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1

Classical Information Theory

In these five lectures I shall give a short introduction to the field of quantum
information. The lectures are drawn from my book Quantum Information (Barnett
2009). My aim is to make these notes self-contained, but cannot hope to cover the
totality of what is now a large and active field of research. In these notes I aim, rather,
to give a taster of the subject to whet the appetite of the reader. A more complete
introduction may be found in (Barnett 2009) or in any of a now large collection of
books and review papers devoted to the topic (far too may for me to attempt to make
a list and to risk offence by innocent omission). One text that needs to be mentioned,
however, is that by Nielsen and Chuang (2000), which did so much both to popularise
the field and to lay out its founding principles.

I am grateful to Oxford University Press for their permission and, indeed, encour-
agement to reproduce some of the material from (Barnett 2009). I wish to express also
my gratitude to Allison Yao for her help in preparing these notes.

1.1 A very short history

Our field starts with the work of the Reverend Thomas Bayes (1702–1761) and the
celebrated theorem that bears his name (of which more below) (Bayes 1763). His
key idea was that probabilities depend on what you know; if we acquire additional
information then this modifies the probabilities. Today such reasoning is uncontentious
and forms part of the prevailing paradigm in much of probability theory (Jeffreys, 1939;
Box and Tiao 1973; Bretthorst 1988; Lee 1989; Jaynes 2003). This was not the case,
however, for most of the 350 years of its history. An entertaining and informative
presentation of its troubled history may be found in (Mcgrayne 2011).

The picture is completed by identifying, or formulating the quantity of information.
It was Claude Shannon (1916–2001) who solved this problem and, by using it to devise
his two coding theorems, founded information theory (Shannon 1948). Perhaps I can
give an indication of the magnitude of Shannon’s achievement by relating that the title
of his paper was A Mathematical Theory of Communication, but a year later the paper
was republished as a book (Shannon and Weaver 1949); apart from correcting a few
typographical errors, there are only two changes, the inclusion of a short introductory
article by Weaver and a change of title to The Mathematical Theory of Communication.
The theory was born complete, the numerous textbooks on the topic have greatly
broadened the scope and application of Shannon’s ideas but have not departed from
the fundamentals as explained by Shannon in his first paper (Brillouin 1956; Khinchin
1957; Kullback 1959; Hamming 1980; Cover and Thomas 1991; Goldie and Pinch 1991).
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Shannon’s information has a simple and familiar form. For a given set of probabil-
ities {pi}, the information is

H = −
∑

i

pi log pi . (1.1)

Remarkably, this is simply Boltzmann’s formula for the entropy (of which more later).
We can sum up the fundamental lessons learned from Bayes and from Shannon

as follows: Bayes taught us that probabilities are not absolute but rather depend on
available information. Shannon showed that information itself is a precisely defined
function of the probabilities.

Shannon’s work was aimed, initially, at the problem of providing a quantitative
theory of communications, but any set of probabilities can be associated with a quan-
tity of information and it follows that any probabilistic phenomenon has an associated
information theory. This idea has been applied, for example, to statistical mechanics
(Jaynes 1957a, 1957b). Quantum theory is a probabilistic theory, of course, and so it
was inevitable that a quantum information theory would be developed.

1.2 Probabilities and conditional probabilities

Consider an event A with possible outcomes {ai}. Everything we know is specified
by the probabilities for the possible outcomes: {P (ai)}. For tossing a fair coin, for
example, the outcomes are ‘heads’ and ‘tails’ with P (heads) = 1

2 = P (tails). In general
the probabilities satisfy the two conditions

0 ≤ P (ai) ≤ 1
∑

i

P (ai) = 1 . (1.2)

If we have two events A and B with outcomes {ai} and {bj} then the complete
description is given by the joint probabilities, P (ai, bj). Here the comma is read as
‘and’ so that P (ai, bj) is the probability that both A = ai and B = bj. If the two
events are independent then P (ai, bj) = P (ai)P (bj) but this is not true in general.
More generally we have

P (ai) =
∑

j

P (ai, bj)

P (bj) =
∑

i

P (ai, bj) . (1.3)

If the events are created then what does learning the value of A tell us about the
value of B? If we learn, for example, that A = a0 then P (bj) is replaced by

P (bj |a0) ∝ P (a0, bj) . (1.4)

Here the vertical line is read as ‘given that’ so that P (bj |a0) is the probability that
B = bj given that A = a0. We can find the constant of proportionality by noting that
the sum over j of P (bj|a0) must be unity and this leads to Bayes’ rule:

P (ai, bj) = P (bj |ai)P (ai)
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= P (ai|bj)P (bj) . (1.5)

Bayes’ theorem utilises this rule to relate the two conditional probabilities:

P (ai|bj) =
P (bj|ai)P (ai)

P (bj)
. (1.6)

1.3 Entropy and information

The link between information and entropy is a subtle and beautiful one. Shannon
himself gave a simple derivation of this as a mathematical theorem using only a few
simple axioms he argued that information must satisfy (Shannon and Weaver 1949).
We shall not reproduce this here bust rather present a simple argument to make the
association plausible.

Suppose that we have a single event A with possible outcomes ai. If one, say a0, is
certain to occur then we acquire no information by observing A. By simple extension,
if A = a0 is very likely to occur then we might confidently expect it and so when it
happens we learn very little. If, however, A = a0 is very unlikely then when it occurs
we might need to drastically modify our actions. A very simple example is a two-state
communication system that you may not have considered: a fire alarm. A fire alarm
is either ringing or not ringing. Its most common state (hopefully not ringing) is so
innocuous that we give it no thought. When it does ring, however, we stop what we
are doing and leave the building (if we are sensible).

It seems reasonable to conclude that learning the value of A provides a quantity
of information, h, that increases as the corresponding probability decreases :

h[P (ai)] ⇑ as P (ai) ⇓ .

We think of learning something new as adding to the available information. Therefore
for independent probabilities for a pair of events, P (ai, bj) = P (ai)P (bj), it is natural
to require that

h[P (ai, bj)] = h[P (ai)P (bj)]

= h[P (ai)] + h[P (bj) , (1.7)

which immediately suggests logarithms. Hence we set

h[P (ai)] = −K logP (ai) . (1.8)

Here K is a positive constant, yet to be determined, and the minus sign ensures both
that h is positive and that it increases as the probability decreases (recall that the
logarithm of a number less than unity is negative).

It is convenient to define the information as the average of h, which means weighting
h for each outcome by its probability of occurring and then summing. This procedure
leads us, of course, to the entropy:

H = −K
∑

i

P (ai) logP (ai) . (1.9)
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We can absorb the prefactor K into the choice of base for the logarithm. A convenient
choice is to use base 2 so that

H = −
∑

i

P (ai) log2 P (ai) bits , (1.10)

which is Shannon’s formula for the information. Henceforth we shall drop the subscript
2. It is sometimes convenient, especially in analytical calculations, to use the natural
base of logarithms, base e, which gives the entropy in nats:

He = −
∑

i

P (ai) lnP (ai) nats . (1.11)

It is straightforward to show that He = H ln 2, so that 1 nat = ln 2 bits.
For two events A and B we can write informations for the joint events or for the

single events:

H(A,B) = −
∑

i,j

P (ai, bj) logP (ai, bj)

H(A) = −
∑

i,j

P (ai, bj) log
∑

k

P (ai, bk)

H(B) = −
∑

i,j

P (ai, bj) log
∑

l

P (al, bj) . (1.12)

We can also define information based in the conditional probabilities. An especially
useful measure of correlation between the two events is the mutual information:

H(A : B) = H(A) +H(B)−H(A,B) . (1.13)

This has the important properties that it is positive or zero and that it takes the value
zero if and only if the events are independent:

H(A : B) ≥ 0

H(A : B) = 0 iff P (ai, bj) = P (ai)P (bj) ∀i, j . (1.14)

It is the mutual information that provides an upper bound on the rate at which
we can communicate. A more detailed (but gentle) discussion of these entropies and
exploration of their properties may be found in (Barnett 2009).

