Understanding pathogen transmission at the wildlife/domestic animal interface

Meggan Craft, PhD Assistant Professor, Ecosystem Health Division Department of Veterinary Population Medicine

Resident Fellow, Institute on the Environment

Outline

- 1. Multihost pathogens & identification of maintenance population
- Intervention case study: CDV & rabies in Serengeti Ecosystem
- 3. Modeling: useful tool but rarely used. Why?
- 4. Other gaps/challenges

Multihost pathogens

Why are these important?

- Humans- Emerging infectious disease
- Wildlife- Biodiversity
- Livestock & domestic animals- Welfare, regional & global economics, and livelihoods

How do we control these pathogens?

> Identification of maintenance population

Identifying reservoirs in multihost populations

Multihost pathogens affect biodiversity

(Cleaveland et al 2002)

	Threatened population	Pathogen	Maintenance population		
	Chimpanzee	Polio	Humans		
4	Rainforest toads	Chytridiomycosis	Cane toads		
	African wild dog	Rabies, canine distemper virus	Domestic dogs		

Maintenance population

species (group of species) in which pathogen <u>persists</u>
 Can make the same table for humans or domestic animals

Intervention options

Serengeti as example of intervention

Why should we care about identifying reservoirs?

In Serengeti...

Maintained by domestic animals Maintained by wildlife

Potential rabies reservoir systems

Lembo, Hampson, Haydon, Craft et al., J Appl Ecol 2008

Canine Distemper Virus

Potential CDV reservoir systems

Intervention trial: Mass dog vaccination

Rabies results

Vaccination works and is affordable!

(Hampson et al., PLoS Bio 2009, Kaare et al., Vaccine 2009)

"Spillover" from dogs to other hosts

(Lembo, Hampson, Haydon, Craft et al., J Appl Ecology 2008)

 Rabies is controllable; each rabid animal only infects ~ 1.2 others.

(Hampson et al., PLoS Bio 2009)

Rabies results

Lembo, Hampson, Haydon, Craft et al., J Appl Ecol 2008

CDV results

Lions not maintenance population

(Craft et al *ProcRoySocB* 2009)

 Multiple wild hosts needed to replicate 1994 fatal outbreak

(Craft et al Journal of Animal Ecology 2008)

Virus may be maintained by broader carnivore community

(Viana et al PNAS 2015)

CDV results

Modeling: Dynamic disease models

Ask questions that are ethically or logistically unfeasible
 Conduct 'what if' expo

Conduct 'what if' experiments

Inform data collection

Lloyd-Smith et al., Science, 2009

Explain observed patterns

Rainfall

95% confidence interval

DataModel

Predict future trends

Lit. search: dynamic models of disease transmission

How clustered are different disciplines?
How unified are modeling approaches?
Any change through time with the "One Health" approach?

- 2258 papers, then eliminated those not directly referencing disease transmission
- 1605 papers remained, from 108 journals, 4219 authors

Network construction & community structure

 Constructed paper citation network (which journals cite which journals)

 Identified community structure and found 3 communities with clear disciplinary structure: veterinary journals, ecological journals, and general biology/public health journals.

Journal Communities

Differences: study system

Data incorporation

Model implementation

Journal Communities

Communit y	Number of Journal s	Numbe r of Papers	Median Number of Authors (2.5th, 97.5 th quantile s)	Most common lead author affiliatio n (%)	Citations within community / citations between communitie s	Citation s to Human - focused epi	Citation s to Ecolog y	Citation s to Vet
Human- focused Epidemiolo gy	42	1043	4, (1, 15)	Math / Stat / Epi (48.2%)	2504 / 421	NA	251	170
Ecology	30	310	4 (1, 12.275)	Ecology / Evolution (55.9%)	378 / 366	352	NA	14
Veterinary	7	198	4 (1, 9.075)	Veterinar y / Animal Health (63.6%)	311 / 120	106	14	NA

Wildlife/Livestock interface implications?

- Concerning that vet and ecology communities are pretty isolated from each other
 - Do not generally cite (read?) each other
 - Different model objectives and approaches
- What challenges does this pose for working together?
- Or solving challenges at the wildlife/livestock interface?

Other gaps/challenges

- knowledge of host range and distribution (WL)
- diagnostic assays that apply to pathogen systems at the interface
- the dynamics of pathogen transmission at the interface
- host population impacts of interface diseases (WL)
- appropriate mitigation efforts
- New tools (beyond interventions and modeling)?

Thanks!

FUNDING

- NSF International Research Fellowship
- NSF DDIG, NSF EEID

COLLABORATORS

- Serengeti
 - Dan Haydon, Sarah Cleaveland, Tiziana Lembo, Katie Hampson, Andy Dobson, Craig Packer, Eblate Ernest, Magai Kaare
- Literature review of dynamic models
 - Kezia Manlove, Josephine Walker, Kate Huyvaert, Max Joseph, Ryan Miller, Pauline Nol, Kelly Patyk, Dan O'Brien, Dan Walsh, Peter Hudson, Paul Cross

