrium in which all firms set the same price, so that the price of

their good relative to that of the aggregate goods always equals one, this aggregation implies

PP (Zt) = PK (Zt) = KP (Zt) = 0. To understand why aggregation implies PP (Zt) = PK (Zt) =

KP (Zt) = 0, notice that if one firm sets the individual price above (below) the aggregate price

so that PP (Zt) 6= 0 then all firms would do the same and the relative price would not equal

one, which is inconsistent with the definition of the economy’s aggregate price. Further, because

the optimal relative price equals to one, it does not vary with the level of aggregate capital, so

PK (Zt) = 0. Lastly, the fact that the optimal relative price always equals one means that

KP (Zt) = 0. As a consequence, after aggregation we get

C−σt = βθEt

[
C−σt+1

(
α

1− αwt+1
Ht+1

Kt+1
+ 1− δ +

1− β
β
KK (Zt+1)

)]
, (48)

and

πt (1 + πt) =
1− εt
ω

+
εt

ω (1− α)

wtHt

Yt
+ βθEt

[
C−σt+1
C−σt

πt+1 (1 + πt+1)Yt+1
Yt

]
, (49)

respectively.

Now, let us define real marginal costs, xt, the shadow real rental rate of capital, rkt , and the

real wage, wt, according to

xt =
1

1− α
wtHt

Yt
,

rkt = αxt
Yt
Kt
, (50)

wt = (1− α)xt
Yt
Ht
, (51)
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then equations (48) and (49) become

1 = βθEt

[
C−σt+1
C−σt

(
α
xt+1Yt+1
Kt+1

+ 1− δ +
1− β
β
KK (Zt+1)

)]
, (52)

πt (1 + πt) =
εt
ω

(
xt +

1− εt
εt

)
+ βθEt

[
C−σt+1Yt+1

C−σt Yt
πt+1 (1 + πt+1)

]
. (53)

Equations (50) and (51) correspond to equations (12) and (13) in the main text and equations

(52) and (53) correspond to equations (10) and (11) in the main text.

Finally, we note that aggregate profits distributed to households through dividends are given

by

Qtr
s
t =

(
1− xt −

ω

2
π2t

)
Yt + rktKt − (Kt+1 − (1− δ)Kt) ,

which corresponds to equation (14) in the main text.

A.3 Private sector equations

Collecting all of the first-order conditions from Appendices A.1 and A.2 together, and rearranging,

we get

C−σt wt = χHυ
t ,

C−σt
1 +Rt

= βθEt

[
C−σt+1

1 + πt+1

]
,

C−σt Qt = βθEt
[
C−σt+1

(
Qt+1 +

(
1− xt+1 −

ω

2
π2t+1

)
Yt+1 + rkt+1Kt+1 − It+1

)]
,

It = Kt+1 − (1− δ)Kt,

Ct +Kt+1 = Yt + (1− δ)Kt −
ω

2
π2tYt,

C−σt = βθEt

[
C−σt+1

(
rkt+1 + 1− δ +

1− β
β
KK (Zt+1)

)]
,

πt (1 + πt) =
εt
ω

(
xt +

1− εt
εt

)
+ βθEt

[
C−σt+1Yt+1

C−σt Yt
πt+1 (1 + πt+1)

]
,

Yt = eatKα
t H

1−α
t ,

rkt =
α

1− αwt
Ht

Kt
,

wt = (1− α)xt
Yt
Ht
.
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B Appendix: The model where household’s own capital

Here we consider an alternative version of the model in which household’s rather than firms own

the capital stock. With households owning the capital stock we assume that there is a perfectly

competitive market in which firms can rent the capital from households.