1.4 Information and thermodynamics

The fact that the mathematical form of the information is also the entropy begs the
question as to whether information entropy is the same quantity that appears in
statistical mechanics. It is!

An important and simple example is the way in which we can obtain the Boltzmann
distribution by maximising the information (what we have yet to discover) subject only
to a constraint on the average energy. This is such a nice calculation that I cannot
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resist the temptation to include it here, even though there was not time to present
it in my lectures. Let a quantum system have a set of discrete energy levels Ei and
be in thermodynamic equilibrium with its environment. Our task is to determine the
probability, pi, that the system is to be found in any one of its given energy levels,
Ei. Of course we know how to do this by maximising the entropy, but information
theory gives us a rather different take on the problem; we maximise the information
of the system subject to the constraint only that its mean energy is fixed. In this way
we maximise, in an unbiased manner, our uncertainty about the state. The derivation
is readily performed as a variational calculation using Lagrange’s method of unde-
termined multipliers (Boas 1983). It is convenient to work with the natural base of
logarithms in this case and so we define the information to be

He = −
∑

i

pi ln pi . (1.15)

Our task is to maximise this quantity subject to a fixed mean energy,
∑

i piEi = Ē,
and the probabilities summing to unity,

∑

i pi = 1. We can achieve this by varying,
independently, the probabilities in the function

H̃ = He + λ

(

1−
∑

i

pi

)

+ β

(

Ē −
∑

i

piEi

)

. (1.16)

We find

dH̃ =
∑

i

(− ln pi − 1− λ− βEi) dpi . (1.17)

We require this to be stationary (zero) for all dpi, which leads to the solution

pi = e−1−λe−βEi . (1.18)

We can fix the value of the undetermined multipliers by enforcing the normalisation of
the probabilities and the value of the average energy to arrive at the familiar Boltzmann
distribution:

pi =
exp (−Ei/(kBT ))

∑

j exp (−Ej/(kBT ))
. (1.19)

A more dramatic example was provided by Szilard in his paper On the decrease of

entropy in a thermodynamic system by the intervention of intelligent beings (Szilard
1929). This paper is all the more remarkable in that it precedes Shannon’s work by
nearly 20 years. Here is Szilard’s argument. Consider a box, of volume V0 with a
movable partition dividing the box into two equal halves. There is a single molecule in
one of the two sides, as depicted in Fig. 1.1. An intelligent being can look in the box and
determine which side the molecule is in. By attaching a small weight to a pulley we can
extract work from heat in an apparent violation of the second law of thermodynamics,
an interesting paradox in the style of Maxwell’s famous demon (Maxwell 1871).
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Q=W

W

(e)

(a)

(b)

(c)

(d)

Fig. 1.1 Szilard’s illustration of the connection between information and (thermodynamic)

entropy. Reproduced, with permission, from Barnett(2009).

Applying the ideal gas law,

PV = kBT , (1.20)

to our single-molecule gas allows us to calculate the work extracted from the expanding
gas in an isothermal expansion:

W =

∫ V0

V0/2

PdV = kBT ln 2 . (1.21)

We have extracted useful work from the reservoir in apparent conflict with the second
law of thermodynamics. The second law can be saved, however, if the process of mea-
suring and recording the position of the molecule produces an entropy change of not
less than

∆S = kB ln 2 . (1.22)

Szilard concludes, in this way, a direct link between information and thermodynamic
entropy.



Information and thermodynamics 7

(a)

(b)

(c)

(d)

Q=W

W

0 1

0

Fig. 1.2 Illustration of Landauer’s derivation of the thermodynamic cost of information

erasure. Reproduced, with permission, from Barnett(2009).

A more precise statement is that to complete the thermodynamic cycle, we need to
include the process of the observer forgetting in which side the molecule was found. The
process of forgetting was studied by Landauer (1961, Leff and Rex 1994, Plenio and
Vitteli 2001). He considered a single-molecule gas, like Szilard’s, and proposed using
the position of the molecule to represent a logical bit: the molecule being to the left
of the partion corresponding to a logical 0 and to the right corresponding to a logical
1. Landauer showed that erasing and resetting the bit to 0 requires the dissipation
of at least kBT ln 2 worth of energy as heat. To see this we can simply remove the
membrane (a reversible process) and then push in, slowly, a fresh partition from the
right, as depicted in Fig. 1.2. When the partition reached halfway the ‘memory’ has
been reset to the bit value 0 and, of course, all trace of the original bit value has been
lost. The work that needs to be done to achieve this is

W = −
∫ V0/2

V0

PdV = kBT ln 2 , (1.23)

and this is dissipated, of course, as heat. We can view this as a resolution of the paradox
implicit in Szilard’s model. This is not the end of the story, however. It has recently
been shown that Landauer’s limit can be beaten if we pay a cost, not in energy, but
in some other quantity such as angular momentum (Vaccaro and Barnett 2011). The
key idea to take from these models, however, is unaffected: information is physical.
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1.5 Communications Theory

Shannon first introduced his information theory as a/the mathematical theory of com-
munication (Shannon 1948, Shannon and Weaver 1949). In doing so he introduced the
very general model of a communications system depicted in Fig. 1.3. Let us analyse
this by introducing two characters, Alice and Bob, who have become very popular in
quantum communications. Alice wishes to send a message to Bob. Alice’s event, A, is
the selection of the message from a set of possible messages {ai}. Bob’s event, B, is
detecting the message from the possible set {bj}. On Alice’s side there is an informa-
tion source, which produces the choice of message to be sent (this may be Alice herself,
of course) and a transmitter which produces the signal (electrical, optical, acoustical
or even a piece of paper) ready for transmission. The signal propagates from Alice to
Bob and, whilst en route, is subject to noise. Bob receives the noisy signal and his
receiving device turns the signal into a message.

BobAlice

Signal
Information

source
Transmitter

Received

signal
Receiver Destination

Noise

source

Fig. 1.3 Shannon’s model of a communications channel. Reproduced, with permission, from

Barnett(2009).

The limiting performance of such a communications channel is governed by two
theorems derived by Shannon (Shannon 1948, Shannon and Weaver 1949): his noiseless
coding theorem, which tells us how much a message can be compressed and still be
read, and his noisy channel coding theorem, which tells us how much redundancy is
needed to correct errors.

1.5.1 Noiseless coding theorem

Most messages have an element of redundancy and can be compressed but still be
readable. As an example, you might like to try this one1:

THS LS HCHS SCHL HS NTRSTNG LCTRS

I compressed the message by removing the vowels. Shannon’s noiseless coding theorem
quantifies the redundancy in a message. Two simple examples are that in English we
mostly don’t need to put a ‘u’ after ‘q’ and a three-letter word beginning with ‘th’ will
almost certainly be ‘the’.

