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Abstract

We develop a New Keynesian model with government bonds of mixed matu-
rity and solve for optimal time-consistent policy using global solution techniques.
This reveals several non-linearities absent from LQ analyses with one-period debt.
Firstly, the steady-state balances an inflation and debt stabilization bias to gener-
ate a small negative debt value with a slight undershooting of the inflation target.
This falls far short of first-best (‘war chest’) asset levels. Secondly, starting from
debt levels consistent with currently observed debt to GDP ratios the optimal pol-
icy will gradually reduce that debt, but the policy mix changes radically along the
transition path. At high debt levels there is a reliance on a relaxation of monetary
policy to reduce debt through an expanded tax base and reduced debt service costs,
while tax rates are used to moderate the increases in inflation. However, as debt
levels fall, the use of monetary policy in this way diminishes and the authority turns
to fiscal policy to continue debt reduction. This endogenous switch in the policy
mix occurs at higher debt levels, the longer the average debt maturity. Allowing
the policymaker to optimally vary debt maturity in response to shocks and across
varying levels of debt, we find that variations in maturity are largely used to sup-
port changes in the underlying time-consistent policy mix rather than the speed of
fiscal correction. Finally, introducing a mild degree of policy maker myopia can re-
produce steady-state debt to GDP ratios and inflation rates not dissimilar to those
observed empirically, without changing any of the qualitative results presented in
the paper.
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1 Introduction

The recent global financial crisis has led to an unprecedented peacetime increase in gov-
ernment debt in advanced economies. Figure 1 shows that the debt to GDP ratios in
advanced economies steadily increased from 73% in 2007 to 105.3% in 2014. This devel-
opment has prompted an interest from both policy makers and researchers in rethinking
the appropriate relationship among monetary policy, fiscal policy and debt management
policy. The conventional policy assignment calls upon monetary authorities to determine
the level of short-term interest rates in order to control demand and inflation, while the
fiscal authorities choose the level of the budget deficit to ensure fiscal sustainability and a
debt management office undertakes the technical issue of choosing the maturity and form
in which federal debt is issued. With the onset of the 2007/2008 financial crisis and the
subsequent easing of monetary policy, the clean lines between these domains have blurred.
With short-term interest rates at the zero lower bound, central banks have resorted to
quantitative easing (QE) to support aggregate demand. Because QE shortens the matu-
rity structure of debt instruments that private investors have to hold, central banks have
effectively entered the domain of debt-management policy.1 At the same time, fiscal au-
thorities’ debt-management offices have been extending the average maturity of the debt
to mitigate fiscal risks associated with the government’s growing debt burden. These
fiscal actions have operated as a kind of reverse quantitative easing, replacing money-like
short-term debt with longer-term debt.2 The observation that monetary and fiscal poli-
cies with regard to government debt have been pushing in opposite directions suggests
the need to reconsider the principles underlying the optimal combination of monetary,
fiscal and debt management policies.

Against this background, this paper studies jointly optimal monetary and fiscal policy
when the policy makers can issue a portfolio of bonds of multiple maturities, but cannot
commit. A major focus of the paper is on how the level and maturity of debt affects
the optimal time-consistent policy mix and equilibrium outcomes in the presence of dis-
tortionary taxes and sticky prices. From this analysis, we can draw some conclusions
on questions like whether surprise inflation and interest rates are likely to be used, in
addition to adjustments to taxes and government spending, in order to reduce and stabi-
lize debt. Given the magnitude of the required fiscal consolidation in so many advanced
economies, how the policy mix is likely to change as debt is stabilized from these levels
is highly relevant.

In sticky price New Keynesian models with one-period government debt, Schmitt-
Grohe and Uribe (2004b) show that even a mild degree of price stickiness implies nearly
constant inflation and near random walk behavior in government debt and tax rates when
policy makers can commit to time-inconsistent monetary and fiscal policies, in response
to shocks. In other words, monetary policy should not be used to stabilize debt. However,
Sims (2013) questions the robustness of this result when government can issue long-term
nominal bonds. With only short-term government debt, unexpected current inflation
or deflation is the only way to change its market value in cushioning fiscal shocks. In
contrast, if debt is long term, large changes in the value of debt can be achieved through

1The series of open market operations by the Federal Reserve between 2008 and 2014 and the expan-
sion in excess reserves reduced the average duration of U.S. government liabilities by over 20%, from 4.6
years to 3.6 years (Corhay et al., 2014)

2For instance, the stock of US government debt with a maturity over 5 years that is held by the public
(excluding the holdings by the Federal Reserve) has risen from 8 percent of GDP at the end of 2007 to
15 percent at the middle of 2014 (Greenwood et al., 2014).
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sustained movements in the nominal interest rate, with much smaller changes in current
inflation. Based on these considerations, Sims sketches out a theoretical argument for
using nominal debt - of which the real value can be altered with surprise changes in
inflation and interest rates - as a cushion against fiscal disturbances to substitute for
large movements in distorting taxes. This mechanism is explored further in Leeper and
Leith (2017).

Our paper contributes to the literature along at least three dimensions. Firstly, we
take both non-state-contingent short-term and long-term nominal bonds into account.
The consideration of long-term debt and the maturity structure is motivated by Sims’
theoretical insights as well as the empirical facts. Figure 2 (right panel) shows the average
debt maturity in a selection of advanced countries is between 2 and 14 years. Moreover,
in section 5.2.4, we extend our analysis to encompass a situation where the policy maker
can optimally vary the maturity structure as part of the policy problem.

Secondly, we focus on the time-consistent policy problem which is less studied in the
literature, and allow for the possibility that the policy maker may suffer some degree of
‘myopia’ as a means of capturing the frictions in fiscal policy making highlighted by the
political economy literature (see Alesina and Passalacqua (2017) for a recent survey of the
political economy of government debt). In contrast, Sims’ arguments for using surprise
inflation as a complement to tax adjustments were made in the context of an environ-
ment where the policy-maker could commit. In a linear-quadratic approximation to the
policy problem, Leith and Wren-Lewis (2013) show that the time inconsistency inherent
in commitment policy means that the optimal time-consistent discretionary policy for
debt is quite different. The random walk result, typically, no longer holds, and instead
debt returns to its steady-state level following shocks. In addition, time-consistent policy
regime is arguably the more appropriate description of policymaking around the world.
While the Ramsey policy implies it is optimal to induce a random walk in steady state
debt as a result of the standard tax smoothing argument, ex ante fiscal authorities typ-
ically want to adopt fiscal rules which are actually quite aggressive in stabilizing debt.
They then typically abandon these rules in the face of adverse shocks (see, for example,
Calmfors and Wren-Lewis (2011) for details on the numerous breaches of the Stability
and Growth Pact in Europe even prior to the financial crisis). There is, therefore, a clear
failure to adopt fiscal rules which mimic commitment policy. Understanding how optimal
time-consistent (possibly myopic) discretionary policy differs from its time-inconsistent
counterpart, in particular in its implications for debt dynamics, has particular empiri-
cal relevance today as governments assess the extent to which they need to reverse the
large increases in debt caused by the severe recession, in a context where fiscal policy
commitments are often far from credible.

Thirdly, we solve the model non-linearly using the global solution methods which en-
able us to analyze episodes with sharp increases in debt to GDP ratios as observed in many
countries during the global recession. Leith and Wren-Lewis (2013) adopt traditional
linear-quadratic (LQ) methods by using an artificial device to ensure the steady-state is
efficient and then linearizing the model around this steady state, while Schmitt-Grohe
and Uribe (2004b) adopt a second-order approximation to the first-order conditions of the
Ramsey problem.3 In contrast, we are not imposing any kind of approximation around

3In LQ models with long-term debt, Leeper and Zhou (2013) ask some similar questions and they
solve the optimal monetary and fiscal policies from the timeless perspective, while Bhattarai et al. (2014)
study optimal time-consistent monetary and fiscal policies, taking the zero lower bound constraint on
nominal interest rate into consideration.
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a steady-state so that we can fully explore the effects of non-linearities inherent in the
New Keynesian model.4 In fact, the results under discretion in Leith and Wren-Lewis
(2013) suggest that there are massive non-linearities - for example, there is an overshoot-
ing in the debt correction in a single period when the economy is linearized around higher
steady state debt levels, but a more gradual debt reduction following shocks when the
linearization takes place around a lower debt to GDP ratio. This implies that the speed
of debt stabilization is likely to be highly state dependent.

To address these non-linearities and the time-inconsistency problem which depends
on the incentives to induce inflation surprises to stimulate the economy and/or deflate
debt, we develop a New Keynesian model augmented with fiscal policy and a portfolio of
mixed maturity bonds and solve the optimal time-consistent policy problem using global
non-linear solution techniques. In particular, we study whether and how nominal govern-
ment debt maturity affects optimal monetary and fiscal policy decisions and equilibrium
outcomes in the presence of distortionary taxes and sticky prices. In the model, the gov-
ernment cannot commit, and would like to use unexpected inflation in two ways. Firstly,
as implied by the usual inflation bias problem, the policy maker faces a temptation to
boost inflation in order to stimulate an economy where production is sub-optimally low
due to monopolistic competition and tax distortions. Since tax rates are endogenous in
the model, the extent of the inflationary bias problem is endogenous as well. Secondly,
the policy maker faces a second bias in that surprise inflation can affect the real value
of the outstanding stock of nominal government liabilities. In this way, the government
faces the additional temptation to increase inflation in order to reduce its debt burden.
Anticipating this, economic agents raise their inflationary expectations - following Leith
and Wren-Lewis (2013) - we label this the ‘debt stabilization bias’. This bias is also state
contingent in that the efficacy of surprise inflation in stabilizing debt, and therefore the
temptation to resort to such a policy, is rising in the level of debt.

We find the following key results. Firstly, the steady-state balances the inflation and
debt stabilization biases to generate a small negative long-run optimal value for debt,
which implies a slight undershooting of the inflation target in steady state. This falls
far short of the accumulated level of assets that would be needed to finance government
consumption and eliminate tax and other distortions (the so-called ‘war chest’ level).

Secondly, starting from levels of debt consistent with currently observed debt to GDP
ratios, the optimal time-consistent policy will gradually reduce that debt, but with large
increases in inflation and radical changes in the policy mix along the transition path. At
high debt levels, there is a reliance on a relaxation of monetary policy to reduce debt
through an expansion in the tax base and reduced debt service costs, while tax rates
are used to moderate the increases in inflation. However, as debt levels fall, the use of
monetary policy in this way is diminished and the policy maker turns to fiscal policy
to continue the reduction in debt. This is akin to a switch from an active to passive
fiscal policy in rule based descriptions of policy, which occurs endogenously under the
optimal policy as debt levels fall. It can also be accompanied by a switch from passive
to active monetary policy. This switch in the policy mix occurs at higher debt levels,
the longer the average maturity of government debt. The increase in inflation associated
with the inflation and debt stabilization biases reduces bond prices. This means that for

4There are some recent papers using global solution techniques which consider optimal discretionary
monetary policy with trivial fiscal policy in the New Keynesian models, see Anderson et al. (2010),
Van Zandweghe and Wolman (2011), Nakata (2013), Leith and Liu (2014), Ngo (2014) and among
others.
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a given deficit the policy maker will need to issue more bonds, but when debt is of longer
maturity, the policy maker will also pay less to repay the existing debt stock. Therefore,
with longer maturity debt the desire to reduce debt rapidly along the transition path
is reduced and the debt stabilization bias is mitigated. As a result, for a longer debt
maturity, ceteris paribus, the policy maker is freer to raise taxes to stabilize debt, as the
marginal inflationary costs of such tax increases are lower.