B.1 Household’s problem

With household’s owning the capital stock their optimization problem becomes

U (kt, bt, st,Zt) = min
{λt}

max
{ct,ht,kt+1t,bt+1,st+1}


c1−σt −1
1−σ − χh

1+υ
t
1+υ + βθEt [U (kt+1, bt+1, st+1,Zt+1)]

+λt


(
1− δ + rk (Zt)

)
kt + bt

1+π(Zt)
+ w (zt)ht

+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

− kt+1 −Q (Zt) st+1


 ,

with the continuation value given recursively by

U (kt, bt, st,Zt) =


c1−σt −1
1−σ − χh

1+υ
t
1+υ + θEt [U (kt+1, bt+1, st+1,Zt+1)]

+λt


(
1− δ + rk (Zt)

)
kt + bt

1+π(Zt)
+ w (Zt)ht

+Q (Zt) st (1 + rs (Zt))

−ct − bt+1
1+R(Zt)

− kt+1 −Q (Zt) st+1


 . (54)

The first-order conditions with respect to ct, ht, kt+1, bt+1, and st+1 can be written as

∂U (kt, bt, st,Zt)

∂ct
: c−σt − λt = 0, (55)

∂U (kt, bt, st,Zt)

∂ht
: −χhυt + λtwt = 0, (56)

∂U (kt, bt, st,Zt)

∂kt+1
: −c−σt + βθEt [Uk (kt+1, bt+1, st+1,Zt+1)] = 0, (57)

∂U (kt, bt, st,Zt)

∂bt+1
: − c−σt

1 +Rt
+ βθEt [Ub (kt+1,bt+1, st+1,Zt+1)] = 0, (58)

∂U (kt, bt, st,Zt)

∂st+1
: −c−σt Qt + βθEt [Us (kt+1,bt+1, st+1,Zt+1)] = 0. (59)

In order to find Uk (kt, bt, st,Zt), Ub (kt, bt, st,Zt), Us (kt, bt, st,Zt), we note that the solution

we seek will give us the decision rules

kt+1 = K (kt, bt, st,Zt) ,

bt+1 = B (kt, bt, st,Zt) ,

st+1 = S (kt, bt, st,Zt) ,

ht = H (kt, bt, st,Zt) ,
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which we substitute into equation (54) and differentiate the resulting identity with respect to kt,

bt, and st. From the resulting derivatives, and employing equations (55)– (59), we obtain

Uk (kt, bt, st,Zt) = c−σt

(
1− δ + rkt +

1− β
β

(
Kk (kt, bt, st,Zt) + Bk(kt,bt,st,Zt)

1+Rt
+QtSk (kt, bt, st,Zt)

))
, (60)

Ub (kt, bt, st,Zt) = c−σt

(
1

1 + πt
+

1− β
β

(
Kb (kt, bt, st,Zt) + Bb(kt,bt,st,Zt)

1+Rt
+QtSb (kt, bt, st,Zt)

))
, (61)

Us (kt, bt, st,Zt) = c−σt

(
Qt (1 + rst ) +

1− β
β

(
Ks (kt, bt, st,Zt) + Bs(kt,bt,st,Zt)

1+Rt
+QtSs (kt, bt, st,Zt)

))
. (62)

With bonds in zero-net-supply (Bt = 0 ∀ t) and stocks in fixed-net-supply (St = 1 ∀ t), we
have BB (Kt, Bt, St,Zt) = BS (Kt, Bt, St,Zt) = SB (Kt, Bt, St,Zt) = SS (Kt, Bt, St,Zt) =KB (Kt, Bt, St,Zt) =

KS (Kt, Bt, St,Zt) = 0, so substituting equations (60)– (62) into equations (56)– (59), aggregat-

ing across households, and using equation (55) to eliminate the Lagrange multiplier gives

C−σt wt = χHυ
t ,

C−σt = βθEt

[
C−σt+1

(
rkt+1 + 1− δ +

1− β
β
KK (Kt+1, Bt+1, St+1,Zt+1)

)]
,

C−σt
1 +Rt

= βθEt

[
C−σt+1

1 + πt+1

]
,

C−σt Qt = βθEt
[
C−σt+1Qt+1

(
1 + rst+1

)]
.

