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Abstract
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1 Introduction

Positive human capital externalities associated with education have been dis-
cussed in the economics literature for the past several centuries. Notable con-
tributions include Smith (1776, Book V, Chaper I), Bastiat (1851, Chapter
17), Marshall (1890, Book I, Chapter IV), Bastable (1892, Book I, Chapter
V), Buchanan and Tullock (1962), Becker (1964) and Lucas (1988). De-
spite the fact that positive externalities to education provide the economic
justification for public subsidies to this activity, there is surprisingly little
consensus on their quantitative importance. Empirical estimates of the net
returns to education for the U.S., typically based on Mincer equations for
cities, states and the aggregate economy, range from 0 to 8%.1

To better understand the quantitative implications of human capital ex-
ternalities at the aggregate level, this paper estimates an endogenous growth
model based on Lucas (1988) and Tamura (1991) using Bayesian methods
which have become popular in recent years for the estimation of business cy-
cle models (see, e.g. Canova 2007, An and Schorfheide 2007, Del Negro and
Schorfheide 2007, DeJong and Dave 2011, Herbst and Schorfheide 2016 and
Fernández-Villaverde et al. 2016). Recent papers also employing these meth-
ods for applications involving growth models include Chang et al. (2007),
Anzoategui et al. (2017), and Bianchi et al. (2018). However, to the best of
our knowledge, this is the first study in the literature attempting to econo-
metrically estimate the extent of aggregate externalites to human capital
using an endogenous growth setup.

The main contribution of this paper is that we empirically identify signif-
icant positive aggregate externalities to human capital using quarterly U.S.
data from 1964-2017. For example, we find that the pre-depreciation private
returns to human capital are about 90% of the social returns.2 We further find
that if the social and private returns to education were equalised, discounted
lifetime aggregate welfare, in terms of the compensating consumption sup-

1Net returns refer to the difference between social and private returns. For recent
contributions to this literature, see, e.g., Acemoglu and Angrist (2001), Davies (2003),
Moretti (2004a), Moretti (2004b), Moretti (2004c), Psacharopoulos and Patrinos (2004),
Ciccone and Peri (2006), Lange and Topel (2006) and Guo et al. (2018).

2To the best of our knowledge, the only other papers providing quantitative evidence
relating to aggregate externalites in the U.S. are Choi (2011) and Guo et al. (2018). Using
calibration methods Choi (2011) finds that the pre-depreciation ratio of private to social
returns to human capital is nearly 75%. In contrast, Guo et al. (2018) econometrically
estimate that one more year of average schooling leads to a 6-8% increase in individual
wages. They further show that the elasticity of a firm’s productivity with respect to the
average human capital of the economy is 0.121.
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plement, would increase by about 8.7%.3 This implies that education-time
would increase by approximately 14% and the annual growth rate of hu-
man capital by about half a percent. The latter is non-trivial considering
its cumulative effects on the per capita levels in the model. For example,
these quantities would double roughly 25 years earlier in the model which
internalises the social returns.

Since the highly stylised growth model we estimate may be misspecified
in several dimensions and the measured data employed may not necessar-
ily be informative, we conduct several cross-validation exercises to examine
whether key model predictions cohere with the data and some stylised facts
more broadly. These are carried out by comparing the model implied long-
run trend for human capital accumulation and the model implied cyclical
behaviour of education time directly with the data. Moreover, we further as-
sess the robustness of our findings by re-estimating the model with a modified
set of observables.

The rest of the paper is organised as follows. Sections 2 and 3 lay out the
economic and econometric models respectively. Sections 4, 5 and 6 present
the estimation results, welfare analysis and external cross-validation in turn
and Section 7 contains the conclusions.

2 Endogenous growth model

In this Section, we solve for the optimal decisions of households and firms
relying on the Lucas (1988) and Tamura (1991) setups. We incorporate both
goods and human capital sectors as in Lucas (1988) but follow Tamura (1991)
and introduce the externality into human capital production instead of goods
production. The engine of long-term growth in this model is human capital
accumulation in the presence of an aggregate externality to human capital.
In particular, the externality implies that the social stock of human capital
increases the productivity of individuals’ educational choices. Moreover, the
excess of social over private benefits implied by the externality leads to an
under-investment in education and in turn human capital.

The general equilibrium solution consists of a system of dynamic rela-
tions, which jointly specify the paths of output, consumption, physical cap-
ital, human capital growth, and the fractions of time allocated to work and

3Of course, if distortionary tax and spending policy were used to publicly provide the
inefficiently low investment in education implied by the externality, the welfare gains would
be reduced. Whilst analysis relating to the cost side is outwith the scope of this paper,
our results provide a benchmark of the potential gains associated with equating private
and social returns to education.
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education. Since the Lucas (1988) and Tamura (1991) models are well known,
the main purpose of this Section is simply to fix ideas, notation and variable
definitions which will be used in the estimation and analysis which follow.

To facilitate econometric estimation, our deliberately minimal deviations
from the Lucas (1988) and Tamura (1991) setups include: (i) non-zero de-
preciation rates for physical and human capital;4 and (ii) stochastic AR(1)
processes for productivity in the goods and human capital sectors.

2.1 Households

The economy is populated by a large number of identical households indexed
by the superscript h and identical firms indexed by the superscript f , where
h, f = 1, 2, ..., Nt. The population size, Nt, evolves at a constant rate n ≥ 1,
so that Nt+1 = nNt, where N0 is given. Each household’s preferences are
given by the following time-separable utility function:

E0

∞∑
t=0

βtU(Ch
t ) (1)

where Et denotes the mathematical expectations operator conditional on
information available at time t; Ch

t is consumption of household h at time
t; and 0 < β < 1 is the discount rate. The instantaneous CRRA utility
function is increasing, concave and satisfies the Inada conditions:

Ut =

(
Ch
t

)1−σ
1− σ , (2)

where 1/σ (σ > 1) is the inter-temporal elasticity of substitution of consump-
tion.

Each household h saves in the form of investment, Iht , and receives interest
income, rtK

h
t , where rt is the return to capital and Kh

t is the beginning-of-
period private capital stock. The household has one unit of time in each
period t, which is allocated between work, uht , and education, eht , so that:

uht + eht = 1. (3)

A household with a stock of human capital, Hh
t , receives labor income,

wtu
h
tH

h
t , where wt is the wage rate and uhtH

h
t is h’s effective work-time.