Thirdly, we also consider how the time-consistent policy maker would vary debt ma-
turity, in response to shocks and across varying levels of debt. We show that variations
in the maturity structure are optimally used to support alterations in the time-consistent
policy mix, rather than support a significantly different speed of fiscal correction.

Finally, we allow for the possibility that the policy maker may by ‘myopic’ in the
sense that they discount the future more heavily than the infinitely lived household, as
a means of capturing the short-termism in policy making that may be induced by the
political process. We find that this can easily shift steady-state equilibrium debt levels
and deviations of inflation from target, from negative to positive in line with observed
values, without qualitatively affecting the rest of our conclusions.

Related Literature: Our paper is related to several strands of the optimal mon-
etary and fiscal policy literature. We will discuss those that are most closely related in
terms of topics and numerical methods.

Our contribution is most closely related to the literature that studies optimal fiscal
and monetary policy in sticky price New Keynesian models using non-linear solution tech-
niques. Following the work of Schmitt-Grohe and Uribe (2004b) and Siu (2004), Faraglia
et al. (2013) solve a Ramsey problem using a parameterized expectation algorithm (PEA)
to examine the implications for optimal inflation of changes in the level and maturity of
government debt. We study the discretionary equivalent of this policy, which is radically
different. Niemann and Pichler (2011) globally solve for optimal fiscal and monetary
policies under both commitment and discretion in an economy exposed to large adverse
shocks. Using the same projection method, Niemann et al. (2013) study time-consistent
policy in the model of Schmitt-Grohe and Uribe (2004b) and identify a simple mechanism
that generates inflation persistence. Government spending is exogenous in the latter two
papers which also do not consider long-term debt. Similarly, abstracting from long-term
debt, Matveev (2014) compares the efficacy of discretionary government spending and
labor income taxes for the purpose of fiscal stimulus at the liquidity trap. The value
function iteration (VFI) method is adopted to deal with the zero lower bound problem.
In contrast to these papers, debt of different maturities, time-consistent optimal policy
making and endogenous government expenditure are all essential elements in our model.

Aside from the relatively small literature exploring optimal monetary and fiscal pol-
icy in non-linear New Keynesian models, there is a vast literature on Ramsey fiscal and
monetary policy in the tradition of Lucas and Stokey (1983), which tends to focus on
real or flexible-price economies. In flexible-price environments, the government’s prob-
lem consists in financing an exogenous stream of public spending by choosing the least
disruptive combination of inflation and distortionary income taxes. In an incomplete-
markets version of Lucas and Stokey (1983), Aiyagari et al. (2002) simulate the model
globally and show that the level of welfare in Ramsey economies with and without real
state-contingent debt is virtually the same. In addition, they reaffirm the random-walk
results of debt and taxes from Barro (1979). Angeletos et al. (2013) introduce collateral
constraints and a liquidity role for government bonds into Aiyagari et al. (2002). They use
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the VFI method to globally solve the modified model and find that the steady-state level
of debt is no longer indeterminate, when government bonds can serve as collateral. Cao
(2014) extends Angeletos et al. (2013) with long-term debt and studies how the cost of
inflation for commercial banks affects the design of fiscal and monetary policy. Likewise,
Faraglia et al. (2014) use the PEA methods to solve a Ramsey problem with incomplete
markets and long-term bonds. They show that many features of optimal policy are sen-
sitive to the introduction of long-term bonds, in particular tax variability and the long
run behavior of debt. Our findings convey the same message that maturity lengths like
those observed in actual economies can substantially alter the nature of optimal policies,
but the policy problem in our sticky price economy where the policy maker is unable to
commit is fundamentally different.

There is also a literature on optimal fiscal and monetary policy in monetary models,
which do not contain nominal interia, but may contain a cost to inflation. Schmitt-
Grohe and Uribe (2004a) study Ramsey policy in a flexible-price model with cash-in-
advance constraint, which essentially extends the model of Lucas and Stokey (1983) to an
imperfectly competitive environment. A global numerical method is used to characterize
the dynamic properties of the Ramsey allocation. In a cash-in advance model, Martin
(2009) studies the time consistency problems that arise from the interaction between
debt and monetary policy, since inflation reduces the real value of nominal liabilities. He
uses the projection methods to deal with the generalized Euler equations, see also Martin
(2011), Martin (2013) and Martin (2014) where time consistent policies are studied in
variants of the monetary search model of Lagos and Wright (2005). In contrast, we
abstract from monetary frictions and emphasize nominal price stickiness which is the
conventional approach to generating sizable real effects from monetary policy.

Moving away from models which jointly model monetary and fiscal policy, there is
also a literature on optimal time-consistent fiscal policy in real models. This literature
typically focuses on Markov-perfect policy, where households’ and the government’s pol-
icy rules are functions of payoff-relevant variables only. Local approximations around a
non-stochastic steady state are typically infeasible for these models, since optimal behav-
ior is characterized by generalized Euler equations that involve the derivatives of some
equilibrium decision rules, and thus it is impossible to compute the steady state indepen-
dent of these rules. Hence, as in our contribution, global solution methods are required.
Klein and Rios-Rull (2003) compare the stochastic properties of optimal fiscal policy
without commitment with those properties under a full-commitment policy in a neoclas-
sical growth model with a balanced government budget, see also Krusell et al. (2006)
and Klein et al. (2008). Ortigueira (2006) studies Markov-perfect optimal taxation under
a balanced-budget rule, while Ortigueira et al. (2012) deal with the case of unbalanced
budgets. In a version of Lucas and Stokey (1983) model with endogenous government
expenditure, Debortoli and Nunes (2013) find that when governments cannot commit,
debt is no longer indeterminate and often converges to a steady-state with no debt accu-
mulation at all. This is a quite striking difference in the behavior of debt between the full
commitment and the no-commitment cases. Similarly, Grechyna (2013) also considers
endogenous government spending in the environment of Lucas and Stokey (1983) with
only one-period debt and shows that around the steady state, the properties of the fiscal
variables are very similar, regardless of commitment assumptions. More recently, Debor-
toli et al. (2015) consider a Lucas and Stokey (1983) economy without state-contingent
bonds and commitment, and show that the government actively manages its debt posi-
tions and can approximate optimal policy by confining its debt instruments to consols.
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Our paper shares the same technical problem due to the presence of generalized Euler
equations, but nominal rigidities make our model setup quite different from these papers.

Finally, the new political economy literature (see Alesina and Passalacqua (2017) for
a comprehensive survey) considers how various aspects of the political process affect the
accumulation of government debt, and the tendency of some economies to be prone to
a deficit bias. While there are numerous mechanisms through which political economy
considerations influence fiscal policy, including the use of debt as a strategic variable, wars
of attrition over who bears the burden of fiscal reforms and the nature of the budgetary
process itself, in essence these political frictions imply that policy makers may not fully
internalize the long-term benefits of lower debt, while remaining acutely aware of the
short-term costs of any fiscal correction. We shall capture this implicit myopia informally,
by considering the implications of the policy maker discounting the future at a rate which
is higher than that of society as a whole.

Roadmap. The paper proceeds as follows. We describe the benchmark model in
section 2. The first best allocations are characterized in section 3. We study the optimal
time consistent policy problem in section 4. In section 5, we describe the solution method
and present the numerical results. In section 6 we conclude.

2 The Model

Our model is a standard New Keynesian model, but augmented to include the govern-
ment’s budget constraint where government spending is financed by distortionary tax-
ation and/or borrowing. This basic set-up is similar to that in Benigno and Woodford
(2003) and Schmitt-Grohe and Uribe (2004b), but with some differences. Firstly, we al-
low the government to optimally vary government spending in the face of shocks, rather
than simply treating government spending as an exogenous flow which must be financed.
This is a necessary modification to consider issues like assessing the relative efficacy of
government spending cuts and tax increases in debt stabilization.5 Secondly, our nominal
debt is not of single-period maturity, but consists of a portfolio of bonds of mixed maturi-
ties. In reality, most countries issue long-term nominal debt in overwhelming proportions
of total debt. This is an important consideration in highly indebted economies, since
even modest surprise changes in inflation and interest rates can have substantial effects
on the market value of debt, and hence become a meaningful source of fiscal revenue.6

This fact suggests that the maturity structure of debt is an essential element in charac-
terizing jointly optimal monetary and fiscal policy. Thirdly, we not only take the average
debt maturity as exogenously given, but also allow it to optimally vary over the business
cycle, see section C.3 in the appendix. Finally, we capture informally the implications
of adding political frictions to the policy making process by assuming the policy maker’s
time horizon may be shortened as a result of the electoral cycle.

5International Monetary Fund (2012) reports that current fiscal consolidation efforts rely heavily on
government spending cuts. In addition, Bi et al. (2013) introduce ex ante uncertainty over the compo-
sition of the fiscal consolidation, either tax based or spending based, and show that the macroeconomic
consequences of spending cuts can be quite different from tax increases, even if the direct fiscal conse-
quences are similar.

6See Hall and Sargent (2011) and Sims (2013) for the empirical findings on the contribution of this
kind of fiscal financing to the decline in the U.S. debt-GDP ratio from 1945 to 1974.
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2.1 Households

There are a continuum of households of size one. Households appreciate private consump-
tion as well as the provision of public goods and dislike labor. We shall assume complete
asset markets, such that, through risk sharing, they will face the same budget constraint.
As a result the typical household will seek to maximize the following objective function

E0

∞∑
t=0

βtU (Ct, Nt, Gt) (1)

where C, G and N are a consumption aggregate, a public goods aggregate, and labour
supply respectively.

The consumption aggregate is defined as

Ct =

(∫ 1

0

Ct(j)
ε−1
ε dj

) ε
ε−1

(2)

where j denotes the good’s type or variety and ε > 1 is the elasticity of substitution
between varieties. The public goods aggregate takes the same form

Gt =

(∫ 1

0

Gt(j)
ε−1
ε dj

) ε
ε−1

(3)

The budget constraint at time t is given by∫ 1

0

Pt(j)Ct(j)dj + P S
t B

S
t + PM

t BM
t ≤ Ξt + (1 + ρPM

t )BM
t−1 +BS

t−1 +WtNt(1− τt)

where Pt(j) is the price of variety j , Ξ is the representative household’s share of profits
in the imperfectly competitive firms, W are wages, and τ is an wage income tax rate.7

Households hold two basic forms of government bond. The first is the familiar one period
debt, BS

t which has the price equal to the inverse of the gross nominal interest rate,
P S
t = R−1

t . The second type of bond, following Woodford (2001), is actually a portfolio
of many bonds which pay a declining coupon of ρj dollars j + 1 periods after they were
issued, where 0 < ρ ≤ β−1. The duration of the bond is given by (1− βρ)−1, which allows
us to vary ρ as a means of changing the implicit maturity structure of government debt.
By using such a simple structure, we need only price a single bond, since any existing
bond issued j periods ago is worth ρj new bonds. In the special case where ρ = 1, these
bonds become infinitely lived consols, and when ρ = 0, the bonds reduce to the familiar
single period bonds typically studied in the literature.

