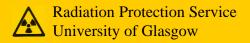



# What is Ionising Radiation?

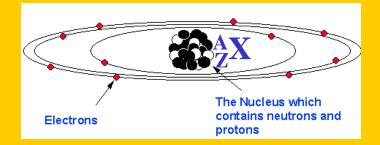

James Gray University RPA

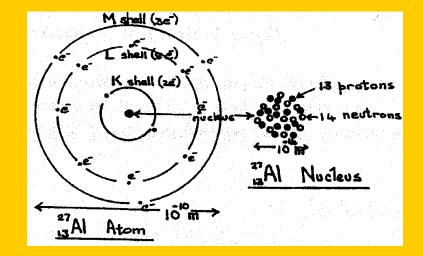


*Radioactivity* - a natural and spontaneous process by which the *unstable* atoms of an element emit or radiate excess energy in the form of particles or waves.

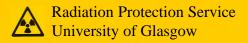
After emission the remaining *daughter* atom can either be a lower energy form of the same element *or* a completely different element.

The emitted particles or waves are called *ionising radiation* because they have the ability to remove *electrons* from the atoms of any matter they interact with.





#### **Review of Atomic Structure – 'High School' Physics**




The Bohr Model (1913) – negatively charged electrons orbiting a positively charged nucleus. Electrons only in 'allowable' orbits.

1885-1962





- Only works for hydrogen atom
- electrons are not 'point like' particles
- electrons do not 'orbit' the nucleus in a traditional sense
- electrons carry one unit of (-ve) electrical charge



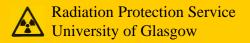


Nucleus, containing protons and neutrons


**The Nucleus:** 

Two particles: protons & neutrons (hadrons) Proton mass =  $1.673 \times 10^{-27} \text{ kg} = 1.00728 \text{ amu}$ Neutron mass =  $1.675 \times 10^{-27} \text{ kg} = 1.00866 \text{ amu}$ 

amu = atomic mass unit, defined relative to carbon 12


Charge: protons carry one (+ ve) unit of electrical charge neutrons are chargeless

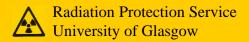
Forces: electrical – protons *repel* each other – *infinite range* strong nuclear – short range (~10<sup>-15</sup>m) *attractive* force between quarks – is 137x stronger than electrical forces the nucleus is held together by a *balance* of these forces when the nucleus is in balance it is called *stable* the key to the balance is the neutron: proton ratio

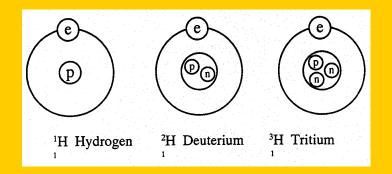


#### **Summary:**

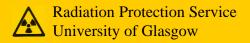
- Size of atom 10<sup>-10</sup>m, size of nucleus 10<sup>-15</sup>m
- Made up from 3 particles proton, neutron, electron
- Electrons exist outside of nucleus in discrete allowable orbits
- Electrons can move between orbits by absorbing/emitting energy
- Electrons carry one unit of electrical charge (-ve)
- Protons and neutrons exist within the nucleus
- They have roughly the same mass
- Protons carry one unit of electrical charge (+), neutron has no charge
- Stable nucleus there is a balance between SNF and electrical force
- When the balance is upset the nucleus is unstable




## **Definition:**

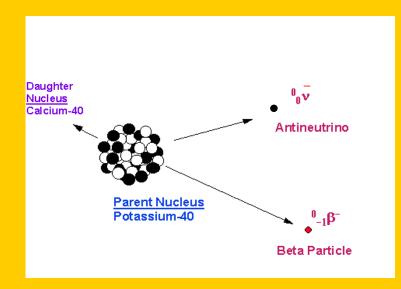

Atoms with the same number of protons/electrons have the same physical and chemical properties, these are called *elements* e.g. all oxygen atoms have 8 protons.