4Non-zero depreciation rates are not only necessary given that we will be taking the
model to the data but also in light of the calibration findings by Jones et al. (2005).
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Finally, each household receives dividends paid by firms, Πh
t . Accordingly,

the budget constraint of each household is:

Ch
t + Iht = rtK

h
t + wtu

h
tH

h
t + Πh

t . (4)

Each household’s physical and human evolve according to:

Kh
t+1 = (1− δk)Kh

t + Iht ; (5)

and
Hh
t+1 = (1− δh)Hh

t +Bt

(
ehtH

h
t

)θ (
H t

)1−θ
, (6)

where 0 ≤ δk, δh ≤ 1 are constant depreciation rates on private physical and

human capital respectively; and Bt

(
ehtH

h
t

)θ (
H t

)1−θ
is “new” human capital

created at time period t.
More specifically, Bt represents human capital productivity; ehtH

h
t is effec-

tive education-time; H t is the average (per household) human capital stock
in the economy; and the parameters 0 < θ, (1− θ) < 1 capture the effi-
ciency of household human capital and the aggregate human capital exter-
nality respectively.5 Households act competitively by taking market prices
and aggregate outcomes as given. Thus, each household chooses {Ch

t , u
h
t , e

h
t ,

Iht , K
h
t+1, H

h
t+1}∞t=0 to maximize (1) subject to (3)-(6), and initial conditions

for the two capital stocks and the two productivity terms.
The familiar static optimality condition for consumption, Ch

t :

Λa
t =

(
Ch
t

)−σ
, (7)

states that the shadow price associated with (4), Λa
t , is equal to the marginal

value of consumption at time t.
The Euler-relation for private physical capital, Kh

t+1:

Λa
t = βEt

[
Λa
t+1

(
rt+1 + 1− δk

)]
, (8)

denotes that marginal cost of forgone consumption at time t is equal to the
expected marginal benefit of discounted t+ 1 returns derived from investing
in one unit of physical capital at time t.

The static optimality condition for time spent on education, eht :

Λb
t =

Λa
twtH

h
t

Btθ
(
eht
)θ−1 (

Hh
t

)θ (
H t

)1−θ , (9)

5The assumption that individual human capital accumulation is an increasing function
of the per capita level of economy-wide human capital captures the idea that the existing
know-how of the economy provides an external positive effect. Equivalently it can be
thought of as a learning-by-doing effect as discussed in Romer (1986).
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implies that the shadow price associated with (6), Λb
t , is equal to the marginal

value of education at time t. In other words, this value is equal to the ratio
of the marginal cost to the marginal return to time spent in education.

The Euler-equation for private human capital, Hh
t+1:

Λb
t = EtβΛa

t+1wt+1(1− eht+1) +

EtβΛb
t+1

[
1− δh +Bt+1θ

(
eht+1

)θ (
Hh
t+1

)θ−1 (
H t+1

)1−θ]
, (10)

maintains that the marginal cost of forgone labor income at time t is equal
to the marginal benefit of t + 1 returns to working plus the marginal t + 1
returns to investing in one unit of human capital at time t.

2.2 Firm’s problem

To produce its homogenous final product, Y f
t , each firm employs private

physical capital, Kf
t , and effective labor, uftH

f
t . Thus, the production func-

tion of each firm is:

Y f
t = At

(
Kf
t

)α (
uftH

f
t

)1−α
, (11)

where At represents the level of Hicks-neutral technology available to all
firms, 0 < α < 1 and (1− α) are the efficiency of private capital and effective
labor respectively.

Firms act competitively by taking prices and aggregate outcomes as given.
Accordingly, subject to (11), each firm chooses Kf

t and uftH
f
t to maximize a

series of static profit functions:

Πf
t = Y f

t − rtKf
t − wtuftHf

t . (12)

The resulting familiar first-order conditions:

(1− α)Y f
t

uftH
f
t

= wt; (13)

αY f
t

Kf
t

= rt, (14)

state that the firm will hire labor until the marginal product of effective
labor is equal to the wage rate, wt, and will rent capital until the marginal
product of physical capital is equal to the rental rate, rt. Finally, given
the assumption of constant returns to scale in production at the firm level,
factor payments exhaust the value of output, implying no economic profits
are earned.
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2.3 Decentralised competitive equilibrium (DCE)

The DCE is obtained when (i) households and firms optimize, as above, tak-
ing prices and aggregate outcomes as given; (ii) all constraints are satisfied;
and (iii) all markets clear, i.e.

∑
Kh
t =

∑
Kf
t ,
∑

(1 − eht )H
h
t =

∑
uftH

f ,∑
Πh
t =

∑
Πf
t = 0. Given the Nt identical households at time pe-

riod t and also Nt identical firms, economy wide magnitudes are denoted
Xt = NtX

h
t = NtX

f
t . Since human capital is the engine of long-run en-

dogenous growth, we transform variables to make them stationary, e.g. we
first define per capita quantities for any variable X as X t ≡ Xt/Nt, where
Xt ≡ (Yt, Ct, It, Kt, Ht) and then express these as shares of per capita human
capital, e.g. xt ≡ X t/H t. Finally, the gross human capital growth rate is
defined as γt ≡ H t+1/H t. Using this notation and substituting out prices,
{rt, wt}∞t=0, we obtain the following stationary DCE:

yt = ct + nγtkt+1 −
(
1− δk

)
kt;

yt = At (kt)
α (1− et)(1−α);

nγt = 1− δh +Bt (et)
θ ;

λat = (ct)
−σ ;

λat = β (γt)
−σ Et

[
λat+1

(
α
yt+1

kt+1

+ 1− δk
)]

; (15)

λbt =
(ct)

−σ (1− α)yt

Bt (1− et) θ (et)
θ−1 ;

λbt = β (γt)
−σ {Et

[
(ct+1)

−σ (1− α)yt+1

]
+

+Etλ
b
t+1

[
(1− δh) +Bt+1θ (et+1)

θ
]
},

where λat and λbt are the transformed shadow prices associated with (4) and
(6) respectively in the household’s problem.6 Therefore, the stationary DCE
is summarised by the above system of seven equations in the paths of the
following seven variables: (γt, yt, ct, et, kt+1, λ

a
t , λ

b
t) given the paths of the

exogenously set stationary AR processes whose motion is defined below.

2.4 Processes for productivity

Given the above set-up, Hicks-neutral productivity, At, and human capital
productivity, Bt, are stochastic. Following the usual practice in the RBC

6Note that λat = Λat /H
−σ
t and λbt = Λbt/H

−σ
t where h-superscripts have been omitted

since we are in a symmetric equilibrium.
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literature, we assume that each follows an AR(1) process:7

At =A(1−ρa)Aρ
a

t−1e
εat

Bt =B(1−ρb)Bρb

t−1e
εbt

(16)

where A,B > 0 are constants, 0 < ρa, ρb < 1 are the autoregressive parame-
ters and εat , ε

b
t are normally distributed random shocks with zero means and

variances equal to σ2
a and σ2

b respectively.
Innovations to TFP affect the efficiency of both capital and effective labor,

whereas shocks to human capital productivity are purely labor augmenting.
DeJong and Ingram (2001, p. 541-42) argue that Bt can be thought of as
“[...] an exogenous shock that shifts the efficiency with which hours are trans-
formed into human capital. Examples of a negative shock are the creation
of a new computer operating system that is more difficult to learn than the
previous system and a decrease in funding for government-sponsored train-
ing programs. A positive shock could be a technological improvement in
employee training methods”.