1If you are having difficulty, the message is THiS LeS HouCHeS SCHooL HaS iNTeReSTiNG
LeCTuReS.
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Shannon’s theorem shows us the typical number of bits we need to encode a message
efficiently. It is the entropy associated with the probabilities for the messages that is
the key quantity. If we have one of a set of messages that is N bits long, for example

010 · · ·111
︸ ︷︷ ︸

N bits

,

and each of the possible possible messages {ai} is selected with the probability associ-
ated probability P (ai), then Shannon’s noiseless coding theorem tells us that we need
only an average of H(A) bits, if we can find an optimum coding scheme.

We shall not prove Shannon’s noiseless coding theorem, but rather present a simple
example from Shannon’s original paper (Shannon 1948, Shannon and Weaver 1949).
A simple derivation, both of the noiseless and noisy coding theorems may be found
in (Stenholm and Suominen 2005, Barnett 2009). Consider a message formed from an
alphabet of four letters, A, B, C and D and let each entry in the message be one of
these four with the probabilities

P (A) =
1

2

P (B) =
1

4

P (C) =
1

8
= P (D) . (1.24)

The information associated with this set of probabilities is

H = −
(
1

2
log

1

2
+

1

4
log

1

4
+ 2× 1

8
log

1

8

)

=
7

4
bits . (1.25)

Hence Shannon’s noiseless coding theorem says that we should be able (on average) to
reduce a message of N characters, or 2N bits, to 1.75 bits. The key to this reduction
is to use short sequences for common elements of the message (here the letter A) and
longer ones for the less likely ones (like C and D in our example). Here is a coding
scheme that achieves this:

A = 0

B = 10

C = 110

D = 111 . (1.26)

A bit of thought will confirm that any message so encoded can be decoded uniquely
to recover the original sequence of letters. The average number of bits used to encode
a sequence of N letters is then

N

(
1

2
× 1 +

1

4
× 2 + 2× 1

8
× 3

)

=
7

4
N = HN , (1.27)



10 Classical Information Theory

which is the bound provided by Shannon’s theorem. The fact that Shannon’s value is
reached in this case tells us, moreover, that no better coding is possible: this is the
shortest possible length of the message.

1.5.2 Noisy coding theorem

The presence of noise on the communications channel will introduce errors in the
received signal. We can combat these errors by introducing some redundancy, indeed
this is undoubtedly the reason why language evolved already containing redundancy.
As a simple example, let us suppose that any given bit in the message is ‘flipped’ with
probability q and so produces an error. How much redundancy do we need to be able
to detect and correct these errors?

Shannon’s noisy coding theorem tells us that, on average, we require at least

N0

1−H(q)
bits (1.28)

to encode, faithfully, one of 2N0 equiprobable messages. Here

H(q) = − [q log q + (1− q) log(1− q)] (1.29)

is the entropy associated with the single-bit error probability. In other words if we
first remove all the redundancy to get 2N0 possible optimally compressed messages,
we need to put back this much redundancy to combat errors.

The general statement is based on the mutual information. It says that the greatest
number of messages that can be sent from Alice to Bob on a noisy channel, using N
bits, and be reconstructed by Bob is

2NH(A:B) . (1.30)

Any more is impossible in that an attempt to do so will inevitably produce ambiguities
in Bob’s decoding process.

We conclude with a simple illustration of the principle of using redundancy to
combat errors. Try to read the following message:

WNTM NARMQN THRS S FN

You probably didn’t manage to do so. The reason for this is that I first compressed
the message by removing the vowels and then added in errors. Because much of the
redundancy was removed, the message has become unreadable. If I had left the full
message (complete with vowels) and then added the errors, we might have:

WUANTFM INAORMAQION THEORS US FUN

Hopefully, after a bit of thought, you should be able to read the message2. Note that
decoding the message is possible even though the errors affect both the characters in
the compressed message and in the redundant characters added to combat the errors.

2If you are struggling, the message is qUANTuM INfORMAtION THEORy iS FUN.
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Quantum Communications and
Quantum Key Distribution

Quantum communications differ from their classical counterpart in that the trans-
mitted signal is carried by a quantum system. At its simplest, classical information
is expressed in bits ; and is carried by a physical system with two distinct states (for
example a high or low voltage or the presence or absence of an optical pulse). One
state is used to represent the logical 0 and the other a logical 1.

We can take the same approach in quantum communications and use two orthogo-
nal quantum states to represent 0 and 1. We label these, naturally enough, as |0〉 and
|1〉. The additional element brought in by using a two-state quantum system is that
we can also prepare any superposition state of the form

|ψ〉 = α|0〉+ β|1〉 , (2.1)

where α and β are complex probability amplitudes. A quantum bit, or qubit, is such
a two-state quantum system.

2.1 Qubits

Before getting into the theory of quantum communications, we pause to elaborate on
the idea of a qubit and the mathematical tools used to describe it. A qubit can be
any quantum system with two orthogonal states. We choose a basis, often called the
computational basis in quantum information, and label the two states in this basis
as |0〉 and |1〉. It is convenient to think of this as a spin-half particle; this is not
literally true in most cases, but it has the benefit that we can use the Pauli-operators
to describe the properties of the qubit. There are four Pauli operators, which are σ̂z,
σ̂x, σ̂y and the identity operator Î. We can define each of these by their action on the
states in the computational basis:

σ̂z |0〉 = |0〉 σ̂z |1〉 = −|1〉
σ̂x|0〉 = |1〉 σ̂x|1〉 = |0〉
σ̂y|0〉 = i|1〉 σ̂y|1〉 = −i|0〉
Î|0〉 = |0〉 Î|1〉 = |1〉 . (2.2)

The first three Pauli operators do not mutually commute. We can write the product
rule for these operators in an appealingly simple form if we introduce, by means of a
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scalar product, the Pauli operator for an arbitrary direction associated with the unit
vector a:

a · σ̂ = axσ̂x + ayσ̂y + azσ̂z . (2.3)

The product rule for two such operators is then

(a · σ̂)(b · σ̂) = (a · b)̂I + i(a× b) · σ̂ . (2.4)

as may readily be verified.

2.2 Information security

The use of a quantum communications channel makes three essential modifications or
additions to Shannon’s model. The first is that the signal sent by Alice is encoded on
the quantum state of a physical system sent to Bob. This means that each signal ai is
associated with a quantum state with corresponding density operator ρ̂i. In addition
to any intrinsic noise in the channel, we have a special role for any eavesdropper
who might be listening in. This is because in order to extract any information, the
eavesdropper needs to perform a measurement and, as we know, a measurement will,
in general, modify the state of the observed system. Finally, Bob cannot determine
the state of the system but rather has to settle for measuring one observable. Hence
Bob must choose what to measure. All of these elements are essential in quantum
communications and it is the combination that, in particular, makes quantum key
distribution possible. Before I get to that, let us set the scene by looking at secure
communications is general.

In the information age we are all aware of the importance and difficulty of keep-
ing information secure. The science that today underpins this effort is cryptography
(Piper and Murphy 2002). The history of secure communications and keeping informa-
tion secure, however, is a long and interesting one (Singh 1999, 2000). For important
communications we might try enciphering a message to keep it safe. The simplest such
scheme, at least conceptually, is the single-key cryptosystem. The principal idea is
that Alice and Bob share a secret key (a number) which Alice can use to generate the
cipher-text and Bob can use to decipher it. The general scheme is depicted in Fig.2.1.