B.2 Firm’s problem

The firm’s decision problem takes the form

W (pt−1,Zt) = max
{pt,kt}

 p1−εtt Y (Zt)− w (Zt)
(
p−εtt Y (Zt) e

−atk−αt
) 1
1−α − rk (Zt) kt

−ω
2

(
pt
pt−1

(1 + π (Zt))− 1
)2
Y (Zt) + βθEt

[
C−σt+1
C−σt

Wt+1 (pt,Zt+1)

]  ,
where the firm’s continuation value satisfies

W (pt−1,Zt) =

 p1−εtt Y (Zt)− w (Zt)
(
p−εtt Y (Zt) e

−atk−αt
) 1
1−α − rk (Zt) kt

−ω
2

(
pt
pt−1

(1 + π (Zt))− 1
)2
Y (Zt) + βθEt

[
C−σt+1
C−σt

Wt+1 (pt,Zt+1)

]  . (63)
The first-order conditions can be written as
∂W (pt−1,Zt)

∂kt
:

α

1− αwt
ht
kt
− rkt = 0, (64)

∂W (pt−1,Zt)

∂pt
: (1− εt) p−εtt Yt +

εt
1− αwtp

−εt( α
1−α)

t

(
Yte
−atk−αt

) 1
1−α

−ω
(

pt
pt−1

(1 + πt)− 1

)
Yt

(1 + πt)

pt−1
+ βθEt

[
C−σt+1
C−σt

Wp (pt,Zt+1)

]
. (65)

39



In order to find Wp (pt−1,Zt) we substitute the decision rules

kt = K (pt−1,Zt) ,

pt = P (pt−1,Zt) ,

into (63) and differentiate the resulting identity with respect to pt−1. We then use the first-order

conditions, equations (64) and (65), to obtain

Wp (pt−1,Zt) = ω

(
pt
pt−1

(1 + πt)− 1

)
pt
p2t−1

(1 + πt)Yt −
1− β
β

εt
1− α

wt
pt
htPp (pt−1,Zt)

− 1− β
β

(1− εt) p−εtt YtPp (pt−1,Zt)

+
1− β
β

ω

(
pt
pt−1

(1 + πt)− 1

)
Yt

(1 + πt)

pt−1
Pp (pt−1,Zt) . (66)

Substituting equation (66) into equations (64) and (65) and aggregating across firms, which in a

symmetric equilibrium where all firms set the same price, implies Pp (pt,Zt+1) = 0, yields

πt (1 + πt) =
1− εt
ω

+
εt
ω
xt + βθEt

[
C−σt+1Yt+1

C−σt Yt
(πt+1 (1 + πt+1))

]
,

where

wt = (1− α)xt
Yt
Ht
.

Finally, the dividends distributed to households are given by

Qtr
s
t = Yt (1− τ)− wtHt − rktKt −

ω

2
π2tYt.

B.3 Private sector equations

Collecting all of the first-order conditions together, and rearranging, we get
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C−σt wt = χHυ
t ,

C−σt
1 +Rt

= βθEt

[
C−σt+1

1 + πt+1

]
,

C−σt Qt = βθEt
[
C−σt+1

(
Qt+1 +

(
1− xt+1 −

ω

2
π2t+1

)
Yt+1

)]
,

Ct +Kt+1 = Yt + (1− δ)Kt −
ω

2
π2tYt,

C−σt = βθEt

[
C−σt+1

(
rkt+1 + 1− δ +

1− β
β
KK (Zt+1)

)]
,

πt (1 + πt) =
εt
ω

(
xt +

1− εt
εt

)
+ βθEt

[
C−σt+1Yt+1

C−σt Yt
πt+1 (1 + πt+1)

]
,

Yt = eatKα
t H

1−α
t ,

rkt =
α

1− αwt
Ht

Kt
,

wt = (1− α)
xtYt
Ht

,

which are equivalent to the equations reported in Appendix A.3 that were obtained under the

assumption that firm’s own the capital stock.