2.5 Model solution

Following Klein (2000), we obtain the solution of the linearised stationary
DCE (see, Appendix A, eq. 38) in state-space form:

ŷt = ZCαC
t ; (17a)

αC
t+1 = TCαC

t + RCηt+1;ηt ∼ N(0,Q), (17b)

where (17 a) is the measurement equation linking the vector of stationary

observables ŷt = [ŷt ĉt ût]
′ to the unobserved state vector αC

t =
[
k̂t ât b̂t

]′
and the matrix ZC contains convolutions of the model’s parameters (see,
Appendix A Table 5).8 The transition equation (17 b) is the law of motion
for the state vector αC

t . The matrix TC again contains convolutions of the
model’s parameters and RC is a matrix of zeros and ones controlling the two
productivity shocks in the error vector ηt. This vector is assumed to follow
a multivariate normal distribution with zero mean and variance-covariance
matrix Q. Finally, to distinguish from other model components to be added
below, superscript ‘C’ denotes the stationary solution.

7See, e.g. Kim and Lee (2007), DeJong and Ingram (2001) and Perli and Sakellaris
(1998) for similar setups for the two productivity processes.

8Note that for any variable xt, x̂t = ln(xt/x) and x is the model-consistent steady-state
value of xt.
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2.6 Data

The measurement equation given by (17 a) requires stationary observables
for output, consumption and hours. The quarterly data for these series are
obtained from the St. Louis Federal Reserve FRED database, for the period
1964(1) to 2017(3). Output is the sum of real consumption plus real gross
private domestic investment, both in billions of chained 2009 dollars. Hours-
worked is measured by the hours of wage and salary workers on non-farm
payrolls for the private sector. The civilian noninstitutional population is
used to derive the per capita data. All series, except the population figures,
are seasonally adjusted. It is well documented that for these three per capita
series, only per capita hours is a stationary mean reverting series.

To address non-stationarity in the data when estimating business cy-
cle models, the literature has adopted a number of different approaches,
such as: (i) HP-filtering the data; (ii) incorporating a common trend in
the model/estimation (see, e.g. Smets and Wouters 2007 and Fernández-
Villaverde et al. 2016); and (iii) assuming agnostic local-linear trends (see,
e.g. Ferroni 2011 and Canova 2014). In contrast to these approaches, where
either the deterministic or stochastic trends are exogenous, we need to ac-
count for endogenous trend growth in a model consistent fashion.

Figure 1: Normalised Output and Consumption, 1950-2014
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Whilst we could de-trend (normalise) the observable non-stationary data
by another non-stationary series required by the model, Canova and Ferroni
(2011) point out that “model-driven” filtering is typically problematic. Al-
though quarterly data is not available for this purpose, we confirm this point
in Figure 1 above which provides evidence of the non-stationarity of output
and consumption when we de-trend using annual human capital (upper row)
and annual physical capital data (lower row). The later is also used, since
the DCE can be re-derived in per physical capital units.9

3 Econometric setup

In this Section we first discuss how we incorporate the model’s endogenous
trend into the estimation. We then set out our priors for the model’s pa-
rameters. Details on the estimation procedure can be found in Appendix
B.

3.1 Model consistent trend

Recall from Section 2.3 that stationary quantities in the model are defined
as follows:

ŷt = ln(Yt)−

1 0 0
0 1 0
0 0 0

 ln(H̄t)−

ln(y)
ln(c)
ln(u)

 . (18)

The endogenous trend ln(H̄t) is given by:

ln(H̄t) = ln(γt) + ln(H̄t−1), (19)

where ln(γt) = γ̂t + ln(γ). To obtain stationary ŷt in eq. (18), requires that
we remove the trend H̄t from output and consumption. Using the model
solution in eq. (17 a) and (17 b), this can be achieved by writing eq. (18) in
first differences so that H̄t drops out:

∆ ln(Yt) =∆ŷt +

1
1
0

 γ̂t +

1
1
0

 ln(γ). (20)

9The human capital and physical capital data are obtained from FRED database.
Human capital is an index on a per person basis for U.S. and the real physical capital
stock is in 2011 prices (see, Feenstra et al. 2015). Given that human capital is in per
capita terms, per capita output and consumption were used when constructing the plots
in the first row of Figure 1.
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In our case, γ̂t is defined as10

γ̂t =

(
Bθeθ

nγ

)
êt +

(
Beθ

nγ

)
b̂t, (21)

which implies that the logged gross growth rate, ln(γt), depends on the de-
viations of education-time, êt, and human capital productivity, b̂t, from their
respective steady-states. Whilst êt = −

(
u

1−u

)
ût can be implied from observ-

able hours, b̂t is not observable and is an element of the state vector αC
t in

eqs. (17 a) and (17 b). Therefore, eq. (20) becomes

∆ ln(Yt) =ŷt − ŷt−1 + C1ŷt + C2α
C
t +

1
1
0

 ln(γ) =

=
(
(I3 + C1)Z

C + C2

)
αCt − ZCαCt−1 +

1
1
0

 ln(γ),

(22)

where

C1 =

0 0 −Bθeθ

nγ
u

1−u
0 0 −Bθeθ

nγ
u

1−u
0 0 0

 ; C2 =

0 0 Beθ

nγ

0 0 Beθ

nγ

0 0 0

 .

Finally, to capture measurement errors as well as movements and co-
movements in the data which cannot be captured by the model, we follow one
strand of the literature and extend the model (22) with a (3 ×1) measure-
ment/specification error (MSE) vector νt.

11 Thus, the model to be estimated
is given by:

∆ ln(Yt)−

1
1
0

 ln(γ) =
(
(I3 + C1)Z

C + C2

)
αC
t − ZCαC

t−1 + νt;(
αC
t+1

αC
t

)
=

(
TC 0
I3 0

)(
αC
t

αC
t−1

)
+ RCηt+1;

νt+1 =Tννt + υt+1;

ηt ∼ N(0,Q);υt ∼ N(0,Σ).

(23)

Each of the elements in νt follows an AR(1) process. Therefore, Tν and the
variance-covariance matrix Σ are diagonal matrices.

10See the linearised DCE and the parameter definitions in Appendix A eq. (38).
11See the discussion in Ireland (2004), p. 1209-1210 for different ways to deal with the

stochastic singularity problem and references therein.
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3.1.1 Priors for the parameters

The priors reported in Table 1 above regarding the supports for the prior
distributions of the model’s remaining parameters reflect non-sample infor-
mation from: (i) the human capital model derived above; (ii) the empirical
literature; (iii) technical considerations regarding the existence of a unique
steady-state equilibrium and the saddle path stability of the dynamic sys-
tem; and (iv) empirical considerations regarding the value of long-run human
growth in the historical data.12

To help contextualize the quarterly rates used in Table 1, note that their
annual counterparts are as follows: δk=(0.0456, 0.0504) and δh= (0.0172,
0.0188). The priors for the size of the depreciation rates and the relationship
between them, i.e. δk > δh reflect the findings of Jorgenson and Fraumeni
(1989) and Jones et al. (2005).