We can write the transformation, formally, involving the plaintext P , the key K
and the ciphertext C. The ciphertext is a function of the plaintext and the key, to be
calculated by Alice, and the plaintext may be recovered by Bob as a function of the
ciphertext and the key:

C = C(P ,K)
P = P(C,K) . (2.5)

For example in a substitution cipher we replace each letter with a symbol. In principle
there are

26! ≈ 4× 1026

possible substitution ciphers, so an exhaustive search is completely impractical. A
substitution cipher is easily cracked, however, using the known letter frequencies. For
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E avesdropping Tampering

unprotected 

crypto-key

(secret)

crypto-key

(secret)

inverse

mathematical

transformation

BobAlice

mathematical

transformation

data
unprotected

data
data

unprotected

data

Hostile

Network

Protected

data

Fig. 2.1 Elements of a secret communications channel. Reproduced, with permission, from

Barnett(2009).

example the most common symbol will be E which occurs 12.7% of the time, while
Q makes up only about 0.1% of the symbols (or perhaps a bit more in these notes!).
Sherlock Holmes makes use of precisely this technique in one of his cases (Conan Doyle
1903).

It was Shannon who gave us an objective criterion for perfect secrecy (Shannon
1949). Let {pi} be the set of possible plaintexts (messages) and {cj} be the set of
possible cipher texts. Shannon’s criterion for perfect secrecy is

P (pi|cj) = P (pi) ∀ i, j . (2.6)

A straightforward application of Bayes’ theorem shows that this is equivalent to

P (cj |pi) = P (cj) ∀ i, j . (2.7)

This means that discovering or intercepting the ciphertext does not provide any in-
formation on the plaintext. The second condition states that any given ciphertext is
equally likely to have been generated by any plaintext. A question that you might like
to ponder is how many possible keys does this require?

The simplest perfectly secure cipher is the Vernam cipher, or one-time pad. It uses
a key in the form of a random sequence of bits, · · · 101110 · · ·, that is at least as long as
the plaintext (which is also a sequence of bits, of course). The ciphertext is produces
by bit-wise modulo addition of the plaintext and the key:

0⊕ 0 = 0 0⊕ 1 = 1

1⊕ 0 = 1 1⊕ 1 = 0 . (2.8)

A simple example is

P · · · 0011010100 · · ·
K · · · 1011101000 · · ·
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C = P ⊕K · · · 1000111100 · · · .

The cipertext C is random because the key K is random. Deciphering is performed
by Bob by a second modulo addition of the key. This works because K ⊕ K =
· · · 0000000 · · ·:

C · · · 1000111100 · · ·
K · · · 1011101000 · · ·

P = C ⊕ K · · · 0011010100 · · · .

Clearly the secrecy of the key is crucial, as anyone in possession of it can decipher the
message.

The remaining problem, of course, is how can Alice and Bob exchange the key K?
To see how this and other secure communications are realised in practice we need to
introduce public-key cryptography, which is based on the fact that some mathematical
operations are easy but the inverse inverse operation is very difficult and, hopefully,
effectively impossible in practice (Buchmann 2001, Loepp and Wootters 2006, Barnett
2009). The classic example is multiplying and factoring.

In public-key cryptography Bob generates two keys, an enciphering key e and a
deciphering key d. He publishes e but keeps d secret. Alice can use e to encode her
message which should be all but impossible (she hopes!) for anyone other than Bob to
decipher. This is the RSA cryptosystem (Buchmann 2001, Loepp and Wootters 2006,
Barnett 2009).

RSA scheme

1. Bob finds two large prime numbers, p and q, and calculates m = p× q. This is easy.
2. He then finds two numbers e and d such that de = 1 modulo (p− 1)(q − 1). There
are efficient algorithms for doing this if you know p and q.

3. The public key is m and e. The private key is d.

4. Alice takes her message, which is a number x, and turns it into a ciphertext by the
transformation

x→ xe modulo m

5. By the wonders of pure mathematics (actually it is not so hard to prove this)

(xemodulo m)
d

modulo m = x moludo m,

which is the original message. So Bob can recover the message using his secret key d.

The security of the RSA scheme is believed to be equivalent to the difficulty of factoring
m into its constituent primes p and q. It is certainly true that if p and q are known
then finding d from e and m is straightforward.

How big does m have to be? Numbers of order 1090 can be factored in less
than a day, so much larger numbers are needed. There is an RSA factoring chal-
lenge, which you might like to try. The number RSA-212, which is ≈ 7 × 10212 was
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factored in July 2012 to claim a $30,000 prize. There is currently a $75,000 prize
to anyone who can produce the two prime factors of the 270 decimal digit number
(http://en.wikipedia.org/wiki/RSA accessed October 21 (2013)):

RSA-896 = 4120234369866595438555313653325759481798116998443279828454556
264338764455652484261980988704231618418792614202471888694925609317763750
334211309823974851509449091069102698610318627041148808669705649029036536
58867433731720813104105190864254793282601391257624033946373269391

Public key cryptography is routinely used to distribute keys and for proof of identity
via so-called digital signatures.

2.3 Quantum copying?

Quantum key distribution is a radically different approach to secure communications.
It relies on the difficulty for anyone eavesdropping in determining the quantum signal
generated by Alice. Before describing this in detail, we show that it is impossible to
copy an unknown quantum state. This is the famous no-cloning theorem of Wootters
and Zurek (1982) and of Dieks (1982). It works by exposing a contradiction.

Suppose that you are given a qubit in some unknown (to you) quantum state:

|ψ〉 = α|0〉+ β|1〉 , (2.9)

that is, you do not know the amplitudes α and β. Clearly you could do a measurement
but that will not tell you |ψ〉. What you would like to achieve is a transformation on
this quit and a ‘blank’ prepared in the state |B〉 such that

|ψ〉 ⊗ |B〉 → |ψ〉 ⊗ |ψ〉 ∀ |ψ〉 . (2.10)

Let us suppose that this works if |ψ〉 = |0〉 or |1〉, so that

|0〉 ⊗ |B〉 → |0〉 ⊗ |0〉
|1〉 ⊗ |B〉 → |1〉 ⊗ |1〉 . (2.11)

The superposition principle then tells us that for a general state |ψ〉 the corresponding
transformation is

|ψ〉 ⊗ |B〉 = (α|0〉+ β|1〉)⊗ |B〉
→ α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉
6= (α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉) . (2.12)

So it necessarily follows from the superposition principle that a quantum cloner cannot
work perfectly for all quantum states. Having established that strictly exact cloning
of an unknown state is not possible, we might very reasonably ask what is the best
that is possible. There has been a great deal of work on this topic, but probably the
most important is the universal quantum-copying machine the operation of which is
the best possible with the same performance for all possible input qubit states (Bužek
and Hillery 1996, Scarani et al 2005).
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2.4 Optical polarization

Recall that for a plane wave, the electric field ~E, the magnetic field ~H and the wave-
vector ~k are all mutually orthogonal and are oriented such that ~E × ~H points in the
direction of ~k see Fig. 2.2 . This fixes ~E and ~H to be in the plane perpendicular to ~k.

E

H

k

Fig. 2.2 Relative orientations of the electric and magnetic fields and the wavevector. Repro-

duced, with permission, from Barnett(2009).

Consider a complex electric field for a plane wave propagating in the z-direction:

~E = ~E0e
i(kz−ωt) . (2.13)

We can characterise the polarization by the direction of the complex vector ~E0 in the
x− y plane

~E0 = E0x~ı+ E0y~ (2.14)

or as a column vector, the Jones vector,

~E0 =

[
E0x

E0y

]

. (2.15)

Only the relative sizes of E0x and E0y matter, so we can use a normalized Jones
vector. The Jones vectors corresponding to horizontal/vertical, diagonal and circular
polarizations are depicted in Fig. 2.3.