Households must first decide how to allocate a given level of expenditure across the
various goods that are available. They do so by adjusting the share of a particular good
in their consumption bundle to exploit any relative price differences - this minimizes the
costs of consumption. Optimization of expenditure for any individual good implies the

7Since fiscal policy is one important element of this paper, we do not assume any kind of lump-sum-
tax-financed subsidy to offset the distortion arising from monopolistic competition, which is a typical
assumption in the optimal fiscal and monetary policy literature using New Keynesian models. Thus, the
steady-state of the model economy need not be efficient. In addition, in the presence of the zero lower
bound constraint, policy functions have kinks, therefore an accurate evaluation of optimal policy and
welfare requires a global solution method.
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demand function given below,

Ct(j) =

(
Pt(j)

Pt

)−ε
Ct

where we have price indices given by

Pt =

(∫ 1

0

Pt(j)
1−εdj

) 1
1−ε

The budget constraint, therefore, can be rewritten as

P S
t B

S
t + PM

t BM
t ≤ Ξt + (1 + ρPM

t )BM
t−1 +BS

t−1 +WtNt(1− τt)− PtCt (4)

where
∫ 1

0
Pt(j)Ct(j)dj = PtCt. Pt is the current price level. The constraint says that

total financial wealth in period t can be worth no more than the value of financial wealth
brought into the period, plus nonfinancial income during the period net of taxes and the
value of consumption spending.

For much of the analysis, the one period government bond BS
t is assumed to be in zero

net supply with beginning-of-period price P S
t , while the general portfolio of government

bond BM
t is in non-zero net supply with beginning-of-period price PM

t . Higher ρ raises the
maturity of the bond portfolio. We cannot allow the rate of decay on bonds to become
time varying, without either implicitly allowing the government to renege on existing
bond contracts or tracking the distribution of bonds of different maturities that have
been issued in the past. Therefore, in order to allow the policy maker to tractably vary
the maturity structure, we shall in section 5.2.4 consider the case where both BS

t and
BM
t are potentially in non-zero net supply, so that the policy maker can vary the overall

maturity of the outstanding debt stock by varying the relative proportion of short and
longer-term bonds in that portfolio.

Similarly, the allocation of government spending across goods is determined by min-
imizing total costs,

∫ 1

0
Pt(j)Gt(j)dj. Given the form of the basket of public goods, this

implies,

Gt(j) =

(
Pt(j)

Pt

)−ε
Gt

2.1.1 Households’ Intertemporal Consumption Problem

The first part of the households intertemporal problems involves allocating consumption
expenditure across time. For tractability, assume that (1) takes the specific form

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− Nt

1+ϕ

1 + ϕ

)
(5)

We can then maximize utility subject to the budget constraint (4) to obtain the
optimal allocation of consumption across time, based on the pricing of one period bonds,

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1 (6)
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and the declining payoff consols,

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
= PM

t (7)

Notice that when these reduce to single period bonds, ρ = 0, the price of these bonds
will be given by PM

t = R−1
t . However, outside of this special case, the longer term bonds

introduce the term structure of interest rates to the model. It is convenient to define the
stochastic discount factor (for nominal payoffs) for later use,

β

(
Ct
Ct+1

)σ (
Pt
Pt+1

)
= Qt,t+1

The second FOC relates to their labour supply decision and is given by,

(1− τt)
(
Wt

Pt

)
= Nϕ

t C
σ
t

That is, the marginal rate of substitution between consumption and leisure equals the
after-tax wage rate. Besides these FOCs, necessary and sufficient conditions for house-
hold optimization also require the households’ budget constraints to bind with equality.
Defining household wealth brought into period t as,

Dt = (1 + ρPM
t )BM

t−1 +BS
t−1

the no-Ponzi-game condition can be written as,

lim
T→∞

Et

[
1

Rt,T

DT

PT

]
≥ 0 (8)

where

Rt,T =
T−1∏
s=t

(
1 + ρPM

s+1

PM
s

Ps
Ps+1

)
for T ≥ 1 and Rt,t = 1, also see Eusepi and Preston (2011). The no-Ponzi-game says
that the present discounted value of household’s real wealth at infinity is non-negative,
that is, there is no overaccumulation of debt. In equilibrium, the condition holds with
equality.

2.2 Firms

The production function is linear, so for firm j

Yt(j) = AtNt(j) (9)

where at = ln(At) is AR(1) such that at = ρaat−1 + eat, with 0 ≤ ρa < 1 and eat
i.i.d∼

N(0, σ2
a). The real marginal costs of production is defined as mct = Wt/ (PtAt). The

demand curve they face is given by,

Yt(j) =

(
Pt(j)

Pt

)−ε
Yt
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where Yt =
[∫ 1

0
Yt(j)

ε−1
ε dj

] ε
ε−1

. Firms are also subject to quadratic adjustment costs in

changing prices, as in Rotemberg (1982).
We define the Rotemberg price adjustment costs for a monopolistic firm j as,

vt (j) =
φ

2

(
Pt(j)

Π∗Pt−1(j)
− 1

)2

Yt (10)

where φ ≥ 0 measures the degree of nominal price rigidity. The adjustment cost, which
accounts for the negative effects of price changes on the customer–firm relationship, in-
creases in magnitude with the size of the price change and with the overall scale of
economic activity Yt.

The problem facing firm j is to maximize the discounted value of profits,

max
Pt(j)

Et

∞∑
z=0

Qt,t+zΞt+z (j)

where profits are defined as,

Ξt(j) = Pt(j)Yt(j)−mctYt(j)Pt −
φ

2

(
Pt(j)

Π∗Pt−1(j)
− 1

)2

PtYt

So that, in a symmetric equilibrium where Pt(j) = Pt the first order conditions are given
by,

0 = (1− ε) + εmct − φ
Πt

Π∗

(
Πt

Π∗
− 1

)
(11)

+ φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)]
which is the Rotemberg version of the non-linear Phillips curve relationship.

2.2.1 Market Clearing

Goods market clearing requires, for each good j,

Yt(j) = Ct(j) +Gt(j) + vt(j)

which allows us to write,
Yt = Ct +Gt + vt

with vt =
∫ 1

0
vt (j) dj. In a symmetrical equilibrium,

Yt

[
1− φ

2

(
Πt

Π∗
− 1

)2
]

= Ct +Gt

There is also market clearing in the bonds market where we assume, initially, that the
one period bonds are in zero net supply, BS

t = 0 and the remaining longer term portfolio
evolves according to the government’s budget constraint which we will now describe.
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2.3 Government Budget Constraint

The government consists of two authorities. First, there is a monetary authority which
controls the nominal interest rates on short-term nominal bonds. Second, there is a fiscal
authority deciding on the level of government expenditures, labor income taxes and on
debt policy. Government expenditures consist of spending for the provision of public
goods and for interest payments on outstanding debt. The level of public goods provision
is a choice variable of the government. We assume that monetary and fiscal policy is
coordinated by a benevolent policymaker who seeks to maximize household welfare, and
the government can credibly commit to repay its debt. We shall consider the implications
of policy maker myopia motivated by political frictions in section 5.2.5.

Government expenditures Gt are financed by levying labor income taxes at the rate
τt, and by issuing one-period, risk free (non-contingent), nominal obligations BS

t , and
long term bonds BM

t . The government’s sequential budget constraint is then given by

PM
t BM

t + P S
t B

S
t + τtWtNt = PtGt +BS

t−1 + (1 + ρPM
t )BM

t−1

Assuming that the one-period bond is assumed in zero net supply,8 that is, BS
t = 0, and

rewriting in real terms

PM
t bt = (1 + ρPM

t )
bt−1

Πt

− Wt

Pt
Ntτt +Gt (12)

where real debt is defined as, bt ≡ BM
t /Pt.

Given the nominal nature of debt, monetary policy decisions affect the government
budget through three channels: first, the nominal interest rate policy of the monetary
authority influences directly the nominal return the government has to offer on its in-
struments; second, nominal interest rate decisions also affect the price level and thereby
the real value of outstanding government deb; and third, in our sticky-price economy the
real effects of monetary policy can affect the size of the tax base.

In particular, the role of the maturity of government debt can be seen clearly from the
government budget constraint. In (12), the amount of outstanding real government debt
is PM

t bt, and the period real return on holding government debt is (1 + ρPM
t )/

(
ΠtP

M
t−1

)
.

If ρ = 0, government debt bt is reduced to one-period debt, and the only way to adjust
the real return on bonds ex post is through inflation in the current period Πt. Large
fluctuations in prices can be very costly in the presence of nominal rigidities. However,
if government debt has a longer maturity, 0 < ρ < 1, adjustments in the ex post real
return can be engineered via changes in the bond price PM

t , which depends on inflation
in future periods. This means that changes in the real debt return can be produced by
a small, but sustained inflation, which is less costly than equivalent large fluctuations in
current inflation. As a result, long-term debt helps the policy maker achieve the desired
adjustment in the ex post real return at a smaller cost.

That completes the description of our model which consists of the usual resource
constraint, consumption Euler equation and New Keynesian Phillips curve as well as the
government’s budget constraint and the bond pricing equation for longer-term bonds.
These equations and the debt-dependent steady state are described in the Appendix C.1.

8We shall re-introduce short-term debt alongside longer-term debt in section 5 below.
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3 First-Best Allocation

In some analyses of optimal fiscal policy (e.g., Aiyagari et al., 2002), it is desirable for
the policy maker to accumulate a ‘war chest’ which pays for government consumption
and/or fiscal subsidies to correct for other market imperfections. In order to assess to
what extent our optimal, but time-consistent policy attempts to do so, it is helpful to
define the level of government accumulated assets that would be necessary to mimic the
social planner’s allocation under the decentralized solution. The first step in doing so is
defining the first-best allocation that would be implemented by the social planner. The
social planner ignores the nominal inertia and all other inefficiencies, and chooses real
allocations that maximize the representative consumer’s utility, subject to the aggregate
resource constraint and the aggregate production function. That is, the first-best allo-
cation {C∗t , N∗t , G∗t} is the one that maximizes utility (36), subject to the technology
constraint (35), and aggregate resource constraint Yt = Ct +Gt.

The first order conditions imply that

(C∗t )−σ = χ (G∗t )
−σg = (Nt

∗)ϕ /At = (Yt
∗)ϕA

−(1+ϕ)
t

That is, given the resource constraints, it is optimal to equate the marginal utility of
private and public consumption to the marginal disutility of labor effort and the optimal
share of government consumption in output is

G∗t
Y ∗t

= χ
1
σg

(
Yt
∗

At

)−ϕ+σg
σg

A
1−σg
σg

t

In steady state (technology level A normalized to unity) and assuming σ = σg, this
implies the optimal share of government consumption in output is

G∗

Y ∗
=
(

1 + χ−
1
σ

)−1

and the first-best level of output is given by,

(Y ∗)ϕ+σ

(
1− G∗

Y ∗

)σ
= 1 (13)

It is illuminating to contrast the allocation achieved in the steady state of the decen-
tralized equilibrium with this first best allocation. We do this by finding policies and
prices that make the first-best allocation and the decentralized equilibrium coincide. Ap-
pendix C.1 shows that the steady-state level of output in the decentralized economy is
given by,

Y ϕ+σ

(
1− G

Y

)σ
= (1− τ)

(
ε− 1

ε

)
(14)

Comparing (14) and (13), and assuming the steady state share of government consump-
tion is the same, then the two allocations will be identical when the labor income tax
rate is set optimally to be,

τ ∗ = 1− ε

ε− 1
=
−1

ε− 1
(15)

Notice that the optimal tax rate is negative, that is, it is effectively a subsidy which offsets
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the monopolistic competition distortion. This, in turn, requires that the government has
accumulated a stock of assets defined as,

PM∗b∗

4Y ∗
=

β

4 (1− β)

[
−1

ε
−
(

1 + χ−
1
σ

)−1
]

Using our benchmark calibration below, this would imply that a stock of assets of 843.75%
of GDP would be required to generate sufficient income to pay for government consump-
tion and a labor income subsidy which completely offsets the effects of the monopolistic
competition distortion. We shall see that the steady-state level of debt in our optimal
policy problem while negative, falls far short of this ‘war chest’ value.