C Appendix: Discretionary policy

The decision problem facing the discretionary policymaker is summarized by the Bellman equation

V(Zt) = max
{Ct,Ht,Yt,xt,Kt+1,πt}

(
C1−σt − 1

1− σ − χH
1+υ
t

1 + υ
+ γξEt [V (Zt+1)]

)
, (67)

which is subject to the constraints

C−σt = θEt [L(Zt+1)] , (68)(
πt (1 + πt) +

εt
ω

(
xt +

1− εt
εt

))
YtC

−σ
t = θEt [M(Zt+1)] , (69)(

1− ω

2
π2t

)
Yt = Ct +Kt+1 − (1− δ)Kt, (70)

Ht =

(
1− α
χ

xtYtC
−σ
t

) 1
1+υ

, (71)

Yt = eatKα
t H

1−α
t , (72)

with the continuation value satisfying the recursion

V (Zt) =
C1−σt − 1

1− σ − χ

1 + υ
H1+υ
t + ξEt [V (Zt+1)] .
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Because monetary policy is conducted under discretion, the central bank cannot influence

how private sector expectations are formed, a restriction imposed by introducing the auxillary

variables L(Zt) and M(Zt), which are defined according to

L(Zt) = C−σt

[
β

(
αxt

Yt
Kt

+ 1− δ
)

+ (1− β)KK(Zt)

]
,

M(Zt) = βC−σt Ytπt (1 + πt) .

After substituting equations (71) and (72) into equations (67)– (70), the central bank’s deci-

sion problem can be expressed in terms of the Lagrangian

V(Zt) =



C1−σt −1
1−σ − χ

(
1−α
χ
xteatKα

t C
−σ
t

) 1+υ
υ+α

1+υ + γξEt [V (Zt+1)]

−φ1t
(
Ct +Kt+1 − (1− δ)Kt −

(
1− ω

2π
2
t

)
eatKα

t

(
1−α
χ xte

atKα
t C
−σ
t

) 1−α
υ+α

)
−φ2t

(
θEt [L(Zt+1)]− C−σt

)
+φ3t

 (1−εt)(1−τ)+εtxt
ω C−σt eatKα

t

(
1−α
χ xte

atKα
t C
−σ
t

) 1−α
υ+α

+θEt [M(Zt+1)]− πt (1 + πt)C
−σ
t eatKα

t

(
1−α
χ xte

atKα
t C
−σ
t

) 1−α
υ+α




, (73)

where φ1t, φ2t, and φ3t, represent the Lagrange multipliers on the three remaining constraints.

Now, differentiating equation (73) with respect to Kt+1, Ct, πt, and xt, the first-order conditions

are

∂V(Zt)

∂Kt+1
: γξEt [VK(Zt+1)]− φ2tθEt [LK(Zt+1)] + φ3tθEt [MK(Zt+1)]− φ1t = 0, (74)

∂V(Zt)

∂Ct
: C−σt +

σχ

υ + α

H1+υ
t

Ct
− φ1t

(
1 + σ

1− α
υ + α

(
1− ω

2
π2t

) Yt
Ct

)
− φ2tσC−σ−1t

− σ
1 + υ

α+ υ
φ3t

(
εt
ω

(
xt +

1− εt
εt

)
− πt (1 + πt)

)
C−σ−1t Yt = 0,

∂V(Zt)

∂πt
: −φ3t (1 + 2πt)C

−σ
t − φ1tωπt = 0,

∂V(Zt)

∂xt
: − χ

υ + α
H1+υ
t x−1t + φ1t

(
1− α
υ + α

(
1− ω

2
π2t

) Yt
xt

)
+ φ3t

(
εtxt
ω

+
1− α
υ + α

εt
ω

(
xt +

1− εt
εt

)
− 1− α
υ + α

πt (1 + πt)

)
C−σt Ytx

−1
t = 0.