For a single photon we can associate each of the Jones vectors with a qubit state
according to the mapping

[
α
β

]

→ α|0〉+ β|1〉 , (2.16)

which leads to the identifications listed in Fig. 2.4. This simple idea has been used
widely in experimental demonstrations of a variety of quantum information and com-
munications protocols, most especially in quantum cryptography.

2.5 Quantum cryptography

Quantum cryptography, or perhaps more precisely quantum key distribution, has be-
come an advanced experimental technique and is on the verge, perhaps, of becoming a
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Fig. 2.3 Linear and circular polarizations, together with their Jones vectors. Reproduced,

with permission, from Barnett(2009).
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practical technology. In these lectures I can give only a very brief overview of the topic
and, for a more complete description, refer the reader to some of the introductory
literature on the subject (Phoenix and Townsend 1995, Bouwmeester et al 2000, Gisin
et al 2002, Loepp and Wootters 2006, Van Assche 2006, Barnett 2009).

The idea of using quantum effects for security is due to Stephen Wiesner (1983)
who suggested (in a paper written in about 1970 but published only much later) the
idea of unforgeable money. He supposed a high-value banknote worth, say, £10M .
Each ‘note’ would have traps for 20 single photons, each of which was prepared in one
of the polarization states |0〉, |1〉, 1√

2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉). The note also has

a serial number which identifies to the back the states of these photon polarizations.
The problem face by a would-be forger is how to copy these unknown quantum states?
The no-cloning theorem tells us, of course that this is impossible. The situation is
illustrated in Fig. 2.5. The counterfeiter needs to work out the polarization of each of
the trapped photons and do so only by performing measurements, but he/she has no
idea which measurement to perform. Let us focus our attention on one of the photons
that happens to be prepared in a state of vertical polarization. If the counterfeiter
measures this in the horizontal/vertical basis then the result will be a bank note
with the correct horizontally polarised photon. If, however, the counterfeiter measures
in the diagonal basis then either of the two possible results will occur with equal
probability and, importantly, there is no indication possible that the measurement has
been performed in the incorrect basis. If the polarization is checked in the bank then
an error will be produced with a probability 1

2 . It follows that for a bank note produced
in this way, anyone checking in the bank will see an error (indicating a forgery) with
a probability of 1

4 for each of the twenty photons. The probability that all 20 photons

in the forged note pass a test in the bank is
(
3
4

)20 ≈ 0.003. If this isn’t considered low
enough, then one simply has to add a few more light traps.

Bank
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Counterfeiter
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0 >̀
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1/2

1/2

1/2

1/4

1/4

Fig. 2.5 Possible outcomes due to the intervention of a counterfeiter, together with their

associated probabilities of occurrence. Reproduced, with permission, from Barnett(2009).
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Quantummoney is impractical but Bennett and Brassard (1984) proposed a variant
on this idea: quantum key distribution. The idea is that Alice associates the bit values
0 and 1 with a linear polarization state (either horizontal/vertical or diagonal/anti-
diagonal):

H or D ←→ 0

V or A ←→ 1 . (2.17)

Suppose that Alice prepares a vertically polarised photon and that Bob measures the
state in the horizontal/vertical basis. An eavesdropper, Eve, does not know that the
photon was prepared in this basis and so can only make a choice of what to measure. In
this way she will introduce, for 1

4 of the photons intercepted, a disagreement between
the values obtained by Alice and by Bob. This 25% error rate indicates to Alice and
to Bob the activity of the eavesdropper.

All that is needed is a sequence of instructions (a protocol) to ensure that Eve
is trapped in this way. One such protocol is depicted in Fig. 2.6. Alice prepares a
random sequence of bits and randomly encodes each onto the polarization as either a
horizontally/vertically or diagonally/anti-diagonally polarised photon, which she sends
to Bob. For each photon, Bob randomly (and independently of Alice, of course) chooses
to make a polarization measurement in one of the two bases. Roughly half the time
he will guess correctly and half incorrectly. Bob then uses a classical channel to tell
Alice which basis he used in each time slot for which he detected a photon (but not,
of course, the measured value). Alice tells Bob the slots in which he made the correct
choice (time-slots 2, 4, 6, 8, 9, 11, 14, 15, 16, and 19, in the case depicted in the Fig.
2.6). These should comprise a secret shared random bit string (0111010100 in this
case) which can be used as a secret key.
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Fig. 2.6 An example of a quantum cryptographic protocol. Alice prepares single photons in

one of two polarization bases and these are measured by Bob. Reproduced, with permission,

from Barnett(2009).



20 Quantum Communications and Quantum Key Distribution

It remains only to determine whether an eavesdropper has been listening in. To
determine whether this has happened or not, Alice and Bob can publicly reveal a
subset of their shared data and look for errors. An example of what might be expected
to happen is depicted in Fig. 2.7. Alice and Bob delete those bits associated with
time-bins 1, 3, 7, 12, 13, 17, 18 and 20, in which the preparation and measurement
were performed using different bases. In time slots 2, 4, 11, 14, 15, and 19, Eve used a
different basis to Alice and Bob and of these, this led to a difference in the recorded
bit values for Alice and Bob in time-bins 4, 11 and 14. The probability that Eve has

been active and does not cause an error is then
(
3
4

)N
, where N is the number of bits

tested. Naturally, those bits used in the open discussion between Alice and Bob need
to be discarded.
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Fig. 2.7 An example of a quantum cryptographic protocol in which an eavesdropper has

been active. Reproduced, with permission, from Barnett(2009).

Naturally, there are many subtleties that need to be accounted for and which
complicate, to a greater or lesser extent, the above simple picture. There will always
be errors and, to be safe, we need to assume that these are due to eavesdropper activity.
If we simply discard the communication when we find an error then communication of a
key of any useful size becomes impossible. We need to detect and correct errors, which
is achieved by parity checks which shorten the key. The error rate is then used to place
a bound on the information an eavesdropper might have and this can then be reduced
by taking as key bits the parity of a number of bits (this is called privacy amplification).
Practical systems, moreover, may not have access to single-photon sources and there
will usually be other departures from the ideal. Proving and assessing the security of
real-world systems has become a research topic in its own right (Scarani et al 2009).
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Generalized Measurements

The extraction of information from a quantum system requires us to perform mea-
surements. Our task in this lecture is to set up a general description of this process1.
We seek two things: (i) the probability for any given measurement result to occur
and (ii) the state of the system after the measurement has been made, that is the
post-measurement state conditioned on the measurement outcome.

3.1 Ideal von Neumann measurements

Let us start with the measurement process as it is usually encountered in quantum
mechanics courses. This formulation is essentially that given by von Neumann in his
famous and early book on quantum mechanics (von Neumann 1955). We start by
representing each observable A by a Hermitian operator2, Â. This operator will have
a complete set of eigenvectors |λn〉 and associated eigenvalues λn:

Â|λn〉 = λn|λn〉 , (3.1)

which means that we can write Â in the form

Â =
∑

n

λn|λn〉〈λn| . (3.2)

Let us assume, for the moment, that each of the eigenvalues is distinct from the others.
The von Neumann description then states that if we perform a measurement of Â then
we will find the measurement result to be one of the eigenvalues and, moreover, the
probability for finding any one of these is

P (λn) = |〈λn|ψ〉|2 , (3.3)

where |ψ〉 is the pre-measurement state. More generally, for a mixed state with density
operator ρ̂, we have

P (λn) = 〈λn|ρ̂|λn〉
= Tr (ρ̂|λn〉〈λn|) . (3.4)

Immediately after the measurement, the von Neumann description has the system left
in the eigenstate corresponding to the measurement outcome. Hence if we make a

1We should note that we do not include in this, measurements involving post-selection and so will
not cover the topic of ‘weak measurements’ (Aharonov et al 1988).