In general, a uniform prior distribution was employed to be as agnostic as
possible about the parameters. To help with the curvature of the posterior
likelihood function, we implemented a relatively uninformative beta prior
(mean: 0.5, standard deviation: 0.2) for θ and all the AR parameters.

Table 1: Priors for the parameters, ψ

Parameters Restrictions

K depreciation rate δk U (0.0114, 0.0126)
H depreciation rate δh U (0.0043, 0.0047)
utility function param. σ U (1, 3)
s.d. A shock σa U (0, 0.224)
s.d. B shock σb U (0, 0.224)
externality parameter (1− θ) Beta(2.625, 2.625)
AR(1) parameter in At ρa Beta(2.625, 2.625)
AR(1) parameter in Bt ρb Beta(2.625, 2.625)
constant term in At A U (0, 1)
constant term in Bt B U (0, 1)
model solution: equilibrium exists

measurement/specification errors:

AR(1) parameters ρy, ρc, ρu Beta(2.625, 2.625)
variances Σyy,Σcc,Σhh Σ > 0

12Note that estimating the discount factor, β, and capital’s share, α, led to unreasonably
low and high values respectively. Thus, we fixed these parameters to 0.99 and to 0.33.
Moreover, the steady-state γ at a quarterly rate is fixed to 1.0025 (i.e. 1.01 annually)
which is its average value over the measurement period.
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4 Estimation results

The results presented in this Section are based on 100,000 draws from the
posterior distribution using the Chib and Ramamurthy (2010).13 We allow
for a burn-in phase of 20,000 replications, and keep every 10th draw. Table 2
summarizes the estimated parameter distributions by reporting their means,
standard deviations, a measure of estimation accuracy based on numerical
standard errors, NSE (see Geweke, 1992), and the quantiles of the parameter
distribution. Table 3 and Figures 2 and 3 then describe some characteris-
tics of the posterior distributions which complement the results reported in
Table 2.14 We also present trace plots of the model’s parameters to assess
convergence of the parameter chains in Appendix C (see Figures 7 and 8).15

4.1 Posterior distributions of parameters

If we start with the means of the posterior parameter distributions shown in
Table 2, it’s first important to observe that the non-zero estimated posterior
mean for (1− θ) suggests that a positive aggregate human capital external-
ity is supported by the data. As discussed in the introduction, except for
the studies by Choi (2011) and Guo et al. (2018), there has been no pre-
vious robust empirical evidence corroborating the presence of an aggregate
externality to human capital in the U.S..16

Turning to the AR processes, note that only process for goods technology
implies half-life persistence in excess of a year. For example, the half-lives
for the two technology shocks, A and B-shocks, are 17.56 and 0.89 years
respectively. For the specification/measurement errors, they are 0.21, 0.05
and 0.55 years for output, consumption, and hours respectively.

13Note that an extensive search was conducted to find starting values for the parame-
ters. Although the Chib and Ramamurthy (2010) algorithm is much more complex than
the random-walk Metropolis-Hastings, it improves efficiency significantly (see, Chib and
Ramamurthy 2010, Section 3.1.1).

14The ratio shown in column 4 of Table 2 is in percent terms, i.e. NSEi

|ψi|
× 100. The

NSEs shown in this Table are based on a 15 per cent taper for the periodogram window.
15Note that the trace plots in Appendix C display all the draws after discarding 20,000

replications as burn in.
16We also estimated this model from 1948(1) to 2002(2) using the data set employed in

Ireland (2004) and Malley and Woitek (2010) and found robust evidence of the aggregate
human capital externality.
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Table 2: Posterior distribution of parameters, ψ

Location and Spread Quantiles
mean s.d. NSE %25 %50 %75

A 0.58768 0.27242 0.51823 0.39018 0.60522 0.81887
B 0.02066 0.00181 0.09784 0.01940 0.02046 0.02171
δk 0.01184 0.00047 0.04425 0.01146 0.01152 0.01245
δh 0.00450 0.00014 0.03497 0.00436 0.00448 0.00463
σ 2.02778 0.56062 0.30909 1.54355 1.97965 2.53595
1− θ 0.24224 0.04920 0.22704 0.20716 0.24141 0.27545
ρa 0.99018 0.00375 0.00423 0.98815 0.99056 0.99270
ρb 0.82365 0.13856 0.18807 0.71673 0.82786 0.96798
σa 0.00787 0.00037 0.05211 0.00762 0.00787 0.00812
σb 0.00235 0.00129 0.61493 0.00148 0.00197 0.00291
ρy 0.43596 0.22704 0.58221 0.23653 0.44494 0.64962
ρc 0.04138 0.01860 0.50252 0.02791 0.03885 0.05223
ρu 0.72843 0.04478 0.06873 0.69913 0.72996 0.75923
Σyy 0.00063 0.00052 0.92829 0.00024 0.00050 0.00090
Σcc 0.00433 0.00020 0.05163 0.00420 0.00433 0.00446
Σuu 0.00372 0.00032 0.09492 0.00350 0.00371 0.00393

Further note that there are generally no surprises regarding the sizes of the
means of the remaining parameters given our priors regarding the supports
for the various distributions. Examination of the trace plots and cumulative
means in Appendix C suggest that the chain for each of the parameters
reported in Table 2 has converged.

With respect to the spread of the parameter distributions reported in
Table 2, it generally appears that the structural and all AR parameters are
quite concentrated. Moreover, examination of the numerical standard errors
as a share of the absolute value of the means of the posteriors reveals that
our estimates are generally very precise.

4.2 Priors versus posteriors

To gain a quantitative sense of what we have learned from the data, we next
present the quantiles of the prior and posterior distributions in Table 3. We
then plot, for each parameter, the percentage difference between the prior
and posterior median in the top panel of Figure 2 as well as the percentage
difference between the prior and posterior inter-quartile range (IQR) in the
bottom panel of Figure 2.
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Table 3: Quantiles of Prior and Posterior Distributions

Prior Posterior
25% 50% 75% 25% 50% 75%

A 0.25000 0.50000 0.75000 0.39018 0.60522 0.81887
B 0.25000 0.50000 0.75000 0.01940 0.02046 0.02171
δk 0.00600 0.01200 0.01800 0.01146 0.01152 0.01245
δh 0.00225 0.00450 0.00675 0.00436 0.00448 0.00463
σ 1.00000 2.00000 3.00000 1.54355 1.97965 2.53595