To progress further we must find VK(Zt). The solution provides the decision rules

xt = X (Zt),

Ct = C(Zt),

πt = π(Zt),

Kt+1 = K(Zt),
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which we substitute into equation (73) giving the identity

V (Zt) =



C(Zt)1−σ−1
1−σ − χ

(
1−α
χ
eatX (Zt)Kα

t C(Zt)−σ
) 1+υ
υ+α

1+υ + ξEt
[
V
(
ζt+1, at+1,K(Zt)

)]
−φ1t

 C(Zt) +K(Zt)− (1− δ)Kt

−
(
1− ω

2π(Zt)
2
)(

1−α
χ e

1+υ
1−αatX (Zt)K

α 1+υ
1−α

t C(Zt)−σ
) 1−α
υ+α


−φ2t

(
θEt

[
L
(
ζt+1, at+1,K(Zt)

)]
− C(Zt)−σ

)

+φ3t


(1−εt)(1−τ)+εtX (Zt)

ω C(Zt)−σ
(
1−α
χ e

1+υ
1−αatX (Zt)K

α 1+υ
1−α

t C(Zt)−σ
) 1−α
υ+α

+θEt
[
M
(
ζt+1, zt+1,K(Zt)

)]
−π(Zt) (1 + π(Zt))

(
1−α
χ e

1+υ
1−αatX (Zt)K

α 1+υ
1−α

t C(Zt)−σ
) 1−α
υ+α

.





.

(75)

Then, differentiating equation (75) with respect to Kt yields

VK(Zt) =

(
C−σt +

σχ

υ + α

H1+υ
t

Ct

)
CK(Zt)−

χ

υ + α

H1+υ
t

xt
XK(Zt)

− αχ

υ + α

H1+υ
t

Kt
+ ξEt [VK(Zt+1)]KK(Zt)

− φ1t

(
KK(Zt) + CK(Zt)− (1− δ) + σ 1−αυ+α

(
1− ω

2π
2
t

)
Yt
Ct
CK(Zt) + ωπtYtπK(Zt)

− 1−αυ+α

(
1− ω

2π
2
t

)
Yt
xt
XK(Zt)− α υ+1

υ+α

(
1− ω

2π
2
t

)
Yt
Kt

)
− φ2t

(
θEt [LK(Zt+1)]KK(Zt) + σC−σ−1t CK(Zt)

)

+ φ3t


θEt [MK(Zt+1)]KK(Zt)− (1 + 2πt)C

−σ
t YtπK(Zt)

−α υ+1
υ+α

(
πt (1 + πt)− εt

ω

(
xt + 1−εt

εt

))
Yt
Kt
C−σt

−σ υ+1α+υ

(
εt
ω

(
xt + 1−εt

εt

)
− πt (1 + πt)

)
C−σ−1t YtCK(Zt)

−
(
1−α
υ+α

(
πt (1 + πt)− εt

ω

(
xt + 1−εt

εt

))
− εtxt

ω

)
Yt
xt
C−σt XK(Zt)

 ,

and using equations (74)– (75) to simplify we get

VK(Zt) =

(
1− 1

γ

)(
C−σt +

σχ

υ + α

H1+υ
t

Ct

)
CK(Zt)−

(
1− 1

γ

)
χ

υ + α

H1+υ
t

xt
XK(Zt)

− αχ

υ + α

H1+υ
t

Kt
+

1

γ
φ1t

(
α

1 + υ

υ + α

(
1− ω

2
π2t

) Yt
Kt

+ 1− δ
)

− α

γ

1 + υ

υ + α
φ3t

(
πt (1 + πt)−

εt
ω

(
xt +

1− εt
εt

))
Yt
Kt
C−σt . (76)

After substituting equation (76) back into equation (74), the system of first-order conditions
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for the discretionary optimization problem can be written as