2The distinction between Hermitian and self-adjoint operators will not concern us.
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measurement of Â and find the value λn, then we know that the post-measurement
state is |λn〉 and repeating the measurement, if it is done quickly enough, should give
the same result.

There is one further point that we need to consider, which is that the eigenvalues
of Â might be degenerate, which means that a set of orthonormal eigenvectors, |λjn〉,
will correspond to the same measurement outcome, λn. To incorporate this case, it is
useful to introduce a projector onto the set of states with a common eigenvalue:

P̂n =
∑

j

|λjn〉〈λjn| . (3.5)

The probability that the measurement will give the result λn is then

P (λn) =
∑

j

〈λjn|ρ̂|λjn〉

= Tr
(

ρ̂P̂n

)

. (3.6)

The post-measurement state will simply be that part of the pre-measurement state
that was in the subspace spanned by the corresponding eigenstates or, in other words,
that part of the state selected by the projector. Hence if our measurement gives the
result λn then the density matrix changes as

ρ̂→ P̂nρ̂P̂n

Tr(ρ̂P̂n)
, (3.7)

where the denominator, which is the prior probability for the observed measurement
result, ensures correct normalisation of the post-measurement state.

Let us conclude this brief review of von Neumann measurements with a summary
of the properties of projectors.

Properties of projectors

1. They are Hermitian, P̂n = P̂ †
n.

2. They are positive operators, P̂n ≥ Î.

3. They are complete,
∑

n P̂n = Î.

4. They are orthonormal, P̂nP̂m = P̂nδnm.

Here Î is the identity operator. We note that the first three of these properties have
physical significance in that they are required in order that the probability rule,

P (λn) = Tr
(

ρ̂P̂n

)

, be true. They correspond, respectively, to the requirements that

the projectors are observables, that they give positive probabilities and that the proba-
bilities for the complete set of possible outcomes must sum to unity. The final property,
however, does not seem to have a similar physical significance and, indeed, we shall
see that generalised measurements correspond to dropping this requirement.
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3.2 Non-ideal measurements

Most measurements are not of the form described in the preceding section. Consider,
for example, the operation of a photodetector. Real photodetectors have a finite ef-
ficiency and so do note resolve perfectly the number of photons. In detecting the
photons, moreover, the detector absorbs the light and so leaves the field in its zero-
photon (or vacuum) state. Hence neither the von Neumann forms for the detection
probabilities nor for the post-measurement state are appropriate and something more
general is required.

As a simple example, both of the problem and of how we might proceed, let us
consider a measurement of a spin-component for a single quit. The ideal measurement
would correspond to the pair of projectors

P̂0 = |0〉〈0|
P̂1 = |1〉〈1| . (3.8)

Suppose that our detector gives the wrong answer with probability p so that the two
possible measurement results occur with probabilities

P (0) = (1 − p)Tr
(

ρ̂P̂0

)

+ pTr
(

ρ̂P̂1

)

P (1) = (1 − p)Tr
(

ρ̂P̂1

)

+ pTr
(

ρ̂P̂0

)

, (3.9)

the sum of which is clearly unity, as it should be. We can write these in a form
reminiscent of the von Neumann expressions,

P (0) = Tr (ρ̂π̂0)

P (1) = Tr (ρ̂π̂0) , (3.10)

by introducing the probability operators

π̂0 = (1− p)P̂0 + pP̂1

π̂1 = (1− p)P̂1 + pP̂0 . (3.11)

These operators satisfy the first three properties that we listed for the projectors, they
are Hermitian, positive and complete. They are not orthonormal, however:

π̂0π̂1 = p(1− p)̂I . (3.12)

This is our first indication of a more general description of the measurement process,
which we develop further below.

3.3 Probability operator measures

To calculate the portability for any given result of a generalized measurement we need
a probability rule and, in particular, a set of operators that characterise the measure-
ment, one for each of the possible measurement outcomes. The required operators are
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the probability operators, the set of which is a probability operator measure or a posi-
tive operator-valued measure (Helstrom 1976, Holevo 1982, 2001, Peres 1993, Barnett
2009).

That the first three of the properties we listed for the projectors have physical
significance, but the third does not, tells us in what way we are allowed to generalise
the von Neumann description; we simply drop the fourth and final property from our
list. Hence we describe any measurement by a set of probability operators {π̂m} such
that the probability for getting measurement outcome m is

Pm = Tr (ρ̂π̂m) , (3.13)

where the probability operators have the following three properties

Properties of probability operators

1. They are Hermitian, π̂n = π̂†
n.

2. They are positive operators, π̂n ≥ Î.

3. They are complete,
∑

n π̂n = Î.

We should emphasise that there is no restriction on the number of probability oper-
ators; the number can be greater or less than the dimension of the state space. For
example, we shall analyse an example in which a generalised measurement on a qubit
which has three outcomes, even though the dimension of the state space is only 2.
There is no need, moreover, for the probability operators to commute with each other.

The set of probability operators characterising a measurement is called a proba-
bility operator measure (or POM) which you will also find called a positive operator-
valued measure (POVM). The latter has become the commonly used expression, but
I prefer the former3. The description of a measurement in terms of a POM is very
useful because of two points:

1. All measurements can be described in this way. (This is at least reasonable given
the physical significance of the three properties used to define a POM.)

2. Any set of the probability operators (that is any POM) is realisable, at least in
principle, in the laboratory.

This combination is very useful because if we seek to find the best possible measure-
ment in any situation, we can separate out the purely mathematical optimisation of
the POM from the experimental question of how to achieve it. That any POM is re-
alisable as a measurement is a consequence of Naimark’s theorem. We shall not prove
this here but rather give an indication of how it works. A more complete presentation
may be found in (Barnett 2009). The key idea is to map the generalized measurement
onto a projective, or von Neumann, measurement in an extended state space. To see

3POM or POVM? The term ‘probability operator measure’ tells us that the elements forming
the measure are the probability operators. The more popular expression ‘positive operator-valued
measure’ expresses the fact that the elements of the measure, the probability operators, are positive
operators. Calling the set of operators a POM reminds us of their physical significance, while the
term POVM recalls their mathematical properties.
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how this might be done, consider as quantum system s, which we wish to measure, and
let us prepare also an ancillary quantum system a, so that we know its initial state.
The state of the combined system and ancilla is then |ψ〉s ⊗ |A〉a. Next we engineer
an interaction between the system and the ancilla, so that a unitary transformation
of our choosing occurs:

|ψ〉s ⊗ |A〉a → Û |ψ〉s ⊗ |A〉a . (3.14)

Finally, we perform a von Neumann measurement on both the system and the ancilla,
so that the probability for a given outcome will be

P (m, l) =
∣
∣
∣s〈m| ⊗ a〈l|Û |ψ〉s ⊗ |A〉a

∣
∣
∣

2

= s〈ψ|π̂ml|ψ〉s , (3.15)

where
π̂ml = a〈A|Û †|m〉s ⊗ |l〉aa〈l| ⊗ s〈m|Û |A〉a , (3.16)

which is an operator acting only on the system state space. It is clearly Hermitian and
positive. That it sums to the identity follows, moreover, from the completeness of the
orthonomal states {|m〉s} and {|l〉a}. It follows that the operators π̂ml are probability
operators.