4 Optimal Policy Under Discretion

We assume that the policymaker cannot credibly commit to particular future policy
actions. Instead, the policymaker reoptimizes his policy response each period, that is,
this policy is time-consistent. In our model, the presence of government debt makes the
optimal time-consistent policy history dependent, in that the future path of the policy
instruments depends on today’s level of government debt.

The policy under discretion can be described as a set of decision rules for {Ct, Yt,Πt, bt, τt, Gt}
which maximize,

V (bt−1, At) = max

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt [V (bt, At+1)]

}

subject to the resource constraint (32), the New Keynesian Phillips curve (33), and the
government’s budget constraint,

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
bt (16)

=

(
1 + ρβEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}) bt−1

Πt

−
(

τt
1− τt

)(
Yt
At

)1+ϕ

Cσ
t +Gt

where we have used the bond pricing equation (31) to eliminate the current value of the
bond in (34).

Defining auxiliary functions,

M(bt, At+1) = (Ct+1)−σ Yt+1
Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
L(bt, At+1) = (Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)

we can write the constraints (33) and (16) facing the policy maker as,

(1− ε) + ε(1− τt)−1Y ϕ
t C

σ
t A
−1−ϕ
t − φΠt

Π∗

(
Πt

Π∗
− 1

)
+ φβCσ

t Y
−1
t Et [M(bt, At+1)] = 0 (17)
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0 = βbtC
σ
t Et [L(bt, At+1)]− bt−1

Πt

(1 + ρβCσ
t Et [L(bt, At+1)]) (18)

+

(
τt

1− τt

)(
Yt
At

)1+ϕ

Cσ
t −Gt

By using the auxiliary functions in this way, we take account of the fact that the policy
maker recognizes the impact their actions on the endogenous state, but that they cannot
commit to future policy actions beyond that. In other words, we have a time-consistent
policy. Therefore, the Lagrangian for the policy problem can be written as,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt[V (bt, At+1)]

}

+ λ1t

[
Yt

(
1− φ

2

(
Πt

Π∗
− 1

)2
)
− Ct −Gt

]

+ λ2t

[
(1− ε) + ε(1− τt)−1Y ϕ

t C
σ
t A
−1−ϕ
t − φΠt

Π∗

(
Πt
Π∗
− 1
)

+φβCσ
t Y
−1
t Et [M(bt, At+1)]

]
+ λ3t

[
βbtC

σ
t Et [L(bt, At+1)]− bt−1

Πt
(1 + ρβCσ

t Et [L(bt, At+1)])

+
(

τt
1−τt

)(
Yt
At

)1+ϕ

Cσ
t −Gt

]

We can write the first order conditions (FOCs) for the policy problem as follows:
Consumption,

C−σt − λ1t + λ2t

[
σε(1− τt)−1Y ϕ

t C
σ−1
t A−1−ϕ

t + σφβCσ−1
t Y −1

t Et [M(bt, At+1)]
]

+ λ3t

[
σβbtC

σ−1
t Et [L(bt, At+1)]− ρσβ bt−1

Πt
Cσ−1
t Et [L(bt, At+1)]

+σ
(

τt
1−τt

)(
Yt
At

)1+ϕ

Cσ−1
t

]
= 0 (19)

which says that higher consumption increases utility, tightens the resource constraint
(λ1t ≥ 0), has adverse effects on the inflation-output trade-offs at time t (λ2t ≤ 0), and
relaxes the government budget constraint (λ3t ≥ 0);

Government spending,
χG
−σg
t − λ1t − λ3t = 0 (20)

which says that higher government spending increases utility, tightens the resource con-
straint (λ1t ≥ 0), and tightens the government budget constraint (λ3t ≥ 0);

Output,

−Y ϕ
t A

−1−ϕ
t + λ1t

[
1− φ

2

(
Πt

Π∗
− 1

)2
]

+λ2t

[
εϕ(1− τt)−1Y ϕ−1

t Cσ
t A
−1−ϕ
t − φβCσ

t Y
−2
t Et [M(bt, At+1)]

]
+ λ3t

[
(1 + ϕ)Y ϕ

t C
σ
t

(
τt

1− τt

)
A−1−ϕ
t

]
= 0 (21)

which says that higher output (requiring higher labor) decreases utility, relaxes the re-
source constraint (λ1t ≥ 0), has adverse effects on the inflation-output trade-offs at time
t (λ2t ≤ 0), and relaxes the government budget constraint (λ3t ≥ 0);
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Taxation,

λ2t

[
ε(1− τt)−2Y ϕ

t C
σ
t A
−1−ϕ
t

]
+ λ3t

[
Y 1+ϕ
t Cσ

t (1− τt)−2A−1−ϕ
t

]
= 0

simplifying,
ελ2t + λ3tYt = 0 (22)

which says that higher tax rate has adverse effects on the inflation-output trade-off at
time t (λ2t ≤ 0), but relaxes the government budget constraint (λ3t ≥ 0);

Inflation,

−λ1t

[
Yt
φ

Π∗

(
Πt

Π∗
− 1

)]
− λ2t

[
φ

Π∗

(
2Πt

Π∗
− 1

)]
+ λ3t

[
bt−1

Π2
t

(1 + ρβCσ
t Et [L(bt, At+1)])

]
= 0 (23)

which says that higher inflation rate tightens the resource constraint (λ1t ≥ 0), has
positive effects on the inflation-output trade-off at time t (λ2t ≤ 0), and relaxes the
government budget constraint (λ3t ≥ 0);

Government debt,

βEt[V1(bt, At+1)] + λ2t

[
φβCσ

t Y
−1
t Et [M1(bt, At+1)]

]
+βλ3t

[
Cσ
t Et [L(bt, At+1)] + btC

σ
t Et [L1(bt, At+1)]− ρbt−1

Πt

Cσ
t Et [L1(bt, At+1)]

]
= 0

where X1(bt, At+1) ≡ ∂X(bt, At+1)/∂bt for the functions, X = {V, L,M}. Note that by
the envelope theorem,

V1(bt−1, At) = −λ3t
1

Πt

(1 + ρβCσ
t Et [L(bt, At+1)])

we can write the FOC for government debt as,

0 = −βEt
[
λ3t+1

1

Πt+1

(1 + ρβCσ
t+1Et+1 [L(bt+1, At+2)])

]
+ λ2t

[
φβCσ

t Y
−1
t Et [M1(bt, At+1)]

]
+ βλ3t

[
Cσ
t Et [L(bt, At+1)] + btC

σ
t Et [L1(bt, At+1)]− ρbt−1

Πt

Cσ
t Et [L1(bt, At+1)]

]
(24)

The discretionary equilibrium is determined by the system given by the FOCs, (19),
(20), (21), (22), (23), (24), and the constraints, (32), (17) and (18), and finally the
exogenous process for the technology shock,

at = ρaat−1 + eat

where at = lnAt, and eat
i.i.d∼ N(0, σ2

a).
Note there is a two period ahead expectation implicit in (24), related to the forward

pricing of future longer term bonds. Using (22) and the definition of bond prices this can
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be simplified as,

βλ3tC
σ
t Et [L(bt, At+1)]− βEt

[
λ3t+1

Πt+1
(1 + ρPMt+1)

]
︸ ︷︷ ︸

trade-off between current and future distortions

−λ3tφε
−1βCσt Et [M1(bt, At+1)] + βλ3t

[
btC

σ
t Et [L1(bt, At+1)]− ρbt−1

Πt
Cσt Et [L1(bt, At+1)]

]
︸ ︷︷ ︸

additional terms due to lack of commitment

= 0

(25)

since (7) implies that
PM
t = βCσ

t Et [L(bt, At+1)] (26)

Note that (25) is a generalized Euler equation, which involves the derivatives of the
equilibrium policy rules with respect to the state variable, the stock of government debt.
The standard trade-off between current and future distortions, reflected in the relationship
between λ3t and λ3t+1 in the first line of this expression, is actually a version of the tax-
smoothing argument in Barro (1979), requiring that the marginal costs of taxation are
equalized over time. This first line would drive the usual random walk in debt result, if
the policy maker could commit. However, the presence of partial derivatives of debt in
the second line is due to the time-consistency requirement, which reflects the fact that
the future government cannot commit to future policy actions, but can affect the future
through the level of debt it bequeaths to tomorrow. The first term on the second line
reflects the fact that inflation expectations rise with debt levels (through the inflation
and debt stabilization biases discussed elsewhere in the paper), M1(bt, At+1) > 0, and
since this is costly in the presence of nominal inertia, there is a desire to deviate from
tax smoothing, in order to reduce debt and the associated increase in inflation.

The second term in square brackets in the second line captures the impact of higher
debt on bond prices. Since higher debt raises inflation, which in turn reduces bond prices,
L1(bt, At+1) < 0, this term also serves to encourage a reduction in debt levels, when debt
is relatively short-term. The magnitude of this effect is reduced as we increase the average
maturity of government debt, ρ, and may even be reversed if term in square brackets turns
positive as ρ is increased. Effectively, the lower bond prices mean we need to issue more
bonds to finance a given deficit, but pay less to buy-back the existing debt stock. As debt
maturity is increased, the latter effect rises relative to the former, and hence the desire
to reduce debt levels is reduced, ceteris paribus. This trade-off between tax-smoothing
and the time-consistency problems determines the equilibrium level of debt and inflation,
where we expect inflation to be lower as debt maturity rises, for a given level of debt.

We can solve the nonlinear system consisting of these six first order conditions, the
three constraints and (26) to yield the time-consistent optimal policy. Specifically, we
need to find these ten time-invariant Markov-perfect equilibrium policy rules which are
functions of the two state variables {bt−1, At}.

5 Numerical Analysis

5.1 Solution Method and Calibration

For the model described in the previous section, the equilibrium policy functions can-
not be computed in closed form. We thus resort to computational methods and derive
numerical approximations to the policy rules. Local approximation methods are not ap-
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plicable for this purpose, because the model’s steady state around which local dynamics
should be approximated is endogenously determined as part of the model solution and
thus a priori unknown. In light of this difficulty, we resort to a global solution method.
Specifically, we use Chebyshev collocation with time iteration to solve the model.9 The
detailed algorithm is presented in section C.2 in the appendix. In general, optimal dis-
cretionary policy problems can be characterized as a dynamic game between the private
sector and successive governments. Multiplicity of equilibria is a common problem in dy-
namic games. One strategy has been to focus on equilibria with continuous strategies, see
Judd (2004) for a discussion. Since we use polynomial approximations, we were searching
only for continuous Markov-perfect equilibria where agents condition their strategies on
payoff-relevant state variables.

Before solving the model numerically, the benchmark values of structural parameters
must be specified. The calibration of parameters is summarized in Table 1. We set
β = (1/1.02)1/4 = 0.995, which is a standard value for models with quarterly data and
implies a 2% annual real interest rate. The intertemporal elasticity of substitution is
set to one half (σ = σg = 2) which is in the middle of the parameter range typically
considered in the literature. Labor supply elasticity is set to ϕ−1 = 1/3. The elasticity
of substitution between intermediate goods is chosen as ε = 21, which implies a monopo-
listic markup of approximately 5%, similar to Siu (2004). The coupon decay parameter,
ρ = 0.95, corresponds to 4 ∼ 5 years of debt maturity, consistent with US data. The
scaling parameter χ = 0.055 ensures that the share of government spending in output
is about 19%. The technology parameters are set to ρa = 0.95 and σa = 0.01. The
price adjustment cost parameter φ = 32.5 - implying, given the equivalence between the
linearized NKPCs under Rotemberg and Calvo pricing (see Leith and Liu, 2014), that
on average firms re-optimize prices every four to six months - is in line with empirical
evidence. Finally, the annualized inflation target is chosen to be 2%, which is the current
target adopted by most inflation targeting economies.