∂

∂Ct
: C−σt +

σχ

υ + α

H1+υ
t

Ct
− φ1t

(
1 + σ

1− α
υ + α

(
1− ω

2
π2t

) Yt
Ct

)
− φ2tσC−σ−1t

− σ
1 + υ

α+ υ
φ3t

(
(1− εt) (1− τ) + εtxt

ω
− πt (1 + πt)

)
C−σ−1t Yt = 0, (77)

∂

∂πt
: −φ3t (1 + 2πt)C

−σ
t − φ1tωπt = 0, (78)

∂

∂xt
: − χ

υ + α

H1+υ
t

xt
+ φ1t

1− α
υ + α

(
1− ω

2
π2t

) Yt
xt

+ φ3t

(
εtxt
ω

+
1− α
υ + α

(1− εt) (1− τ) + εtxt
ω

− 1− α
υ + α

πt (1 + πt)

)
C−σt

Yt
xt

= 0, (79)

∂

∂Kt+1
: − γξαχ

υ + α
Et

[
H1+υ
t+1

Kt+1

]
+ ξEt

[
φ1t+1

(
α

1 + υ

υ + α

(
1− ω

2
π2t+1

) Yt+1
Kt+1

+ 1− δ
)]

+ ξα
1 + υ

υ + α
Et

[
φ3t+1

(
εt+1
ω

(
xt+1 +

1− εt+1
εt+1

)
− πt+1 (1 + πt+1)

)
Yt+1
Kt+1

C−σt+1

]
− ξ (1− γ)Et

[(
C−σt+1 +

σχ

υ + α

H1+υ
t+1

Ct+1

)
CK(Zt+1)

]

+
ξ (1− γ)χ

υ + α
Et

[
H1+υ
t+1

xt+1
XK(Zt+1)

]
− φ2tθEt [LK(Zt+1)] + φ3tθEt [MK(Zt+1)]− φ1t = 0. (80)

where

Ht =

((
1− α
χ

)
eatxtK

α
t C
−σ
t

) 1
υ+α

, (81)

Yt =

((
1− α
χ

)1−α
e(1+υ)atx1−αt K

α(1+υ)
t C

−σ(1−α)
t

) 1
υ+α

, (82)

L(Zt) = C−σt
(
β
(
eatxtαK

α−1
t H1−α

t + 1− δ
)

+ (1− β)KK(Zt)
)
, (83)

M(Zt) = βπt (1 + πt)C
−σ
t Yt. (84)

Equations (77)– (84) correspond to equations (19)– (26) in the main text.

44



D Appendix: Numerical solution

To solve the central bank’s optimal policy problem, described by equations (15)– (26) in the main

text, it is convenient to rewrite them more compactly as

0 = C−σt +
σχ

υ + α

H1+υ
t

Ct
− φ1t

(
1 + σ

1− α
υ + α

(
1− ω

2
π2t

) Yt
Ct

)
− φ2tσC−σ−1t

−σ 1 + υ

α+ υ
φ3t

((
1− εeζt

)
+ εeζtxt

ω
− πt (1 + πt)

)
C−σ−1t Yt, (85)

0 = −φ3t (1 + 2πt)C
−σ
t − φ1tωπt, (86)

0 = − χ

υ + α

H1+υ
t

xt
+ φ1t

1− α
υ + α

(
1− ω

2
π2t

) Yt
xt

(87)

+φ3t

(
εeζtxt
ω

+
1− α
υ + α

(
1− εeζt

)
+ εeζtxt

ω
− 1− α
υ + α

πt (1 + πt)

)
C−σt

Yt
xt

0 = Dt+1 − φ2tθLK,t+1 + φ3tθMK,t+1 − φ1t (88)

0 = C−σt − θLt+1, (89)

0 =

(
πt (1 + πt) +

(
εeζt − 1

)
− εeζtxt

ω

)
YtC

−σ
t − θMt+1, (90)