1− θ 0.34934 0.50000 0.65066 0.20716 0.24141 0.27545
ρa 0.34934 0.50000 0.65066 0.98815 0.99056 0.99270
ρb 0.34934 0.50000 0.65066 0.71673 0.82786 0.96798
σa 0.05590 0.11180 0.16771 0.00762 0.00787 0.00812
σb 0.05590 0.11180 0.16771 0.00148 0.00197 0.00291
ρy 0.34934 0.50000 0.65066 0.23653 0.44494 0.64962
ρc 0.34934 0.50000 0.65066 0.02791 0.03885 0.05223
ρu 0.34934 0.50000 0.65066 0.69913 0.72996 0.75923
Σyy 0.00024 0.00050 0.00090
Σcc positive 0.00420 0.00433 0.00446
Σuu 0.00350 0.00371 0.00393

Both sets of information suggest that the data are indeed informative
about the parameters since the location and spread of the posterior distri-
butions are generally considerably different than the prior distributions. For
example, Figure 2 shows that for the 13 structural parameters, only four are
less than 10% different than the prior medians. Even more striking is the
difference between the IQRs. In particular, the vast preponderance of these
measures of spread for the posterior distributions are at least 80% smaller
than their respective priors.

Finally, recall that, except for the AR parameters, (1− θ) is the only pa-
rameter for which we did not assume a uniform prior. In this case we assumed
a Beta distribution with mean 0.5 and standard deviation 0.2. Comparing
the posterior with the prior distribution in Figure 3 shows that, the priors are
indeed not overly restrictive, and that the data appear to be very informative
about this parameter.
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Figure 2: Comparison of Prior and Posterior Distributions
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Figure 3: Posterior Plots, 1− θ
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5 Welfare analysis

Given that we have found econometric evidence in support of an aggregate
human capital externality, it would be useful to have a quantitative sense of
the difference between private and social returns to human capital implied
by our estimation. In turn, it would be informative to quantify how much
aggregate welfare, education-time and human capital growth would change
if this ratio was equal to unity.

5.1 Inefficient versus efficient allocations

As shown in Section 2.1, the average level of human capital in the economy
positively affects the productivity of education-time. This aggregate exter-
nality implies an excess of social to private returns to human capital, which
in turn causes an inefficient under-investment in education and hence in hu-
man capital. Since there are no other market failures in the model, removing
the externality implies the efficient allocation.

To obtain the efficient allocation requires that we: (i) set H t equal to
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Ht in the human capital eq. (6); (ii) re-derive the two non-stationary FOCs
given by eqs. (9) and (10) which imply that the last equation in the stationary
DCE given by eq. (15) must also be re-derived; and (iii) resolve the model
as described in Section 2.

5.2 Private and social returns to human capital

To quantify the proportion of social returns to human capital which are not
internalised, we next: (i) establish the equality between returns to physical
and human capital in equilibrium; (ii) calculate the private return to human
capital using the inefficient model; and (iii) calculate the social return to hu-
man capital using the efficient model. Recall that, in equilibrium, individual
h superscripts are dropped since all markets clear and Ht = H t. Moreover, on
the balanced-growth path (BGP), time subscripts are dropped for stationary
variables.

To undertake (i) and (ii), we first substitute the static FOC for consump-
tion given by eq. (7) into the Euler for capital in eq. (8) and evaluate the
result along the BGP to obtain the familiar condition relating discounted

net consumption growth,
(

1
β
γc − 1

)
, to the return to physical capital net of

depreciation,
(
r − δk

)
, or the net marginal product of capital,

(
αY/K − δk

)
:(

1

β
γc − 1

)
= r − δk. (24)

Next, we substitute the static FOC for consumption given by eq. (7)
into the static optimality condition for education given by eq. (9) and the
resulting expression into the Euler-equation for human capital in eq. (10).
Evaluating this result along the BGP gives an expression which relates dis-
counted net consumption growth to the marginal product of human capital
net of depreciation: (

1

β
γc − 1

)
= Bθ (e)θ−1 − δh. (25)

Equations (24) and (25) thus imply that, in equilibrium, the net returns to
physical and human capital are equal:

r − δk = Bθ (e)θ−1 − δh. (26)

Repeating the above for the efficient model in which social and private re-
turns are equal, we find an analogous no-arbitrage condition between physical
and human capital:

r∗ − δk = B[θ (e∗)θ−1 (1− e∗) + (e∗)θ]− δh, (27)
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where a ∗ superscript denotes steady-state quantities in the efficient model.
Thus, to calculate the wedge between private, P , and social returns to human
capital, S, we compute the following ratios post- and pre-depreciation on an
annual basis:

Ppost
Spost

=
r − δk
r∗ − δk = 0.86 (28)

Ppre
Spre

=
r − δk + δh

r∗ − δk + δh
= 0.89 (29)

The calibration study of Choi (2011) finds that the ratio of private to
social returns to human capital post- and pre-depreciation are 0.56 and 0.73
respectively in his benchmark calibration. Whilst, the size of knowledge ex-
ternalites, as measured by the non-internalised returns to human capital,
(1 − P

S
), are clearly smaller in our econometric estimation, we will see be-

low that they nonetheless imply large welfare gains when the externality is
eliminated.

5.3 Welfare along the balanced-growth path (BGP)

We next examine the welfare implications of equating the private and social
returns to human capital. First note that resolving the model without the
externality leads to increases in education time, human capital growth, and
the level of per capital human capital. Recall that along the balanced-growth
path, non-stationary per capita variables, X t, are defined asX t = xH t, where
x is the stationary steady-state value. Moreover, since H t = (1 + γ)H0; X t

grows according to X t = x(1 + γ)H0. Thus, ceteris paribus, higher γ in
the efficient model (without the externality) leads to higher H t and lower
stationary steady-state values for x relative to the efficient model.

We show in Appendix D that lifetime welfare, V , along the balanced-
growth path depends on the starting value for the per capita human capital
stock, H0, the stationary steady-state per human capital value of consump-
tion, c = Ct

Ht
, and the steady-state growth rate γ. Given that c falls when

we move from the inefficient to the efficient model, to compare welfare ef-
fects of increased growth on consumption and hence welfare across models,
H0 needs to be normalised so that both models start on the balanced-growth
path from the same level of non-stationary consumption, cH0. For H0 = 1 in
the inefficient model, this can be achieved by setting H0 = c

c∗
in the efficient

model. Thus, using the steady-state lifetime welfare function, we will com-
pare welfare across the inefficient and efficient balanced-growth paths given
the same starting value for non-stationary consumption.
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To quantify welfare gains/losses, we follow Lucas (1990) and Schmitt-
Grohé and Uribe (2004) and compute the percentage extra private consump-
tion that an individual would require so as to be equally well off between the
inefficient and efficient regimes. The compensating consumption supplement
is thus defined as follows:

ξ '
∣∣∣ 1
(1−σ)

∣∣∣ ln(V NtV Bt )× 100 (30)

where V N
t denotes lifetime utility when the externality is omitted. In turn

V B
t denotes the welfare associated with the estimated inefficient model.17

Figure 4: Implications for Per Capita Levels
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The results of the welfare analysis are reported in Table 4.18 These are

17See Appendix D for a derivation of lifetime welfare along the BGP.
18See eq. (51) in Appendix D
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based on the means of the posterior distribution of parameters reported in
Table 2. The results suggest that eliminating the externality leads to aggre-
gate welfare gains in terms of the compensating consumption supplement of
8.68%. Table 4 also presents the percentage difference between the shocked
values of education time and human capital growth from those in the base
inefficient model. For example, when the externality is removed, e increases
by 13.95% and annual γ by 0.45%. Whilst the latter appears to be a small
change, the cumulative implications for the model’s per capital levels are
non-trivial. For example, Figure 4 above shows that these quantities would
double roughly 25 years earlier in the model which internalises the social
returns.