Let us give a simple but important example of a generalised measurement; the
simultaneous measurement of the position and momentum of a particle. This is some-
thing that we do all the time in our predominantly classical world but, because position
and momentum are incompatible observables, cannot be described as a von Neumann
measurement. Let us write the probability density for a joint measurement to give a
position between xm and xm + dxm and also a momentum between pm and pm + dpm
as

P(xm, pm) = Tr [ρ̂π̂(xm, pm)] , (3.17)

where the π̂(xm, pm) are positive operators satisfying the continuum condition

∫ ∞

−∞
dxm

∫ ∞

−∞
dpmπ̂(xm, pm) = Î

⇒
∫ ∞

−∞
dxm

∫ ∞

−∞
dpmP(xm, pm) = 1 . (3.18)

A good simultaneous measurement of the position and momentum of a body will
localise rather well both quantities. In order to produce a plausible measurement op-
erator, let us introduce a Gaussian state:

|xm, pm〉 = (2πσ2)−1/4

∫ ∞

−∞
dx exp

[

− (x− xm)2

4σ2
+ i

pmx

h̄

]

|x〉 , (3.19)

where |x〉 is a position eigenstate. We note that these states form an over-complete set
in that

1

2πh̄

∫ ∞

−∞
dxm

∫ ∞

−∞
dpm|xm, pm〉〈xm, pm| = Î . (3.20)
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Comparing this with our normalisation condition leads us to identify our probability
operators as

π̂(xm, pm) =
1

2πh̄
|xm, pm〉〈xm, pm| . (3.21)

It follows, for example, that the probability distribution for the measured position is

P(xm) =

∫ ∞

−∞
dx 〈x|ρ̂|x〉 exp

[

− (x− xm)2

2σ2

]

, (3.22)

which is a convolution of the true momentum distribution, 〈x|ρ̂|x〉, with a Gaussian
of width associated with the state |xm, pm〉. A similar expression applies also for the
measured momentum distribution. The variances found for the measurement results
are

Var(xm) = ∆x2 + σ2

Var(pm) = ∆p2 +
h̄2

4σ2
. (3.23)

The additional contributions, over and above ∆x2 and ∆p2, are a consequence of
the fact that we have performed a simultaneous measurement of two incompatible
observables.

3.4 Optimized measurements

We can seek the best possible measurement in any given situation in two stages:
first we have the mathematical optimization by finding the best POM and secondly
design an experiment that gives the corresponding probabilities. The mathematical
optimization is simply a search over all possible sets of probability operators forming
a POM. The optimal measurements to perform have been determined in a number of
cases and some of these have also been realised in the laboratory (Chefles 2000, Paris
and Řeháček 2004, Bergou 2007, Barnett 2009, Barnett and Croke 2009b).

Let us begin by considering a simple example motivated by our treatment of quan-
tum communications. Suppose we have a qubit which we know to have been prepared
in one of two non-orthogonal states |ψ1〉 or |ψ2〉:

〈ψ1|ψ2〉 6= 0 . (3.24)

We can use our probability operators to ask whether a measurement exists that will
determine which state has been prepared with certainty. Not surprisingly, the answer
is no, but we can prove this. To proceed, we seek two probability operators, π̂1 and
π̂2, such that

〈ψ1|π̂1|ψ1〉 = 1 = 〈ψ2|π̂2|ψ2〉
〈ψ2|π̂1|ψ2〉 = 0 = 〈ψ1|π̂2|ψ1〉
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π̂1 + π̂2 = Î . (3.25)

From our first condition, 〈ψ1|π̂1|ψ1〉 = 1, we can write

π̂1 = |ψ1〉〈ψ1|+ Â , (3.26)

where Â is a Hermitian, positive operator such that 〈ψ1|Â|ψ1〉 = 0, which implies that
Â|ψ1〉 = 0. From this it follows that

〈ψ2|π̂1|ψ2〉 = |〈ψ2|ψ1〉|2 + 〈ψ2|Â|ψ2〉 (3.27)

which, being the sum of a positive quantity and a quantity greater than or equal to
zero, must be greater than zero. Hence we cannot discriminate between these states
perfectly. A natural question then is “what is the best we can do?”. The answer de-
pends, of course, on what we mean by ‘best’. Here we consider only two such strategies:
measurement with the minimum probability of error and unambiguous state discrim-
ination.

3.4.1 Maximum probability of being correct

Consider the following task, motivated by our discussion of quantum communications.
We are given a quantum system which we know to have been prepared in one of
a set of possible states {ρ̂j} and also the probabilities, {pj}, that each state was
prepared. We seek to identify the state with the maximum probability of being correct
or, equivalently, with the minimum value of the error probability. Hence we construct
a POM with probability operators {π̂j} and associate each measurement outcome, π̂j ,
with the corresponding state ρ̂j and then minimise the quantity

Perror = 1−
∑

j

pjTr (ρ̂jπ̂j) . (3.28)

Remarkably, the necessary and sufficient conditions for reaching this minimum are
known (Holevo 1973, Helstrom 1976, Barnett 2009):

π̂j (pj ρ̂j − pkρ̂k) π̂k = 0
∑

i

piρ̂iπ̂i − pj ρ̂j ≥ 0 . (3.29)

A simple derivation of these is given in (Barnett and Croke 2009a). These conditions do
not provide a direct means to construct the minimum error measurement and, indeed,
there are many cases in which the strategy for measuring with minimum probability
of error is not unique. Our strategy, therefore, is to try a measurement strategy and
if it satisfies these conditions then we know it is optimal. The problem is usually a
tractable one where there is some symmetry amongst the set of possible states and
the minimum-error strategy has been derived in a variety of cases (Chefles 2000, Paris
and Řeháček 2004, Bergou 2007, Barnett 2009, Barnett and Croke 2009b).

If we have just two possible states, ρ̂1 and ρ̂1, then the minimum-error measurement
is known: we need only perform a projective (or von Neumann) measurement in which
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the two measurement outcomes correspond to projectors onto the positive and negative
eigenvalues of p1ρ̂1 − p2ρ̂2, corresponding, respectively, to identifying the state as ρ̂1
and ρ̂1. This gives as the minimum error probability the Helstrom bound:

Pmin
error =

1

2
[1− Tr |p1ρ̂1 − p2ρ̂2|] . (3.30)

It is interesting to note that sometimes a measurement does not help and the minimum-
error strategy is simply to guess that the most likely state was prepared (Hunter 2003).
As an example, let us suppose that we have a single qubit which we know to have been
prepared with equal probability (p1 = 1

2 = p2) in one of the two non-orthogonal states

|ψ1〉 = cos θ|0〉+ sin θ|1〉
|ψ2〉 = cos θ|0〉 − sin θ|1〉 , (3.31)

so that the overlap of the states is

〈ψ1|ψ2〉 = cos 2θ . (3.32)

It is straightforward to confirm that the minimum error strategy corresponds to the
two probability operators

π̂1 =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) = |π̂1〉〈π̂1|

π̂2 =
1

2
(|0〉 − |1〉)(〈0| − 〈1|) = |π̂2〉〈π̂2| . (3.33)

The arrangement of these states is depicted in Fig. 3.1. We see that the optimal
measurement in this case corresponds to projection onto one of a pair of states |π̂1〉
or |π̂2〉 which are ‘close’ to the states |ψ1〉 and |ψ2〉. The error probability arises from
the fact that |π̂1(2)〉 is not perpendicular to |ψ2(1)〉. A simple experiment has been
performed at this limit to discriminate between two states of photon linear polarization
(Barnett and Riis 1997).