0 =
(

1− ω

2
π2t

)
Yt − Ct −Kt+1 + (1− δ)Kt, (91)

where

Ht =

((
1− α
χ

)
eatxtK

α
t C
−σ
t

) 1
υ+α

, (92)

Yt =

((
1− α
χ

)1−α
e(1+υ)atx1−αt K

α(1+υ)
t C

−σ(1−α)
t

) 1
υ+α

, (93)

and

Lt+1 = Et
[
L((ζt+1, at+1,Kt+1)

]
,

Mt+1 = Et
[
M(ζt+1, at+1,Kt+1)

]
,

Dt+1 = Et
[
D(ζt+1, at+1,Kt+1)

]
,

LK,t+1 = Et
[
LK(ζt+1, at+1,Kt+1)

]
,

MKt+1 = Et
[
MK(ζt+1, at+1,Kt+1)

]
,
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with the definitions

L(ζt, at,Kt) ≡ C−σt
(
β
(
eatxtαK

α−1
t H1−α

t + 1− δ
)

+ (1− β)KK(ζt, at,Kt)
)
, (94)

M(ζt, at,Kt) ≡ βπt (1 + πt)C
−σ
t Yt, (95)

D(ζt, at,Kt) ≡ ξφ1t

(
α

1 + υ

υ + α

(
1− ω

2
π2t

) Yt
Kt

+ 1− δ
)
− γξαχ

υ + α

H1+υ
t

Kt

+ξα
1 + υ

υ + α
φ3t

((
1− εeζt

)
+ εeζtxt

ω
− πt (1 + πt)

)
Yt
Kt
C−σt

−ξ (1− γ)

(
C−σt +

σχ

υ + α

H1+υ
t

Ct

)
CK(ζt, at,Kt)

+
ξ (1− γ)χ

υ + α

H1+υ
t

xt
XK(ζt, at,Kt). (96)

Equations (85)– (91) are a system of seven equations containing seven unknowns: six control

variables, Ct, πt, xt, φ1t, φ2t, and φ3t, and one future state variable, Kt+1. We solve this nonlinear

system on a set of nodes constructed for the state variables whose domain given by ζ ∈ [ζmin, ζmax],

a ∈ [amin, amax], and K ∈ [Kmin,Kmax]. We compute a set of Gauss-Chebyshev nodes, Z =

{ζk, aj ,Ki; k = 1...Nζ , j = 1...Na, i = 1...NK}, for the state space [ζmin, ζmax] × [amin, amax] ×
[Kmin,Kmax] and use a three-dimensional Chebyshev polynomial to approximate the unknown

functions.3

Using Zk,j,i ∈ Z to denote a particular grid point, our solution algorithm can be summarized

as follows:

Step 1. Initialize arrays for H(0)
t , Y (0)t , π(0)t , φ

(0)
1t , φ

(0)
2t , and φ

(0)
3t , to store solution outcomes.

Step 2. Conjecture initial state-contingent functions for K(0)
t+1 = K(0) (Zk,j,i), C

(0)
t = C(0) (Zk,j,i),

x
(0)
t = X (0) (Zk,j,i), L

(0)
t = L(0) (Zk,j,i), M

(0)
t = M (0) (Zk,j,i), and D

(0)
t = D(0) (Zk,j,i) at

each grid point Zk,j,i ∈ Z.

Step 3. At iteration n, approximate the functions K(n), C(n), X (n), L(n), M (n), and D(n) using

three-dimensional Chebyshev polynomials whose weights are computed using Chebyshev-

regression. Approximate the derivatives L(n)K , M (n)
K , K(n)K , X (n)K , and C(n)K by differentiating

the corresponding polynomial.