With this benchmark parameterization, we solve the fully nonlinear models via the
Chebyshev collocation method. The maximum Euler equation error over the full range
of the grid is of the order of 10−6. As suggested by Judd (1998) , this order of accuracy
is reasonable.

5.2 Numerical Results

In this section, we explore the properties of the equilibrium under the optimal time-
consistent policy. We begin by considering the steady-state under our benchmark cali-
bration, before turning to the transitional dynamics which highlights the state-dependent
nature of the optimal policy mix. We then turn to consider the role of debt maturity in
these results, highlighting the impact of debt maturity on the inflationary bias problem
and the sensitivity of the policy to the level of government debt. We then allow the policy
making to issue both short and longer-term bonds, and show that this enables the policy
maker to import some of the policy mix associated with short-term debt, even though the
bulk of its debt portfolio is longer-term debt. We conclude by exploring the implications
of the policy maker suffering from a degree of myopia as a proxy for the costs of political
frictions associated with operating fiscal policy.

9See Judd (1998) for a textbook treatment of the involved numerical techniques.
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5.2.1 Steady State

We begin by plotting the policy functions for our benchmark calibration, in order to assess
the steady-state of our optimal policy problem. Figure 3 plots policy rules against lagged
debt, where the grid for At is fixed at 1. The first subplot illustrates how to find the
steady state debt associated with the time consistent equilibrium. We should note that
long-run debt under the benchmark parameterization is negative (−0.15), but smaller in
absolute value than the first best level (−2.47), implying a stock of assets of 63.34% of
GDP rather than the ‘war chest’ value of 843.75% of GDP. Intuitively, the interaction of
inflation and debt stabilization biases generate a small negative long-run optimal value
for debt, which falls far short of the accumulated level of assets that would be needed to
finance government consumption and eliminate tax and other distortions. In addition,
the annualized inflation rate in the steady state is 1.25%, which is less than the target of
2%. That is, there is an undershooting of the inflation target in steady state. Table ??
summarizes the steady state values.

In standard analyses of the inflationary bias problem, the magnitude of the bias is
determined by the exogenously given degree of monopolistic competition which implies
that the equilibrium level of output is inefficiently low. In the presence of debt and
distortionary taxation, at higher debt or tax levels, the inefficiency is more pronounced,
and hence the desire to generate a surprise inflation is greater, ceteris paribus. In other
words, the inflation bias problem is endogenous, since the inefficiencies associated with
distortionary taxation are likely to vary with the level of debt. At the same time, any
surprise inflation reduces the real value of government debt and mitigates the costs of
distortionary taxation, and ultimately the associated inflationary bias in the future -
we follow Leith and Wren-Lewis (2013) in labelling this the ‘debt stabilization bias’.
As a result, the policy maker will seek to reduce debt levels to mitigate the costs of
distortionary taxation and the endogenous inflationary bias problem. However, once
debt turns negative, the policy maker faces a trade-off. Any surprise inflation will boost
output, moving it closer to the efficient level. However, when the government is holding
a net stock of nominal assets rather than liabilities, any surprise inflation will reduce the
real value of those assets, and thereby worsen the future inefficiencies in the economy.
The steady-state then balances these opposing forces, such that there is a small stock of
positive government assets and a mild deflationary bias beyond which the government
is not tempted to induce further deflationary surprises. The reason is that this would
worsen output levels in the short-run, even though they would lead to a greater stock of
assets in the longer run. Alternatively, this can be seen by considering the steady-state
solution to the first order condition for debt, (25), temporarily removing the technology
shock to render the model deterministic,

φε−1M1(b, A) = b(1− ρ 1

Π
)L1(b, A) (27)

Since higher debt levels raise inflation, M1(b, A) > 0, and that inflation reduces bond
prices, L1(b, A) < 0, this equation can only hold with a negative stock of debt in steady-
state. Moreover, the steady-state debt and inflation level it implies will be a non-linear
function of debt maturity and the magnitude of the inflation and debt stabilization biases.

We can see this by considering Table 2, which confirms that debt maturity has a
nonlinear effect on the steady state debt to GDP ratio and inflation rate. The steady-
state time-consistent level of accumulated assets held by the government first increases,
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and then decreases, as the average maturity of debt lengthens. Correspondingly, there is
an an overshooting of the inflation target for debt maturity undershooting of the inflation
target becomes less severe initially, but deteriorates afterwards. The intuition can be
understood as follows. As noted above the policy maker essentially faces two biases - the
conventional inflation bias where the policy maker wishes to induce a surprise inflation to
boost activity in a sub-optimally small economy, and a debt stabilization bias where the
policy maker wishes to use surprise inflation to reduce the value of debt or increase the real
value of its nominal assets. At low maturity levels, in steady state the inflationary bias
dominates, such that inflation lies above its target value. As maturity levels rise slightly,
the inflationary bias falls, since the government accumulates a larger stock of assets which
support lower tax rates, even though government consumption as a share of GDP rises
slightly. As maturity rises more, the debt stabilization bias starts to outweigh the inflation
bias. As a result, steady state inflation lies below target, due to the stock of nominal
assets the government has accumulated. These nominal asset stocks, along with falls in
government consumption relative to GDP, help support the reduced tax rates. It should
be noted that the movements in debt to GDP ratios, tax rates and the share of public
consumption in output are not entirely monotonic as maturity levels change, reflecting
the balancing of the two forms of bias and their associated impact on the policy mix
differences emphasized in the following subsection. However, the overwhelming tendency
is for the debt stabilization bias to prevent the policy maker from accumulating a war
chest of nominal assets sufficient to finance all government activities. Especially, this is
the case when debt is of a shorter maturity.

5.2.2 Transition Dynamics and the Policy Mix

Before plotting the transition dynamics, it is helpful to consider the non-linearities implied
by the policy functions, as plotted in Figure 3. Here we can see that inflation is rising
steeply with the level of debt, as the endogenous inflationary and debt stabilization biases
worsen with rising debt levels. We can also see how the policy response varies with debt
levels - as debt levels rise, we see reduced government consumption, higher tax rates, and
since higher debt levels raise inflation, a rise in real interest rates as well. However, once
debt levels rise sufficiently, we can see that the rise in labor income tax rates slows, and
real interest rates start to fall. This suggests that we may start to see a change in the
policy mix, as we transition from high levels of debt towards the steady state.

Figure 4 plots the transition dynamics starting from a high level of debt, given the
benchmark calibration. Here we can see the non-linearities implicit in the policy functions
plotted in Figure 3. At very high initial levels of debt, we have a massive inflationary/debt
stabilization bias problem (with annualized inflation in excess of 40%), and as a result,
the policy maker is acting to reduce the level of debt fairly rapidly. To do so, they cut
government spending and raise labor income tax rates. As a result of the high inflation,
they also raise real interest rates. This is in line with the conventional monetary and
fiscal policy assignment - fiscal policy is stabilizing debt and monetary policy is raising
real interest rates to reduce aggregate demand and, thereby, inflation. However, looking
closely at the start of the transition when debt levels are particularly high, we see a
different policy mix - real interest rates are rising in the first few periods, as inflation and
debt fall. Essentially in the first few periods, debt levels are so high that monetary policy
is moderated to mitigate the effects of raised debt service costs. We shall now show that
these changes in the policy mix are highly dependent on the maturity structure.
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5.2.3 The Role of Debt Maturity

To illustrate the importance of the maturity structure on the optimal policy mix, we
plot the policy functions for inflation, real interest rates, and the labor income tax, as a
function of debt levels for the conventional single period debt (ρ = 0) and longer maturity
debt (ρ = 0.7588, 0.9598, 0.9786, or equivalently 1, 5 and 8 year debt, respectively), as
shown in Figure 5. In the case of single period debt, we obtain a large endogenous
inflationary/debt stabilization bias problem, but find that even when inflation is high
as a result, real interest rates fall at higher debt levels. Moreover, although tax rates
initially rise with the level of debt, they start to fall once the debt to GDP ratio passes
30%. Therefore, we find that real interest rates are lower as debt levels rise despite
the associated rsie in inflation, since monetary policy seeks to reduce debt service costs
and expand the tax base. This would look like a passive monetary policy, if one was
to estimate a standard policy rule. At the same time, tax policy looks conventional at
low to moderate debt levels, but once debt levels rise above 30% of GDP, higher debt
is associated with lower tax rates in an attempt to moderate inflation - an apparently
active fiscal policy.

When we turn to the longer maturity debt (ρ = 0.9598 for example), we have con-
ventional policies in place for a wider range of debt to GDP ratios. As debt levels rise,
we have a worsening of the inflationary/debt stabilization bias problems, although not
as pronounced as in the case of shorter maturity debt, since the desire to reduce debt at
any given positive debt level is lower. Note that suppressed bond prices reduce the costs
of debt buy-back at longer maturities. However, unlike the case of single period debt,
monetary policy raises real interest rates, in response to this rise in inflation until debt
to GDP ratios exceed 175% of GDP at which point they start falling sharply, as debt
levels rise further. At the same point, labor income tax rates start falling with rising
debt levels, too. Therefore, we have a policy mix which looks like the conventional policy
assignment at lower debt levels, that is, real interest rates rise to fight inflation, while tax
rates increase and government consumption falls to stabilize debt. However, at higher
debt levels, we observe a reversal in the policy mix, that is, monetary policy reduces real
interest rates to stabilize debt, while fiscal policy moderates the increases in tax rates to
mitigate the rise in inflation.

We can then see the role of debt maturity on the transition dynamics, by plotting the
transition paths for four cases of ρ: ρ = 0 (single period debt), ρ = 0.7588 (1 year debt
maturity), ρ = 0.9598 (5 year debt maturity), and ρ = 0.9786 (8 year debt maturity).
We begin from the same debt to GDP ratio, as depicted in Figure 6. Here we can see
the radically higher inflationary/debt stabilization bias problems when debt maturity is
low, and the unconventional policy mix this engenders - real interest rates are cut to
help reduce debt when debt is single period, tax increases are moderated and government
consumption is markedly reduced. As debt maturity is increased, we both reduce the
debt stabilization bias problem and the conventional policy mix is applied at lower debt
to GDP ratios.

5.2.4 Endogenizing Debt Maturity

Up until this point, we have held the level of debt maturity fixed by controlling ρ. We
now allow the policy maker to have some control over the maturity structure, by allowing
them to issue a mixture of single period and longer-maturity debt of a given ρ. By varying
the relative proportions of these two types of bonds, the policy maker can influence the
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average maturity of the outstanding stock of debt. We plot the transition dynamics for
the benchmark calibration in Figure 7, where we start from the same initial overall debt
to GDP ratio. Here it is important to stress that despite the high overall debt to GDP
ratio, the quantity of short-term debt issued is very low. We do not observe the extreme
portfolios made up of issuing long-term debt to purchase short-term assets. This portfolio
has been used as a hedging device when policy makers can commit (see Debortoli et al.
(2015) and Leeper and Leith (2017)). Instead, there is an extremely modest issuance of
short-term debt, even when overall debt levels are very high. The short-term debt serves
to support small changes in the time-consistent policy mix. Specifically, we do not observe
significant changes in the paths for inflation or overall indebtedness, suggesting that the
availability of short-term debt is not used to radically alter the speed of fiscal correction.
Instead, the policy mix underpinning those dynamics does change - real interest rates,
government consumption and tax rates are lower, when the policy maker can issue short-
term debt and overall debt levels are high. In other words, the issuance of short-term debt
tilts the policy mix towards the unconventional policies pursued at lower maturity levels,
where more adjustment is borne by monetary policy and cuts in government spending,
and less in tax increases. This tilting in the policy mix produces a very modest lifetime
welfare gain (equivalent to 1.5% of one-period’s steady-state consumption). If we turn to
a lower maturity structure (an average medium-term debt maturity of two years), then
the effects are qualitatively similar, but quantitatively much smaller - see Figure 8.