Elements are arranged in order of increasing proton number and are characterised with the symbol  $\begin{bmatrix} A \\ Z \end{bmatrix}$  - Periodic Table


Elements can have different numbers of neutrons and these are called isotopes

Isotopes can be stable or *unstable* 

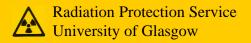





Isotope - atoms of the same element with different numbers of neutrons. Isotopes of Hydrogen Hydrogen - 1 proton + 1 electron - stable Deuterium - 1 proton + 1 neutron + 1 electron - stable Tritium - 1 proton + 2 neutrons + 1 electron - unstable Stability - related to n:p ratio low atomic number - n:p ~ 1:1 high atomic number - n:p rises to ~ 1.6:1 Stability regained by radioactive decay processes

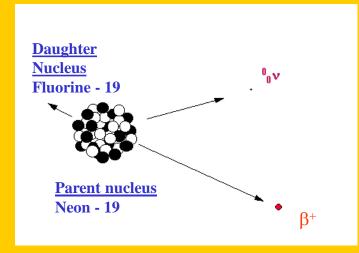


#### **Radioactive decay processes.**


## 1. Beta (minus) decay



$$^{40}_{19}K \rightarrow ^{40}_{20}Ca + 1.32MeV \beta^{-}$$
 max


#### General equation for beta minus decay:

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + \beta^{-} + \upsilon$$



#### **Radioactive decay processes.**

#### 2. Beta (plus) decay



$${}^{9}_{0}Ne \rightarrow {}^{19}_{9}F + 2.22MeV \beta^{+} + \upsilon$$
  
+ annihilation radiation

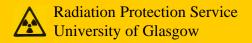
#### General equation for beta plus decay:

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + \beta^{+} + \upsilon$$

annihilation radiation =  $m_e c^2 = 0.511 \text{ MeV} (x2)$ 

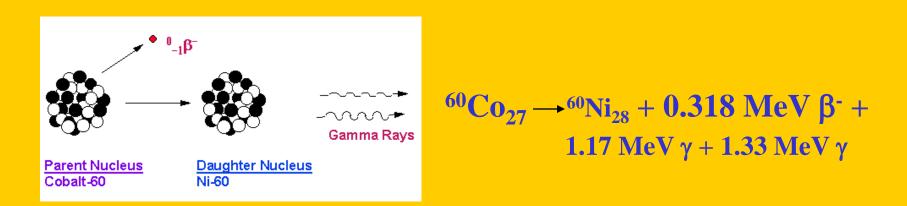
#### Radioactive decay processes.

## 3. Electron capture:


Excess of protons, stability reached by different process than  $\beta^+$ Orbital electron is *captured* by the nucleus, neutrino emitted.

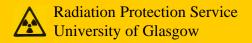
<u>Commonly</u> nucleus is left in an 'excited' state and returns to its ground state by emitting a gamma-ray photon from the *nucleus In all cases* a characteristic X-ray photon is emitted by the *atom*.

The general equation for the electron capture process is:


$$^{A}_{Z}X + e \rightarrow ^{A}_{Z-1}Y + \upsilon + X - rays + \gamma - rays (possibly)$$

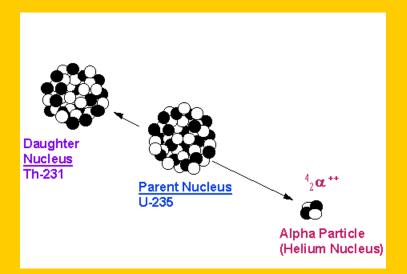
 ${}^{125}_{53}I + e \rightarrow {}^{125}_{52}Te + Tellurium \quad X - rays (0.027 Mev) + 0.035 MeV \gamma - rays$ 




#### **Radioactive decay processes.**

## 4. Gamma decay:

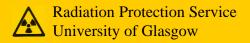



Nucleons have quantised energy levels - emitted  $\gamma$ -ray photons from a particular nucleus have a unique  $\gamma$ -ray spectrum.

 $\gamma$ -ray spectrum can be used to identify unknown isotopes and calibrate instruments.

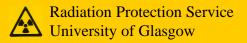


## **Radioactive decay processes.**


## 5. Alpha decay:

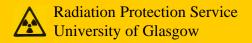


Nuclides with Z > 82  $\alpha$  particle = <sup>4</sup>He<sub>2</sub> (helium nucleus) and are monoenergetic

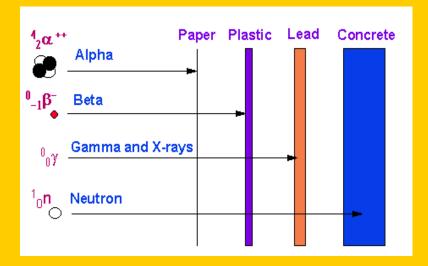

#### **Decay chain:**

Generally, unstable heavy elements require a series of alpha and beta decays until a lighter more stable element is reached




## **Radioactive decay processes.**

- **6. Neutron emission is produced by three methods:**
- Nuclear fission
- Deuterium bombardment of a tritium target
- Bombarding beryllium target with alpha particles

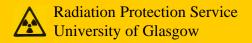



**X-ray Generation:** 

- 'Characteristic' X-ray emission
- Bremsstrahlung
- Man made



#### **Penetrating Distances**




 $\alpha$  < 4cm air, will not penetrate skin.