Table 4: Eliminating the Externality

percent change
Welfare (ξ) 8.68
Education time (e) 13.95
Growth (γ) 0.45

6 External cross-validation

As pointed out in the introduction, since the highly stylised growth model we
estimate may be misspecified in several dimensions and the measured data
employed might not necessarily be informative, we conduct several cross-
validation exercises to examine whether key model predictions cohere with
the data and some stylised facts more broadly.

6.1 Human capital: model versus data

Given that human capital is not available at a quarterly frequency, it is
treated as an unobservable in the estimation. Nonetheless, we can imply a
model prediction for Ht by using eqs. (19) and (21) to generate γ̂t and in turn
imply Ht for each parameter draw. In eq. (21), unobservable b̂t is obtained
from the updating step of the Kalman filter (see eq. 40 in Appendix A).
Finally, to obtain an annual index Ht from eq. (19), we annualize the growth
rate, γt.

As discussed in Section 2.6, annual data relating to human capital is
available from the FRED database (see section 2.6 for details). To check
whether the annualised Ht implied by the model coheres with this data, we
present a scatter plot in Figure 5 above which suggests a strong positive
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correlation. For example, the correlation coefficients for Q1, the median and
Q3 are 0.9591, 0.9594 and 0.963. Thus, it appears that the model implied
trend for human capital fits well with actual data not used to estimate the
model.

Figure 5: Scatter Plot of Human Capital Per Capita (Model vs Data)
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6.2 Cyclical behaviour of education-time

There is an abundance of evidence in the literature suggesting that college
enrollment or education/training time more generally increases during reces-
sions.19 In recent research, Brown and Hoxby (2015) point out the college
enrollment in the U.S. has increased in every recession since the 1960s. This
counter-cyclical movement of education/training time is consistent with the
predictions of economic theory since during downturns the opportunity cost
of education, in form of forgone wages, as well as the opportunity cost of
on-the-job training, in the form of foregone production, are lower.

19See, e.g. Brown and Hoxby (2015) and the papers within this volume as well as the
papers by Dellas and Sakellaris (2003), Dellas and Koubi (2003), DeJong and Ingram
(2001) and Sakellaris and Spilimbergo (2000).
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In light of these findings, we next examine the quantitative predictions of
our model with respect to the cyclical behaviour of education time. For each
of the parameter draws, we construct the parameter matrices ZC,TC,RC

and the variance covariance matrix of the two structural shocks QC in eq.
(23) we can calculate the cross correlations implied by the model. We start
by multiplying the transition equation αC

t+1 = TCαt+RCηt+1 from the right

with αC
t+1
′
:

αC
t+1α

C
t+1

′
= TCαtα

C
t+1

′
+ RCηt+1α

C
t+1

′
(31)

and take expectations to obtain the variance-covariance matrix Γα(0):

Γα(0) = TCΓα(−1) + RCQRC′. (32)

For lag 1,
Γα(1) = TCΓα(0). (33)

With Γα(1) = Γα(−1)′ we obtain:

Γα(0) =TCΓα(0)TC′ + RCQRC′;

vec (Γα(0)) =
(
In2 −TC ⊗TC

)−1
vec
(
RCQRC′

)
.

(34)

Once we have Γα(0), the covariance matrices for τ > 0 can be calculated as:

Γα(τ) = TCΓα(τ − 1), τ > 0. (35)

Using êt = −
(

u
1−u

)
ût, we can modify ZC so that the lhs of the measurement

equations is the vector
(
ŷt ĉt ût êt

)
:

ZC,new =


1 0 0
0 1 0
0 0 1
0 0 − u

1−u

ZC.

Thus, the covariance matrices for the measurement equations are computed
as:

Γy(τ) = ZC,newΓα(τ)ZC,new′, τ = 0, 1, . . . . (36)

We are interested in the contemporaneous correlation between ŷt and êt, i.e.
the last row and first column of Γy(0), divided by the standard deviations
of ŷt and êt. Figure 6 shows the result of this exercise. Consistent with the
findings in the literature, education-time cycles are counter-cyclical in our
estimated model.
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Figure 6: Correlation of êt with ŷt
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6.3 Interpolated human capital data

As a further attempt to evaluate the implications and robustness of the
estimated model in which human capital was treated as an unobservable, we
next interpolate the annual human capital data used above to a quarterly
frequency and re-estimate the model. To this end, output and consumption
are now defined in per human capital units and hours in per capita units (as
in the original estimation). This requires that we modify the measurement
equation of the model in eq. (22) as follows:

∆ ln(Yt)−

1
1
0

 ln(γ) = ZCαC
t − ZCαC

t−1 + νt. (37)

The results of this new estimation are reported in Appendix E in which
we repeat Tables 2 and 3 as well as Figures 2 and 3 of the main text. We
also repeat Figures 7 and 8 from Appendix C for the re-estimated model.
To the extent that the interpolated data are a reasonable approximation of
quarterly human capital, these results suggest that the original estimation
is remarkably robust and thus, treating human capital as an unobservable
has not biased the estimation in favour of the existence of an aggregate
externality to human capital.
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7 Conclusions

To more fully understand the quantitative implications of human capital
externalites at the aggregate level, this paper econometrically estimated a
two-sector model endogenous growth model with physical and human cap-
ital. We found that the pre-depreciation private returns to human capital
are about 90% of the social returns for the U.S. over the period 1964-2017.
To the best of our knowledge, the only other papers providing quantitative
evidence supporting aggregate externalites in the U.S. are Choi (2011) and
Guo et al. (2018) despite that fact that positive pecuniary and non-pecuniary
externalities to education provide one of the main economic justifications for
public spending on schooling at all levels.

We further find that if the social and private returns to education were
equalised, discounted lifetime aggregate welfare, in terms of the compensating
consumption supplement, would increase by about 8.7%. This implied that
education-time would increase by approximately 14% and the annual growth
rate of human capital would increase by about half a percent. We showed that
the latter is non-trivial considering its cumulative effects on the per capita
levels in the model. For example, we found that these quantities would double
rougly 25 years earlier in the model which internalises the social returns.