5.2.5 Fiscal Policy Myopia

One aspect of the equilibrium outcomes under time-consistent optimal policy is that the
steady state level of debt is negative, capturing the balancing of the usual inflation bias
with the debt stabilization bias. This is clearly at odds with the empirical fact that almost
all advanced economy governments have issued net liabilities, rather than accumulated
net assets.10 One possible explanation for this is offered by the New Political Economy
literature, which emphasizes that the political process may result in a deficit bias problem
leading to an accumulation of public debt. While there are several explanations as to
why such a bias may exist, these can loosely be introduced into our model by allowing
the policy maker to be relatively myopic. To do so, we add a probability of survival, δ,
to the policy maker’s objective function,

E0

∞∑
t=0

(βδ)t

(
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− Nt

1+ϕ

1 + ϕ

)
(28)

which implicitly assumes that when δ < 1 they have a shorter time horizon than society
as a whole. This implies that the policy maker does not fully appreciate the long-term
benefits of reducing debt, but does care, relatively, about the short-run costs of doing so.
The implications of this for the steady-state level of debt can be seen from considering the

10Some papers in the literature on time-consistent monetary and fiscal policies ensure a positive level
of government debt in steady state via explicitly considering money. For example, Niemann et al. (2013)
obtain this result through a carefully chosen money demand function, while Martin (2009) uses the cash-
credit goods setup. Our paper is more in the spirit of conventional analyses of policy in New Keynesian
models which typically assume a cashless economy.
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deterministic steady-state of the first order condition for debt in the presence of myopia,

(1− δ)1 + ρPm

Π
= φε−1M1(b, A)− b(1− ρ 1

Π
)L1(b, A) (29)

Since the effects of debt, ceteris paribus, in raising inflation and lower bond prices imply
M1(b, A) > 0 and L1(b, A) < 0, respectively, the steady state of this equation can be
supported by a lower negative value of b, which can even turn positive as policy-maker
myopia, δ, is reduced below 1.

Giving the policy maker a 25 year planning horizon implies δ = 0.99 and results in
the policy functions shown in Figure 9. Here we can see that the qualitative features
of these policy functions are the same as previously - at high debt levels we get the
switch in the policy mix from using fiscal policy to stabilize debt to relying on monetary
policy. However, this switch in the policy mix occurs at an even higher level of debt
than in the case with a non-myopic policy maker. Additionally, the steady state of the
policy problem now involves both a positive debt to GDP ratio and an inflationary rather
than deflationary bias. Essentially, the debt stabilization bias is reduced, as the policy
maker is less inclined to incur the costs of debt reduction in order to achieve longer-term
benefits. Policy maker myopia serves to render the equilibrium policy more plausible, in
that inflation during the transition to the steady state is not as high as the case without
myopia. In fact, the government stabilizes debt at a plausible level of 52.5% of GDP,
with an associated inflation bias of 5.61%.11

6 Conclusions

In this paper we have considered the optimal monetary and fiscal policy mix in a New
Keynesian economy with a plausible debt-maturity structure. The existence of nominal
debt induces a substantial endogenous inflation and debt stabilization bias problem as the
policy maker faces the temptation to both boost the economy and reduce the real value of
debt through inflation surprises, respectively. In fact, under our benchmark calibration,
this temptation results in a steady state where the government accumulates a small stock
of assets (falling well short of the ‘war chest’ needed to finance all of the government’s
activities without recourse to distortionary taxation) and suffers a mild undershooting of
the inflation target. Moreover, we find that the policy equilibrium is highly non-linear,
depending crucially on both the level of debt and the maturity structure of that debt.
Adopting single period debt implies a policy mix which can look quite unconventional, if
debt levels rise above relatively modest levels. Specifically, monetary policy will seek to
stabilize debt through lower debt interest payments, while tax policy attempts to stabilize
inflation. With longer debt maturities, optimal policy looks more like the conventional
policy assignment - monetary policy raises real interest rates to fight inflation, while
taxes are raised to stabilize debt, unless debt level rise sufficiently high that we reverse
the policy assignment as in the case of single period debt. This policy mix reversal occurs
at far higher debt levels, as we move from single period debt to plausibly calibrated debt
maturities.

We also consider the role of endogenous maturity by allowing the policy maker to issue

11It should be noted that we have assumed a inflation target of 2% where it is costless to adjust prices
in line with that target, such that an inflation rate of 3.61% constitutes the costly deviation from that
target.
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both single-period and medium maturity debt. We find that this does little to affect the
underlying inflation and debt stabilization bias problems and debt dynamics, but that a
modest issuance of short-term debt allows the policy maker to shift the policy mix to be
more like that of the single period debt case with lower real interest rates, government
consumption and tax rates. This is mildly welfare improving. It is also interesting to note
that the implicit government debt portfolio does not attempt to achieve any of the hedging
effects associated with some optimal policy exercises when the policy maker can commit.
Finally, we allow the policy maker to be relatively myopic in evaluating the future in
a manner which mimics the various explanations of the deficit bias problem. We find
that this does not qualitatively affect the debt-dependent bifurcation in the policy mix
detailed in the paper, although it does for even a relatively modest degree of myopia turn
the steady-state debt level positive and support an inflationary rather than deflationary
bias, bringing us closer to understanding empirically observed debt dynamics.
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A Tables

Table 1: Parameterization

Parameter Value Definition
β 0.995 Quarterly discount factor
σ 2 Relative risk aversion coefficient
σg 2 Relative risk aversion coefficient for government spending
ϕ 3 Inverse Frish elasticity of labor supply
ε 21 Elasticity of substitution between varieties
ρ 0.95 Debt maturity structure
χ 0.055 Scaling parameter associated with government spending
ρa 0.95 AR-coefficient of technology shock
σa 0.01 Standard deviation of technology shock
φ 32.5 Rotemberg adjustment cost coefficient
Π∗ 2% Annual inflation rate target
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Figure 1.2. Fiscal Trends in Advanced Economies
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The average ratio of debt to GDP remains above 100 percent and is expected to decline only slowly, as very low inflation and slow growth 
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Figure 1: The average debt-GDP ratio and the cyclically adjusted deficit as percent of potential GDP in advanced
economies. CAD = cyclically adjusted deficit. Source: IMF Fiscal Monitor, 2015.
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Figure 1: Size and maturity composition of debt. The �gure shows the evolution of
debt-to-GDP ratios and average maturity of debt for a selected group of countries. The debt-
to-GDP time series is measured as net �nancial liabilities as a percentage of nominal GDP;
the average maturity of debt is measured as the average term to maturity of total outstanding
government debt. The data source is the OECD database.

as a very stringent assumption.3

Consider a �exible-price endowment economy with long-term government debt. Mone-

tary and �scal policy are speci�ed by simple rules. The monetary rule prescribes that the

short-term nominal rate responds more than proportionally to in�ation, while the �scal rule

adjusts lump-sum taxes more than proportionally to changes in government debt. Under

rational expectations this policy framework induces a Ricardian equilibrium. Fiscal policy

has no monetary consequences. Now suppose agents have imperfect knowledge, modeled as

uncertainty about the long-term equilibrium level of in�ation and taxes. Interpret this as

either fundamental uncertainty about the policy regime, or imperfect credibility about policy

objectives. Following Marcet and Sargent (1989) and Evans and Honkapohja (2001), to learn

about the long-run objectives of policy, agents employ a simple linear econometric model

with an unobserved drift, estimated each period as new data become available. Estimates of

average in�ation and taxes are updated in response to past forecast errors. This is an intu-

itive model of expectations formation supported by empirical evidence.4 This kind of belief

3See Davig and Leeper (2006) and Bianchi (2010).
4See Adam, Marcet, and Nicolini (2012), Adam, Beutel, and Marcet (2013), Eusepi and Preston (2011),

Milani (2007) and Slobodyan and Wouters (2012).

2

Figure 2: This figure shows the evolution of debt-to-GDP ratios and average maturity of debt for a selected group of
countries. The debt-to-GDP time series is measured as net financial liabilities as a percentage of nominal GDP; the average
maturity of debt is measured as the average term to maturity of total outstanding government debt. Taken from Eusepi
and Preston (2013).
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Figure 3: Under the benchmark parameters, the policy rules as functions of lagged debt, when the grid for technology is
fixed at A=1. The cross sign indicates steady state.
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Figure 4: Under the benchmark parameters, this figure plots the transition paths of policy variables when debt starts
from levels consistent with currently observed debt-GDP ratios, and technology is fixed at A=1. The red dotted lines
indicate steady states.
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Figure 5: This figure illustrates the relationship between policy mix and the debt-GDP ratio under alternative maturities.
The cross signs indicate steady states.
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Figure 7: This figure compares the transition paths under the benchmark case with and without short-term debt, when
the debt-GDP ratio starts from the same level.
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Figure 8: This figure compares the transition paths under the case with debt maturity of two years, with and without
short-term debt, when the debt-GDP ratio starts from the same level.
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Figure 9: This figure illustrates the relationship between policy mix and the debt-GDP ratio under the benchmark case
with and without myopia. The cross signs indicate steady states.
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C Technical Appendix (Not for Publication)

C.1 Summary of Model

We now summerise the model and its steady state before turning to the time-consistent
policy problem.

Consumption Euler equation,

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1 (30)

Pricing of longer-term bonds,

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
= PM

t (31)

Labour supply,

Nϕ
t C

σ
t = (1− τt)

(
Wt

Pt

)
≡ (1− τt)wt

Resource constraint,

Yt

[
1− φ

2

(
Πt

Π∗
− 1

)2
]

= Ct +Gt (32)

Phillips curve,

0 = (1− ε) + εmct − φ
Πt

Π∗

(
Πt

Π∗
− 1

)
(33)

+ φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)]
Government budget constraint,

PM
t bt = (1 + ρPM

t )
bt−1

Πt

− Wt

Pt
Ntτt +Gt

= (1 + ρPM
t )

bt−1

Πt

−
(

τt
1− τt

)
N1+ϕ
t Cσ

t +Gt

= (1 + ρPM
t )

bt−1

Πt

−
(

τt
1− τt

)(
Yt
At

)1+ϕ

Cσ
t +Gt (34)

Technology,
Yt = AtNt (35)

Marginal costs,

mct = Wt/ (PtAt) = (1− τt)−1Y ϕ
t C

σ
t A
−1−ϕ
t
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The objective function for social welfare is given by,

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ

)
(36)

There are two state variables, real debt bt and productivity at = ln (At).