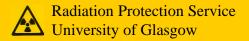
 $\beta$  - several mtrs in air, penetrates skin ~ 0.8 cm, use ~ 6 mm plastic shielding.

X - penetrating, speak of halfthickness  $\tau_{1/2}$ , use lead shielding.

 $\gamma$  - more penetrating than X-rays, use lead or concrete shielding.



#### Activity and half-life


# A radioactive nuclide decays at a rate proportional to the number of original nucleii present:


$$\frac{dN}{dt} = -\lambda N \qquad \text{:where } \lambda = \text{decay constant}$$

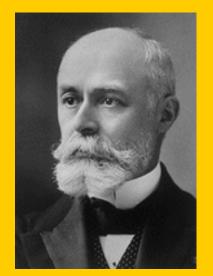
**Integrating the above gives the decay equation:** 

$$N_t = N_0 e^{-\lambda}$$


 $e^{-\lambda t}$  term indicates that radioactive atoms decay exponentially

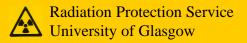





Half life  $(\tau_{1/2})$ : The time required for amount of radioactive material to decrease by one-half:

 $\tau_{\frac{1}{2}} = \frac{0.693}{\lambda}$ 




#### **Units:**

The disintegration rate of a radioactive nuclide is called its *Activity*. The unit of activity is the becquerel named after the discoverer of radioactivity.



1 Bq = 1 disintegration per second this is a small unit, activity more usually measured in: kilobecquerel (kBq) =  $10^3$  Bq Megabecquerel (MBq) =  $10^6$  Bq Gigabecquerel (GBq) =  $10^9$  Bq Terabecquerel (TBq) =  $10^{12}$ Bq

ANTOINE HENRI BECQUEREL 1852-1908




### Units:

**Old units still in use:** 

**Curie** (Ci) = 3.7 x 10<sup>10</sup> **disintegration per second therefore:** 

- 1 Ci =  $3.7 \times 10^{10}$  Bq = 37 GBq
- $1 \text{ mCi} = 3.7 \text{ x } 10^7 \text{ Bq} = 37 \text{ MBq}$
- $1 \mu Ci = 3.7 \times 10^4 Bq = 37 kBq$

1 MBq ~ 27 μCi

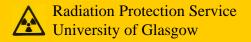


125**T**:

## **Common Isotopes Used In The Lab:**

- <sup>3</sup>H:  $τ_{1/2} = 12.3$  yrs, β<sup>-</sup> emitter (19 keV, 'soft') <u>Cannot</u> be detected using Geiger counter Bremsstrahlung radiation may be significant <u>Shielding</u> < 0.1 mm plastic
- <sup>14</sup>C:  $τ_{1/2} = 5730$  yrs, β<sup>-</sup> emitter (157 keV, 'soft') <u>Can</u> be detected using Geiger counter Bremsstrahlung radiation may be significant <u>Shielding</u> ~ 3 mm plastic
- <sup>32</sup>P:  $τ_{1/2} = 14.3$  days, β<sup>-</sup> emitter (1.71 MeV, 'hard') <u>Can</u> be detected using Geiger counter <u>Shielding</u> ~ 6.3 mm plastic

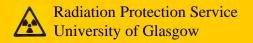
 $\tau_{1/2} = 60$  days, X-ray emitter <u>Can</u> be detected using a portable scintillation counter <u>Shielding</u> ~ 1 mm lead


## **Interaction with Matter**

α, β, γ and X-rays interact with matter in 2 major ways:
Ionisation: removal of an electron from an atom leaving an ion.
Excitation: addition of energy to the atom, giving an excited state. *Charged particles:*α-particle: 2+, 1/20 c, virtually ionises every molecule encountered.
β-particle: 1-, ~ c, ionises one in every 1000 molecules.