We conducted several cross-validation exercises to examine whether key
model predictions cohered with the data and some stylised facts more
broadly. The results of these exercises suggested that (i) the model im-
plied trend for human capital fits well with actual data not used to estimate
the model; (ii) consistent with the findings in the literature, education-time
cycles are counter-cyclical in the estimated model; and (iii) the original es-
timation is remarkably robust and thus that treating human capital as an
unobservable has not biased the estimation in favour of the aggregate human
capital externality.

Thus, our results provide a reasonably robust benchmark of the poten-
tial welfare gains associated with internalising the aggregate human capital
externality. Of course, if distortionary tax and spending policy are used to
publicly provide the inefficiently low investment in education implied by the
externality, the welfare gains would be reduced. However, analysis of the
cost implications on welfare will be left to future research.
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Appendix A First-order approximation

To solve the model, we take the first-order Taylor series expansion of the non-
linear stationary DCE in eq. (15) and the exogenous processes in eq. (16)
around the steady-state. After substituting out the log deviations of the

Lagrange multipliers and the growth of human capital, γ̂t =
(
Bθeθ

nγ

)
êt +(

Beθ

nγ

)
b̂t, the linearised system which we solve to obtain the state-space form

in eq. (17) is:

−ŷt − ω4êt + ω5k̂t + ât = 0

ω2ĉt − ŷt + ω1(ω6êt + ω7b̂t)− ω3k̂t = −ω1k̂t+1

−ω8ĉt + ω8(ω6êt + ω7b̂t) = ω9Etŷt+1 − ω8Etĉt+1 − ω9Ek̂t+1

−ω8ĉt + ŷt + ω23êt + ω24b̂t = −ω19Etĉt+1 + ω20Etŷt+1

−ω21Etb̂t+1 + ω22Etêt+1 (38)

ρaât = ât+1 − εat+1

ρbb̂t = b̂t+1 − εbt+1

where for any variable xt, x̂t = ln(xt/x); x is the model-consistent steady-
state value of xt; ŷt is the control variable; ĉt and ût are jump variables; k̂t
is the state variable; ât and b̂t are the two exogenous processes; and the ωi
coefficients are defined in the following table.

Table 5: Parameter convolutions
ω1 ≡ nγk

y
ω9 ≡ αy

β−1γσk
ω17 ≡ ω8

ω2 ≡ c
y

ω10 ≡ e
1−e − θ + 1 ω18 ≡ ω11

ω11+ω12

ω3 ≡ (1−δk)k
y

ω11 ≡ c−σ(1− α)y ω19 = ω8ω13 + ω16

ω4 ≡ (1−α)e
1−e ω12 = λb(1− δh) +Bθeθ ω20 = ω13 + ω18

ω5 ≡ α ω13 ≡
λb[1−δh+Bθeθ]

ω11+ω12
ω21 = ω13 − ω14

ω6 ≡ Bθeθ

nγ
ω14 ≡ Bλbθeθ

ω11+ω12
ω22 = ω10ω13 + ω15

ω7 ≡ Beθ

nγ
ω15 ≡ Bλbθ2eθ

ω11+ω12
ω23 = ω10 + ω6ω17

ω8 ≡ σ ω16 ≡ σω11

ω11+ω12
ω24 = ω7ω17 − 1
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Appendix B Estimation procedure

B.1 Kalman filter

We use the Kalman filter to calculate the likelihood p(ŷ1, . . . , ŷT |ψ), which
combined with the prior p(ψ), gives the part of the posterior distribution
p(ψ|ŷ1, . . . , ŷT ) relevant for the Metropolis-Hastings steps in the procedure
outlined in Section B.2. For given initial estimates of the state vector, a0,
i.e. a0 = E (α0) and the covariance matrix, P0, the filter consists of the
following steps:

Prediction step

at|t−1 = Tat−1;

Pt|t−1 = TPt−1T
′ + RQR′. (39)

In this step, a prediction at|t−1 of the state vector and its variance-
covariance matrix Pt|t−1 is generated, based on information available at
period t− 1.

Updating step

υt = yt − Zat|t−1;

Ft = ZPt|t−1Z
′;

Kt = TPt|t−1Z
′F−1t ; (40)

at = Tat|t−1 + Ktυt;

Pt = (T−KtZ) Pt|t−1 (T−KtZ)′ + RQR′,

where υt are the model’s forecast errors. The new information from the
errors at time t is used to generate the updates at and Pt. The remaining
vector and matrices have either been defined above or, in the case of Ft,
the variance-covariance matrix of υt, and the Kalman gain Kt, are simply
transformations of previously defined matrices.20 In our case, we divide the
vector of unknowns into two blocks: the state variables αt, t = 1, . . . , T and
the vector with hyper-parameters ψ. Thus, the model’s likelihood function
is:

p(ŷ1, . . . , ŷT |ψ) =
T∏
t=1

(2π)−0.5n |Ft|−0.5 exp
(
−0.5υ′tF

−1
t υt

)
. (41)

20See Hamilton (1994) or Harvey (1992) for further details regarding the Kalman filter.
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B.2 Chib and Ramamurthy (2010)

Using the stationary data ŷt, . . . , ŷT , we estimate the vector of model hyper-
parameters ψ using the tailored multiple-block Metropolis-Hastings (MH)
algorithm proposed by Chib and Ramamurthy (2010), see also (Chib and
Greenberg, 1994, 1995). This method separates parameters into different
groups and updates them block-wise in an MH step, conditional on the re-
maining groups. Usually, parameter blocks are generated by searching for
groups of correlated parameters, but this is difficult in a DSGE framework,
since the parameters of the linear state-space representation are non-linear
combinations of the underlying parameters in ψ. Instead, Chib and Ra-
mamurthy (2010) randomize the formation of the parameter blocks since it
helps to avoid poor a priori choices. This framework also allows parameter
groupings to change, which is preferable if there are irregularities such as
changes in the shapes of the posterior parameter distributions.