Step 4. At each grid point, Zk,j,i ∈ Z:
3A similar approach is discussed in Maliar and Maliar (2006), Anderson, Kim, and Yun, 2010), and Maliar and

Maliar (2005).
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Step 4.1. Compute the conditional expectations: L(n)t+1,M
(n)
t+1, D

(n)
t+1, L

(n)
K,t+1, andM

(n)
K,t+1 using

Gauss-Hermite quadrature.

Step 4.2. Solve equations (85)– (91) using a nonlinear solver and use the solution to update

K
(n+1)
t+1 (Zk,j,i), C

(n+1)
t (Zk,j,i), x

(n+1)
t (Zk,j,i), π

(n+1)
t (Zk,j,i), φ

(n+1)
1t (Zk,j,i), φ

(n+1)
2t (Zk,j,i),

and φ(n+1)3t (Zk,j,i).

Step 4.3. UpdateH(n+1)
t (Zk,j,i), Y

(n+1)
t (Zk,j,i), L

(n+1)
t (Zk,j,i),M

(n+1)
t (Zk,j,i), andD

(n+1)
t (Zk,j,i)

using equations (92)– (96).

Step 5. Compute the distance

Υ =
∥∥∥K(n+1)

t+1 −K(n)
t+1

∥∥∥
∞

+
∥∥∥C(n+1)t − C(n)t

∥∥∥
∞

+
∥∥∥x(n+1)t − x(n)t

∥∥∥
∞

+
∥∥∥π(n+1)t − π(n)t

∥∥∥
∞

+
∥∥∥φ(n+1)1t − φ(n)1t

∥∥∥
∞

+
∥∥∥φ(n+1)2t − φ(n)2t

∥∥∥
∞

+
∥∥∥φ(n+1)3t − φ(n)3t

∥∥∥
∞

+
∥∥∥L(n+1)t − L(n)t

∥∥∥
∞

+
∥∥∥M (n+1)

t −M (n)
t

∥∥∥
∞

+
∥∥∥D(n+1)

t −D(n)
t

∥∥∥
∞
.

If Υ is greater than the given tolerance (we use 1e−6), then increment the iteration counter,

n, and return to Step 3. Otherwise, stop.

We used the following parameters in this algorithm. For the state space, we set the domain

ζ ∈ [−3σζ , 3σζ ], a ∈ [−3σz, 3σz], and K ∈ [5, 35]. We used a grid with 15 nodes for capital and

7 nodes each for technology and the elasticity of substitution. Each function was approximated

with a Chebyshev polynomial of order 4 for ζ, 4 for a, and 14 for capital. Conditional expectations

were computed using Gauss-Hermite quadrature with 5 points for each shock.

The same algorithm was used to compute Taylor rule policy. We set capital’s domain to

K ∈ [15, 30], and output’s domain to Y ∈ [1.5, 3.2]. We used a grid on output with 9 nodes and a

Chebyshev polynomial of order 4 to approximate functions. All other parameters were identical

to those in the model of discretionary policy.

Table D1 reports the Euler-equation residuals for certain combinations of β and γ. To

compute them we split the domain for capital into 200 uniform points and those for technology

and the elasticity of substitution into 50 uniform points, and computed the residuals of the

consumption Euler equation at each point on this grid. We found the key determinant for

accuracy to be the order of the Chebyshev polynomial for capital. When this order was below
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14 there was a noticeable decline in accuracy.

Table D1: Numerical accuracy: Consumprion-Euler residuals

Discretionary policy Taylor-type rule
Discount factor HH β 1.00 0.90 0.90 1.00 0.90
Discount factor CB γ 1.00 0.90 1.00 — —
Maximum 1.5e-06 1.3e-06 1.1e-06 4.2e-07 5.4e-07
Mean 4.6e-07 4.0e-07 3.9e-07 1.4e-07 1.9e-07
Median 4.3e-07 3.5e-07 3.5e-07 1.2e-07 1.6e-07

To compute the stochastic steady state we used 106 random draws. We followed Potter (2000)

to compute the nonlinear impulse responses.
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