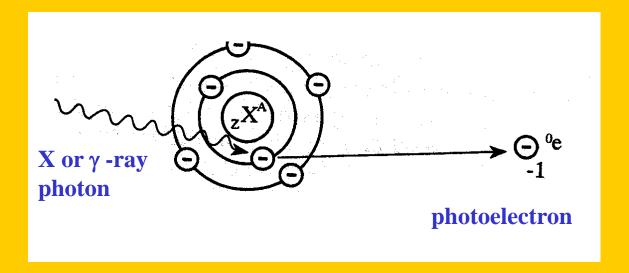
After each ionisation the charged particle will lose energy and will finally be 'stopped' - i.e.  $\alpha + \beta$  radiation has a finite <u>range</u>.

**<u>Range</u>** is measured in gcm<sup>-2</sup>

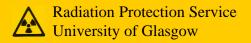

 $R_{\beta} = E_{\beta} / 2 \text{ gcm}^{-2}$  &  $R_{\alpha} = E_{\alpha} / 1000 \text{ gcm}^{-2}$ 



### **Example of a** range calculation

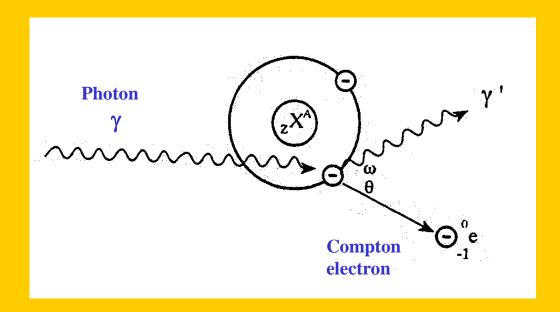

- Q. What is the range of a <sup>35</sup>S beta particle in perspex?
- A. The max. energy of the <sup>35</sup>S beta particle is 0.168 MeV ∴ the range of the particle is 0.084 gcm<sup>-2</sup>
  - The density ( $\rho$ ) of perspex = 1.2 gcm<sup>-3</sup>
  - $\therefore$  the penetration depth in cm (t) is given by t = range /  $\rho$

= 0.084 / 1.2 = 0.07 cm = 0.7 mm

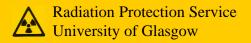



## **Interaction with Matter**

X and  $\gamma$ -rays: Chargeless, more penetrating than  $\alpha$  or  $\beta$ . Interact via: <u>photoelectric</u> effect, the <u>Compton</u> effect and <u>pair production</u>.




**Photoelectric Effect** 

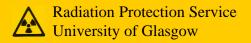



#### **Interaction with Matter**

X and  $\gamma$ -rays: Chargeless, more penetrating than  $\alpha$  or  $\beta$ . Interact via: <u>photoelectric</u> effect, the <u>Compton</u> effect and <u>pair production</u>.

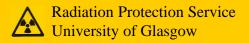


**Compton Effect** 




#### **Interaction with Matter**

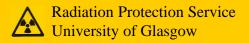
X and  $\gamma$ -rays: Chargeless, more penetrating than  $\alpha$  or  $\beta$ . Interact via: <u>photoelectric</u> effect, the <u>Compton</u> effect and <u>pair production</u>.





**Pair Production** 

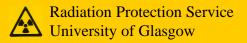



## **Interaction with Matter**

- X and  $\gamma$  rays are types of electromagnetic radiation.
- They are not 'stopped' by matter but are attenuated.
- Attenuation depends on energy of radiation, thickness and density of absorber material.
- Given thickness of absorber produces the same fractional reduction in intensity.
- Analogous to half-life called half-thickness thickness of absorber required to reduce intensity by 1/2.






If we use three half-thickness' of absorber then this will reduce the intensity by: 1/2+1/2+1/2 = 1/8



## **Summary:**

- Unstable atoms (excess p or n) can regain stability by emitting radiation
- Two types particle and electromagnetic
- Particle: β minus electrons (-1 charge) β plus – positrons (+1 charge) α – helium nuclei (+2 charge) neutrons (chargeless)
   EM: γ – ray – originate from inside nucleus X – ray – originate outside nucleus or man made
   Shielding: charged particles – low density materials γ/X rays – high density materials
   Units Becquerel (Bq) old unit Curie (Ci)

**Excellent physics website: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html** 



## **Common laboratory isotopes**

- <sup>32</sup>P pure beta (minus)
- <sup>33</sup>P pure beta (minus)
- <sup>14</sup>C pure beta (minus)
- <sup>3</sup>H pure beta (minus)
- <sup>35</sup>S pure beta (minus)
- <sup>125</sup>I electron capture gamma and X-rays
- <sup>131</sup>I beta (minus) + gamma