C.1.1 The Deterministic Steady State

Given the system of non-linear equations, the corresponding steady state system can be
written as follows:

A = 1

βR

Π
= 1

β

Π

(
1 + ρPM

)
= PM

(1− τ)w = NϕCσ

Y

[
1− φ

2

(
Π

Π∗
− 1

)2
]

= C +G

(1− ε) + εmc+ φ (β − 1)

[
Π

Π∗

(
Π

Π∗
− 1

)]
= 0

PMb = (1 + ρPM)
b

Π
−
(

τ

1− τ

)
Y 1+ϕCσ +G

Y = N

mc = w = (1− τ)−1Y ϕCσ

Hence, when Π = Π∗,

PM =
β

Π∗ − βρ

mc = w =
ε− 1

ε

C

Y
=

[
(1− τ)

(
ε− 1

ε

)]1/σ

Y −
ϕ+σ
σ

G

Y
= 1− C

Y
= 1−

[
(1− τ)

(
ε− 1

ε

)]1/σ

Y −
ϕ+σ
σ

PMb =
β

1− β

[
τ

(
ε− 1

ε

)
− G

Y

]
Y

Note that,

Y ϕ+σ

(
1− G

Y

)σ
= (1− τ)

(
ε− 1

ε

)
(37)

which will be used to contrast with the allocation that would be chosen by a social
planner.
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C.2 Numerical Algorithm

Let st = (bt−1, at) denote the state vector at time t, where real stock of debt bt−1 is
endogenous and technology At = exp(at) is exogenous and respectively, with the following
law of motion:

PM
t bt = (1 + ρPM

t )
bt−1

Πt

− wtNtτt +Gt

at = ρaat−1 + eat

where 0 ≤ ρa < 1 and technology innovation eat is an i.i.d. normal random variable,
which has a zero mean and a finite standard deviation σa.

There are 7 endogenous variables and 3 Lagrangian multipliers. Correspondingly,
there are 10 functional equations associated with the 10 varaibles

{
Ct,Yt,Πt,bt,τt,P

M
t ,Gt,λ1t,λ2t,λ3t

}
.

Let’s define a new function X : R2 → R10, in order to collect the policy functions of en-
dogenous variables as follows:

X(st) =
(
Ct(st), Yt(st),Πt(st), bt(st), τt(st), P

M
t (st), Gt(st), λ1t(st), λ2t(st), λ3t(st)

)
Given the specification of the function X, the equilibrium conditions can be written more
compactly as,

Γ (st, X(st), Et [Z (X(st+1))] , Et [Zb (X(st+1))]) = 0

where Γ : R2+10+3+3 → R10 summarizes the full set of dynamic equilibrium relationship,
and

Z (X(st+1)) =

 Z1 (X(st+1))
Z2 (X(st+1))
Z3 (X(st+1))

 ≡
 M(bt, At+1)
L(bt, At+1)

(Πt+1)−1 (1 + ρPM
t+1

)
λ3t+1


with

M(bt, At+1) = (Ct+1)−σ Yt+1
Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
L(bt, At+1) = (Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)

and

Zb (X(st+1)) =


∂Z1(X(st+1))

∂bt
∂Z2(X(st+1))

∂bt
∂Z3(X(st+1))

∂bt

 ≡


∂M(bt,At+1)
∂bt

∂L(bt,At+1)
∂bt

∂[(Πt+1)−1(1+ρPMt+1)λ3t+1]
∂bt


More specifically,

L1(bt, At+1) =
∂
[
(Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)
]

∂bt

= −σ(Ct+1)−σ−1(Πt+1)−1(1 + ρPM
t+1)

∂Ct+1

∂bt

− (Ct+1)−σ(Πt+1)−2(1 + ρPM
t+1)

∂Πt+1

∂bt
+ ρ(Ct+1)−σ(Πt+1)−1∂P

M
t+1

∂bt

and

M1(bt, At+1) =
∂
[
(Ct+1)−σ Yt+1

Πt+1

Π∗

(
Πt+1

Π∗
− 1
)]

∂bt
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= −σ(Ct+1)−σ−1Yt+1
Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
∂Ct+1

∂bt
+ (Ct+1)−σ

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
∂Yt+1

∂bt

+ (Ct+1)−σ
Yt+1

Π∗

(
Πt+1

Π∗
− 1

)
∂Πt+1

∂bt
+ (Ct+1)−σ

Yt+1

Π∗
Πt+1

Π∗
∂Πt+1

∂bt

= −σ(Ct+1)−σ−1Yt+1
Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
∂Ct+1

∂bt
+ (Ct+1)−σ

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
∂Yt+1

∂bt

+ (Ct+1)−σ
Yt+1

Π∗

(
2Πt+1

Π∗
− 1

)
∂Πt+1

∂bt

Note we are assuming Et [Zb (X(st+1))] = ∂Et [Z (X(st+1))] /bt, which is normally valid
using the Interchange of Integration and Differentiation Theorem. Then the problem is
to find a vector-valued function X that Γ maps to the zero function. Projection methods,
hence, can be used.

Following the notation convention in the literature, we simply use s = (b, a) to denote
the current state of the economy st = (bt−1, at), and s′ to represent next period state
that evolves according to the law of motion specified above. The Chebyshev collocation
method with time iteration which we use to solve this nonlinear system can be described
as follows:

1. Define the collocation nodes and the space of the approximating functions:

• Choose an order of approximation (i.e., the polynomial degrees) nb and na for
each dimension of the state space s = (b, a), then there are Ns = (nb + 1) ×
(na + 1) nodes in the state space. Let S = (S1, S2, ..., SNs) denote the set of
collocation nodes.

• Compute the nb + 1 and na + 1 roots of the Chebychev polynomial of order
nb + 1 and na + 1 as

zib = cos

(
(2i− 1)π

2(nb + 1)

)
, for i = 1, 2, ..., nb + 1.

zia = cos

(
(2i− 1)π

2(na + 1)

)
, for i = 1, 2, ..., na + 1.

• Compute collocation points ai as

ai =
a+ a

2
+
a− a

2
zia =

a− a
2

(
zia + 1

)
+ a

for i = 1, 2, ..., na + 1. Note that the number of collocation nodes is na + 1.
Similarly, compute collocation points bi as

bi =
b+ b

2
+
b− b

2
zib =

b− b
2

(
zib + 1

)
+ b

for i = 1, 2, ..., nb + 1, which map [−1, 1] into [b, b]. Note that

S = {(bi, aj) | i = 1, 2, ..., nb + 1, j = 1, 2, ..., na + 1}

that is, the tensor grids, with S1 = (b1, a1), S2 = (b1, a2), ..., SNs = (bnb+1, ana+1).
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• The space of the approximating functions, denoted as Ω, is a matrix of two-
dimensional Chebyshev polynomials. More specifically,

Ω (S) =



Ω (S1)
Ω (S2)

.

.

.
Ω (Sna+1)

.

.

.
Ω (SNs )


=

=



1 T0(ξ(b1)T1(ξ (a1)) T0(ξ(b1)T2(ξ (a1)) · · · Tnb
(ξ(b1)Tna (ξ (a1))

1 T0(ξ(b1)T1(ξ (a2)) T0(ξ(b1)T2(ξ (a2)) · · · Tnb
(ξ(b1)Tna (ξ (a2))

.

.

.
.
.
.

.

.

. · · ·
.
.
.

1 T0(ξ(b1)T1(ξ (ana+1)) T0(ξ(b1)T2(ξ (ana+1)) · · · T0(ξ(b1)Tna (ξ (ana+1))

.

.

.
.
.
.

.

.

. · · ·
.
.
.

1 T0(ξ(bnb+1)T1(ξ (ana+1)) T0(ξ(bnb+1)T2(ξ (ana+1)) · · · T0(ξ(bnb+1)Tna (ξ (ana+1))


Ns×Ns

where ξ(x) = 2 (x− x) / (x− x)−1 maps the domain of x ∈ [x, x] into [−1, 1].

• Then, at each node s ∈ S, policy functions X(s) are approximated by X(s) =
Ω(s)ΘX ,

where
ΘX =

[
θc, θy, θπ, θb, θτ , θp̃, θg, θλ1 , θλ2 , θλ3

]
is a Ns × 10 matrix of the approximating coefficients.

2. Formulate an initial guess for the approximating coefficients, Θ0
X , and specify the

stopping rule εtol, say, 10−6.

3. At each iteration j, we can get an updated Θj
X by implement the following time

iteration step:

• At each collocation node s ∈ S, compute the possible values of future policy
functions X(s′) for k = 1, ..., q. That is,

X(s′) = Ω(s′)Θj−1
X

where q is the number of Gauss-Hermite quadrature nodes. Note that

Ω(s′) = Tjb(ξ(b
′))Tja (ξ(a′))

is a q × Ns matrix, with b′ = b̂(s; θb), a′ = ρaa + zk
√

2σ2
a, jb = 0, ..., nb, and

ja = 0, ..., na. The hat symbol indicates the corresponding approximate policy
functions, so b̂ is the approximate policy for real debt, for example. Similarly,
the two auxilliary functions can be calculated as follows:

M(s′) ≈
(
Ĉ(s′; θc)

)−σ
Ŷ (s′; θy)

Π̂(s′; θπ)

Π∗

(
Π̂(s′; θπ)

Π∗
− 1

)

and,

L(s′) ≈
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1
(

1 +
ρP̂M

(
s′; θp̃

)
Π∗ − ρβ

)
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Note that we use P̃M
t = (Π∗ − ρβ)PM

t rather than PM
t in numerical analysis,

since the former is far less sensitive to maturity structure variations.

• Now calculate the expectation terms E [Z (X(s′))] at each node s. Let ωk
denote the weights for the quadrature, then

E [M(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Ĉ(s′; θc)

)−σ
Ŷ (s′; θy)

Π̂(s′; θπ)

Π∗

(
Π̂(s′; θπ)

Π∗
− 1

)
≡M (s′, q)

E [L(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1
(

1 +
ρP̂M

(
s′; θp̃

)
Π∗ − ρβ

)
≡ L (s′, q)

and

Et

[(
1 + ρPM

t+1

Πt+1

)
λ3t+1

]
≈ 1√

π

q∑
k=1

ωk

1 +
ρP̂M(s′;θp̃)

Π∗−ρβ

Π̂(s′; θπ)

 λ̂3(s′; θλ3) ≡ Λ (s′, q) .

Hence,

E [Z (X(s′))] ≈ E
[
Ẑ (X(s′))

]
=

 M (s′, q)
L (s′, q)
Λ (s′, q)


• Next calculate the partial derivatives under expectation E [Zb (X(s′))].

• Note that we only need to compute ∂Ct+1/∂bt, ∂Yt+1/∂bt, ∂Πt+1/∂bt and ∂PM
t+1/∂bt,

which are given as follows:

∂Ct+1

∂b
≈

nb∑
jb=0

na∑
ja=0

2θcjbja
b− b

T ′jb(ξ(b
′))Tja(ξ(a

′)) ≡ Ĉb (s′)

∂Yt+1

∂bt
≈

nb∑
jb=0

na∑
ja=0

2θyjbja
b− b

T ′jb(ξ(b
′))Tja(ξ(a

′)) ≡ Ŷb (s′)

∂Πt+1

∂bt
≈

nb∑
jb=0

na∑
ja=0

2θπjbja
b− b

T ′jb(ξ(b
′))Tja(ξ(a

′)) ≡ Π̂b (s′)

∂PM
t+1

∂bt
≈

nb∑
jb=0

na∑
ja=0

2θp̃jbja(
b− b

)
(Π∗ − ρβ)

T ′jb(ξ(bi))Tja(ξ(aj)) ≡ P̂M
b (s′)

Hence, we can approximate the two partial derivatives under expectation

∂E [M(s′)]

∂b

≈ 1√
π

q∑
k=1

ωk


−σ
(
Ĉ(s′; θc)

)−σ−1

Ŷ (s′; θy) Π̂(s′;θπ)
Π∗

(
Π̂(s′;θπ)

Π∗
− 1
)
Ĉb (s′)

+
(
Ĉ(s′; θc)

)−σ
Π̂(s′;θπ)

Π∗

(
Π̂(s′;θπ)

Π∗
− 1
)
Ŷb (s′)

+
(
Ĉ(s′; θc)

)−σ
Π̂(s′;θπ)

Π∗

(
2Π̂(s′;θπ)

Π∗
− 1
)

Π̂b (s′)


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≡ M̂b (s′, q) ,

∂E [L(s′)]

∂b

≈ 1√
π

q∑
k=1

ωk


−σ
(
Ĉ(s′; θc)

)−σ−1 (
Π̂(s′; θπ)

)−1

(1 +
ρP̂M(s′;θp̃)

Π∗−ρβ )Ĉb (s′)

−
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−2

(1 +
ρP̂M(s′;θp̃)

Π∗−ρβ )Π̂b (s′)

+ρ
(
Ĉ(s′; θc)

)−σ (
Π̂(s′; θπ)

)−1

P̂M
b (s′)


≡ L̂b (s′, q) .