To generate these blocks, we permute the index of the parameters ran-
domly. The first parameter initializes the first block. As in Chib and Rama-
murthy (2010), the next parameter is included into this block with probability
τ = 0.8, and starts a new block with probability 1− τ . Note that in simula-
tion step k, the above algorithm generates pk blocks ψk,1, . . . ,ψk,pk

. To find
the maximum of the posterior with respect to block j, we keep all the other
blocks constant and calculate:

ψ?
k,j = argmax

(
f(ŷ1, . . . , ŷT |ψk,1, . . . ,ψk,j, . . . ,ψk,pk

)π(ψ)
)
, (42)

where π(ψ) is the prior parameter distribution given in Table 1 below.
We use simulated annealing to calculate (42).21 The negative inverse

Hessian Vk,j of the target posterior distribution is calculated at ψ?
k,j. If it is

not positive definite, a modified Cholesky decomposition (Gill and Murray,
1974) is applied to the negative Hessian to find the matrix P, and Vk,j =
(PP′)−1. As in Chib and Ramamurthy (2010), the proposal density is a
multivariate t-distribution with ν > 2 degrees of freedom. Drawing from
this distribution, a candidate ψ1

k,j is generated, and accepted if a ≥ u, u ∼
21The algorithm is a generalization of the Metropolis algorithm (Metropolis et al., 1953)

developed by Kirkpatrick et al. (1983) and Černý (1985). For an overview, see e.g. van
Laarhoven and Aarts (1987) or Press et al. (1992, Section 10.9). Following Rathke et al.
(2017), we use the parameterisation found in Chib and Ramamurthy (2010) and set the
parameters for the algorithm as follows: scaling factor for parameter proposal: 0.02;
cooling constant: 0.4; stage expansion factor: 8; initial temperature: 5; number of stages:
8; initial stage length: 4.
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U(0, 1), where

a(ψ1
k,j,ψ

0
k,j) =

= min

(
p(ŷ1, . . . , ŷT |ψ0

k,1, . . . ,ψ
1
k,j, . . .ψ

0
k,pk

)

p(ŷ1, . . . , ŷT |ψ0
k,1, . . . ,ψ

0
k,j, . . . ,ψ

0
k,pk

)
×

× g(ψ1
k,j)t(ψ

0
k,j|ψ?

k,j,Vk,j, ν)

g(ψ0
k,j)t(ψ

1
k,j|ψ?

k,j,Vk,j, ν)
, 1

)
.

(43)
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Appendix C Convergence

Figure 7: Trace Plots of Structural Parameters
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Figure 8: Trace Plots of AR Processes and Measurement/Specification Errors
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Appendix D Lifetime welfare on BGP

The instantaneous utility function in eq. (2) can be expressed in per capita
terms as:

U t =
(Ct)

1−σ

1− σ , (44)

where Ct = Ct
Nt

. Using our notation for stationary variables we can write (44)
equivalently as:

U t =
(ctH t)

1−σ

1− σ , (45)

where ct ≡ Ct
Ht

is stationary per capita consumption and H t is the beginning-

of-period per capita human capital stock. Since γt ≡ H t+1/H t, we have for
t ≥ 1 :

H t = H0

(
t−1∏
s=0

γs

)
, (46)

where H0 is given from initial conditions.
Substituting (46) into (45) gives:

U t =

[
H0ct

(
t−1∏
s=0

γs

)]1−σ
1− σ for t ≥ 1. (47)

Equation (47) can be rewritten equivalently as:

U t =
γt(1−σ)

(
H0ctγ̃t

)1−σ
1− σ for t ≥ 1, (48)

where γ̃t =

(
t−1∏
s=0

γs

)
/γt is a scaled measure of the cumulated growth rate.

In the deterministic steady-state γ̃ = 1.
Expected discounted lifetime utility in eq. (1), can be written in recursive

form for t ≥ 1 as follows:

W t = Et

∞∑
j=2

βj−1U t+j−1;

= U t + βEt

∞∑
j=1

βj−1U t+j; (49)

= U t + βEtW t+1.
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Substituting (48) into (49) and dividing by sides of the resulting expres-
sion by γt(1−σ) gives lifetime utility:

V t =

(
H0ctγ̃t

)1−σ
1− σ + βγ(1−σ)EtV t+1 for t ≥ 1 (50)

where V t = W t

γt(1−σ)
and V t+1 = W t+1

γt(1−σ)
.

Finally, steady-state lifetime welfare along the deterministic balanced-
growth path is given by:

V =

(
H0cγ̃

)1−σ
1− σ + βγ(1−σ)V

=

(
H0c

)1−σ
(1− σ) (1− βγ(1−σ)) , since γ̃ = 1. (51)

Appendix E Robustness

In this section, we report the results for the robustness check discussed in
Section 6.

Table 6: Posterior distribution of parameters, ψ

Location and Spread Quantiles
mean s.d. NSE %25 %50 %75

A 0.63806 0.25342 0.44402 0.47740 0.66820 0.83802
B 0.01994 0.00115 0.06449 0.01913 0.01988 0.02067
δk 0.01182 0.00046 0.04368 0.01146 0.01151 0.01239
δh 0.00451 0.00014 0.03466 0.00437 0.00458 0.00464
σ 2.06955 0.57775 0.31210 1.55828 2.05951 2.60624
1− θ 0.26689 0.04914 0.20586 0.23355 0.26631 0.29934
ρa 0.99272 0.00174 0.00196 0.99160 0.99281 0.99393
ρb 0.84201 0.13956 0.18530 0.74879 0.87822 0.96535
σa 0.00801 0.00037 0.05176 0.00775 0.00799 0.00825
σb 0.00255 0.00118 0.51845 0.00170 0.00232 0.00318
ρy 0.36397 0.21037 0.64615 0.18559 0.35307 0.53970
ρc 0.03725 0.01682 0.50479 0.02517 0.03483 0.04672
ρu 0.73817 0.04532 0.06863 0.70859 0.73997 0.76937
Σyy 0.00068 0.00058 0.95041 0.00025 0.00054 0.00096
Σcc 0.00423 0.00020 0.05337 0.00410 0.00423 0.00437
Σuu 0.00373 0.00033 0.09732 0.00351 0.00372 0.00395
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Table 7: Quantiles of Prior and Posterior Distributions

Prior Posterior
25% 50% 75% 25% 50% 75%

A 0.25000 0.50000 0.75000 0.47740 0.66820 0.83802
B 0.25000 0.50000 0.75000 0.01913 0.01988 0.02067
δk 0.00600 0.01200 0.01800 0.01146 0.01151 0.01239
δh 0.00225 0.00450 0.00675 0.00437 0.00458 0.00464
σ 1.00000 2.00000 3.00000 1.55828 2.05951 2.60624

1− θ 0.34934 0.50000 0.65066 0.23355 0.26631 0.29934
ρa 0.34934 0.50000 0.65066 0.99160 0.99281 0.99393
ρb 0.34934 0.50000 0.65066 0.74879 0.87822 0.96535
σa 0.05590 0.11180 0.16771 0.00775 0.00799 0.00825
σb 0.05590 0.11180 0.16771 0.00170 0.00232 0.00318
ρy 0.34934 0.50000 0.65066 0.18559 0.35307 0.53970
ρc 0.34934 0.50000 0.65066 0.02517 0.03483 0.04672
ρu 0.34934 0.50000 0.65066 0.70859 0.73997 0.76937
Σyy 0.00025 0.00054 0.00096
Σcc positive 0.00410 0.00423 0.00437
Σuu 0.00351 0.00372 0.00395
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Figure 9: Comparison of Prior and Posterior Distributions
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Figure 10: Posterior Plots, 1− θ
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Figure 11: Trace Plots of Structural Parameters
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Figure 12: Trace Plots of AR Processes and Measurement/Specification Er-
rors
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