That is,

E [Zb (X(s′))] ≈ E
[
Ẑb (X(s′))

]
=

[
M̂b (s′, q)

L̂b (s′, q)

]

4. At each collocation node s, solve for X(s) such that

Γ
(
s,X(s), E

[
Ẑ (X(s′))

]
, E
[
Ẑb (X(s′))

])
= 0

The equation solver csolve written by Christopher A. Sims is employed to solve
the resulted system of nonlinear equations. With X(s) at hand, we can get the
corresponding coeffcient

Θ̂j
X =

(
Ω (S)T Ω (S)

)−1

Ω (S)T X(s)

5. Update the approximating coefficients, Θj
X = ηΘ̂j

X + (1− η) Θj−1
X , where 0 ≤ η ≤ 1

is some dampening parameter used for improving convergence.

6. Check the stopping rules. If
∥∥Θj

X −Θj−1
X

∥∥ < εtol, then stop, else update the ap-
proximation coefficients and go back to step 3.

When implementing the above algorithm, we start from lower order Chebyshev poly-
nomials and some reasonable initial guess. Then, we increase the order of approximation
and take as starting value the solution from the previous lower order approximation. This
informal homotopy continuation idea ensures us to find a solution.

Remark. Given the fact that the price PM
t fluctuates significantly for larger ρ, in

numerical analysis, we scale rule for PM
t by (Π∗ − ρβ), that is, P̃M

t = (Π∗ − ρβ)PM
t . In

this way, the steady state of P̃M
t is very close to β, and P̃M

t does not differ hugely as we
change the maturity structure.

C.3 Optimal Policy Under Discretion With Endogenous Short-
Term Debt

In this case, the government is allowed to issue new bonds of a different maturity and
swap these for existing bonds, in a way which does not affect the wealth of the bond
holders at the time of the swap, such that the exchange is voluntary.
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The policy under discretion in this case can be described as a set of decision rules for
{Ct, Yt,Πt, bt, τt, Gt, b

S
t } which maximise,

V (bt−1, At, b
S
t−1) = max

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt

[
V (bt, At+1, b

S
t )
]}

subject to the following constraints:

Yt

[
1− φ

2

(
Πt

Π∗
− 1

)2
]

= Ct +Gt

0 = (1− ε) + εmct − φ
Πt

Π∗

(
Πt

Π∗
− 1

)
+ φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)]

βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}
bt + βEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
bSt

=

(
1 + ρβEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)(
1 + ρPM

t+1

)}) bt−1

Πt

+
bSt−1

Πt

−
(

τt
1− τt

)(
Yt
At

)1+ϕ

Cσ
t +Gt

where bSt is the level of real short-term debt.
Defining auxilliary functions,

M(bt, At+1, b
S
t ) = (Ct+1)−σ Yt+1

Πt+1

Π∗

(
Πt+1

Π∗
− 1

)
L(bt, At+1, b

S
t ) = (Ct+1)−σ(Πt+1)−1(1 + ρPM

t+1)

K
(
bt, At+1, b

S
t

)
= C−σt+1Π−1

t+1

we can rewrite the NKPC and government budget constraints as, respectively,

(1− ε) + ε(1− τt)−1Y ϕ
t C

σ
t A
−1−ϕ
t − φΠt

Π∗

(
Πt

Π∗
− 1

)
+ φβCσ

t Y
−1
t Et

[
M(bt, At+1, b

S
t )
]

= 0

0 = βbtC
σ
t Et

[
L(bt, At+1, b

S
t )
]

+ βbSt C
σ
t Et

[
K
(
bt, At+1, b

S
t

)]
− bt−1

Πt

(
1 + ρβCσ

t Et
[
L(bt, At+1, b

S
t )
])

−
bSt−1

Πt

+

(
τt

1− τt

)(
Yt
At

)1+ϕ

Cσ
t −Gt

42



The Lagrangian for the policy problem can be written as,

L =

{
C1−σ
t

1− σ
+ χ

G
1−σg
t

1− σg
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt[V (bt, At+1, b

S
t )]

}

+ λ1t

[
Yt

(
1− φ

2

(
Πt

Π∗
− 1

)2
)
− Ct −Gt

]

+ λ2t

[
(1− ε) + ε(1− τt)−1Y ϕ

t C
σ
t A
−1−ϕ
t − φΠt

Π∗

(
Πt
Π∗
− 1
)

+φβCσ
t Y
−1
t Et

[
M(bt, At+1, b

S
t )
] ]

+ λ3t

 βbtC
σ
t Et

[
L(bt, At+1, b

S
t )
]

+ βbSt C
σ
t Et

[
K
(
bt, At+1, b

S
t

)]
− bt−1

Πt

(
1 + ρβCσ

t Et
[
L(bt, At+1, b

S
t )
])

− bSt−1

Πt
+
(

τt
1−τt

)(
Yt
At

)1+ϕ

Cσ
t −Gt


We can write the first order conditions for the policy problem as follows:

Consumption,

C−σt − λ1t + λ2t

[
σε(1− τt)−1Y ϕ

t C
σ−1
t A−1−ϕ

t + σφβCσ−1
t Y −1

t Et
[
M(bt, At+1, b

S
t )
]]

+λ3t

[
σβbtC

σ−1
t Et

[
L(bt, At+1, b

S
t )
]

+ σβbSt C
σ−1
t Et

[
K
(
bt, At+1, b

S
t

)]
−ρσβ bt−1

Πt
Cσ−1
t Et

[
L(bt, At+1, b

S
t )
]

+ σ
(

τt
1−τt

)(
Yt
At

)1+ϕ

Cσ−1
t

]
= 0

Government spending,
χG
−σg
t − λ1t − λ3t = 0

Output,

−Y ϕ
t A

−1−ϕ
t + λ1t

[
1− φ

2

(
Πt

Π∗
− 1

)2
]

+λ2t

[
εϕ(1− τt)−1Y ϕ−1

t Cσ
t A
−1−ϕ
t − φβCσ

t Y
−2
t Et

[
M(bt, At+1, b

S
t )
]]

+λ3t

[
(1 + ϕ)Y ϕ

t C
σ
t

(
τt

1− τt

)
A−1−ϕ
t

]
= 0

Taxation,
ελ2t + λ3tYt = 0

Inflation,

−λ1t

[
Yt
φ

Π∗

(
Πt

Π∗
− 1

)]
− λ2t

[
φ

Π∗

(
2Πt

Π∗
− 1

)]
+λ3t

[
bt−1

Π2
t

(
1 + ρβCσ

t Et
[
L(bt, At+1, b

S
t )
])

+
bSt−1

Π2
t

]
= 0

Government debt, bt,

βEt[V1(bt, At+1, b
S
t )] + λ2t

[
φβCσ

t Y
−1
t Et

[
M1(bt, At+1, b

S
t )
]]

+βCσ
t λ3t

[
Et
[
L(bt, At+1, b

S
t )
]

+ btEt
[
L1(bt, At+1, b

S
t )
]

+ bSt Et
[
K1

(
bt, At+1, b

S
t

)]
−ρ bt−1

Πt
Et
[
L1(bt, At+1, b

S
t )
] ]

= 0
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where
V1(bt, At+1, b

S
t ) ≡ ∂V (bt, At+1, b

S
t )/∂bt

L1(bt, At+1, b
S
t ) ≡ ∂L(bt, At+1, b

S
t )/∂bt

M1(bt, At+1, b
S
t ) ≡ ∂M(bt, At+1, b

S
t )/∂bt

K1(bt, At+1, b
S
t ) ≡ ∂K(bt, At+1, b

S
t )/∂bt

Short-term government debt, bSt ,

βEt[V3(bt, At+1, b
S
t )] + λ2t

[
φβCσ

t Y
−1
t Et

[
M3(bt, At+1, b

S
t )
]]

+βCσ
t λ3t

[
btEt

[
L3(bt, At+1, b

S
t )
]

+ Et
[
K
(
bt, At+1, b

S
t

)]
+ bSt Et

[
K3

(
bt, At+1, b

S
t

)]
−ρ bt−1

Πt
Et
[
L3(bt, At+1, b

S
t )
] ]

= 0

where
V3(bt, At+1, b

S
t ) ≡ ∂V (bt, At+1, b

S
t )/∂bSt

L3(bt, At+1, b
S
t ) ≡ ∂L(bt, At+1, b

S
t )/∂bSt

M3(bt, At+1, b
S
t ) ≡ ∂M(bt, At+1, b

S
t )/∂bSt

K3(bt, At+1, b
S
t ) ≡ ∂K(bt, At+1, b

S
t )/∂bSt

Note that by the envelope theorem,

V1(bt−1, At, b
S
t−1) = −λ3t

Πt

(
1 + ρβCσ

t Et
[
L(bt, At+1, b

S
t )
])

= −λ3t

Πt

(
1 + ρPM

t

)
V3(bt−1, At, b

S
t ) = −λ3t

Πt

hence,

V1(bt, At+1, b
S
t ) =

λ3t+1

Πt+1

(
1 + ρPM

t+1

)
V3(bt, At+1, b

S
t ) = −λ3t+1

Πt+1

and the FOCs for government debt bt and bSt can be rewritten as, respectively,

−βEt
[
λ3t+1

Πt+1

(1 + ρPM
t+1)

]
+ λ2tφβC

σ
t Y
−1
t Et

[
M1(bt, At+1, b

S
t )
]

+βCσ
t λ3t

[
Et
[
L(bt, At+1, b

S
t )
]

+ btEt
[
L1(bt, At+1, b

S
t )
]

+ bSt Et
[
K1

(
bt, At+1, b

S
t

)]
−ρ bt−1

Πt
Et
[
L1(bt, At+1, b

S
t )
] ]

= 0

and

−βEt[
λ3t+1

Πt+1

] + λ2tφβC
σ
t Y
−1
t Et

[
M3(bt, At+1, b

S
t )
]
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+βCσ
t λ3t

[
btEt

[
L3(bt, At+1, b

S
t )
]

+ Et
[
K
(
bt, At+1, b

S
t

)]
+ bSt Et

[
K3

(
bt, At+1, b

S
t

)]
−ρ bt−1

Πt
Et
[
L3(bt, At+1, b

S
t )
] ]

= 0

45


	Introduction
	The Model
	Households
	Households' Intertemporal Consumption Problem

	Firms
	Market Clearing

	Government Budget Constraint

	First-Best Allocation
	Optimal Policy Under Discretion
	 Numerical Analysis
	Solution Method and Calibration
	Numerical Results
	Steady State
	Transition Dynamics and the Policy Mix
	The Role of Debt Maturity
	Endogenizing Debt Maturity
	Fiscal Policy Myopia


	Conclusions
	Tables
	Figures
	Technical Appendix (Not for Publication)
	Summary of Model
	The Deterministic Steady State

	Numerical Algorithm
	Optimal Policy Under Discretion With Endogenous Short-Term Debt 