By no means all optimal measurements are von Neumann measurements. Indeed
a generalised measurement is normally required. As a simple illustration, consider the
trine ensemble in which a quit is prepared (with equal probability) in one of the three
states

|ψ1〉 = |0〉

|ψ2〉 =
1

2

(

−|0〉+
√
3|1〉

)

|ψ3〉 =
1

2

(

|0〉+
√
3|1〉

)

. (3.34)

These correspond to states separated by 120◦ on a great circle of the Bloch sphere, as
depicted in Fig. 3.2. The minimum-error strategy in this case corresponds to the three
probability operators

π̂i =
2

3
|ψi〉〈ψi| (3.35)

and gives an error probability of 1
3 so that this measurement strategy determines

the correct state with probability 2
3 . The required generalized measurement has been
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ψ >2

ψ >1

π >1
^

π >2
^

>1

>0

Fig. 3.1 Orientation in state space of the two non-orthogonal states to be discriminated

and the directions along which it is best to measure. Reproduced, with permission, from

Barnett(2009).

demonstrated using photon polarization qubits; the device is an interferometer in which
the path taken through the device provides the ancillary degree of freedom (Clarke et
al 2001b).

ψ >3

ψ >2

ψ >1

Fig. 3.2 The trine states depicted on the Bloch sphere. Reproduced, with permission, from

Barnett(2009).
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3.4.2 Unambiguous discrimination

We have found the minimum-error strategy for discriminating between a pair of
equiprobable qubit states, |ψ1〉 and |ψ2〉, but can we determine the state for cer-

tain? This might sound like a contradiction but it is not if we allow for the possibility
of an ambiguous measurement outcome. To see this, consider the von Neumann mea-
surement in which the projectors are

P̂1 = |ψ1〉〈ψ1|
P̂1̄ = |ψ⊥

1 〉〈ψ⊥
1 | , (3.36)

where |ψ⊥
1 〉 is the state orthogonal to |ψ1〉. If we get the result 1̄ then we know for

certain that the state was not |ψ1〉 and hence that it must have been |ψ2〉. If we
get the result 1, however, then the state could have been either |ψ1〉 or |ψ2〉 and the
outcome is ambiguous. Hence this simple measurement strategy determines the state
unambiguously but only some of the time.

It is natural to ask if we can find an optimal unambiguous discrimination strategy
(Ivanovic 1987, Dieks 1988, Peres 1988, Chefles 2000, Barnett 2009, Barnett and Croke
2009b). By this we mean a measurement strategy that identifies the state unambigu-
ously with the highest probability or, equivalently, produces the smallest probability
for an ambiguous outcome. The optimal strategy in this case is the three-element POM
with probability operators

π̂1 =
1

1 + |〈ψ1|ψ2〉|
|ψ⊥

2 〉〈ψ⊥
2 |

π̂2 =
1

1 + |〈ψ1|ψ2〉|
|ψ⊥

1 〉〈ψ⊥
1 |

π̂3 = Î− π̂1 − π̂2 . (3.37)

Note that the first two probability operators, π̂1(2), are proportional to projectors
onto the states perpendicular to |ψ2(1)〉. this means that the measurement outcomes
corresponding to these two operators unambiguously identify the state as |ψ1(2)〉. The
state will be correctly identified with probability 1−|〈ψ1|ψ2〉| and an ambiguous result
occurs with probability |〈ψ1|ψ2〉|. It is noteworthy that it is the modulus of the overlap
of the states and not the modulus squared that appears in these probabilities.

To realise this unambiguous detection we require a three-element POM and unam-
biguous discrimination between two non-orthogonal photon polarisation states has
been demonstrated experimentally, using optical fibre with polarisation-dependent
losses (Huttner et al 1996) and in an interferometer similar to that used for mini-
mum error discrimination between the trine states (Clarke et al 2001a).

We have presented here only two of a variety of optimal measurements. Others that
have been investigated include maximising the mutual information and determining
the state with maximum confidence. These, the relationships between them and the
experiments that have been performed are discussed further in (Barnett and Croke
2009b).
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3.5 Operations and the post-measurement state

We have not as yet addressed the question of how the measurement process modifies
the quantum state in a generalized measurement4. There are two pressing reasons for
proceeding beyond the von Neumann ideal in which the quantum system is left in
an eigenstate corresponding to the measurement outcome. The first is that most real
measurements are more destructive than this, and the second is that it gives us no idea
how to describe the post measurement state for a generalised, that is non-projective,
measurement.

A rigorous treatment takes us into the mathematical world of effects and operations
(Kraus K 1983). Rather than this, we present only an indication of what is required.
For a more complete treatment we refer the reader to (Croke et al 2008, Barnett
2009). We start by noting that quantum theory is linear in the density operator and
this suggests that an allowed transformation of the density operator should be of the
form

ρ̂→ ρ̂′ =
∑

i

Âiρ̂B̂i . (3.38)

Not every set of operators {Âi, B̂i} will be allowed, however, as the transformed density
operator must, itself, be a density operator. This means that it must be Hermitian,
ρ̂′ = ρ̂′†, it must be positive, 〈ψ|ρ̂′|ψ〉 ≥ 0, and it must have unit trace, Trρ̂′ = 1. The

first of these conditions suggests that we should set B̂i = Â†
i and doing so automatically

ensures that the second is fulfilled. The final one, the preservation of the unit trace, is
satisfied if we set

∑

i Â
†
i Âi = Î.

The operator Â†
i Âi is positive and also Hermitian. The fact that we require the

sum of these products to equal the identity operator, moreover, suggests the natural
identification

π̂i = Â†
i Âi , (3.39)

and this allows us to complete the required description of the change of state after a
measurement. If we know that a measurement has been performed but do not know
the measurement outcome then the density operator is transformed as

ρ̂→
∑

i

Âiρ̂Â
†
i . (3.40)

If we know that measurement result i was recorded, however, then the state is trans-
formed as

ρ̂→ Âiρ̂Â
†
i

Tr(Âiρ̂Â
†
i )

=
Âiρ̂Â

†
i

Tr(π̂iρ̂)
. (3.41)

In order to arrive at a unit-trace density operator in this case, we have divided by
the a priori probability for the measurement result. This is directly analogous to the
procedure in the von Neumann scheme, in which the transformation is

4Time did not permit me to address this question at the School, but these notes would be incom-
plete without at least a brief account of it.
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ρ̂→ P̂nρ̂P̂n

Tr(P̂nρ̂)
. (3.42)

It should be noted that a set of Kraus operators {Âi} determine uniquely a corre-
sponding set of probability operators {π̂i}, but the converse is not true; assigning the
probability operators does not determine a unique transformation on the state.
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Entanglement and its Applications

More than any other feature, it is entanglement that gives quantum theory its distinc-
tive character. It is the source of paradoxes, the most famous of which is the much
discussed EPR paradox (Einstein et al 1935, Bohr 1935, Wheeler and Zurek 1983,
Whitaker 2006), of tests of distinctive ‘quantumness’, such as the violation of Bell’s
famous inequality (Bell 1964, 1987), and it underlies some of the more unexpected (and
headline-grabbing) features of quantum information such as teleportation (Bennett et
al 1993).

4.1 Entangled states and non-locality

We should start by stating what entanglement is. The simplest answer is that it is the
distinctive property of entangled states, which leads us to ask “what are entangled
states?”. This is, in fact, a surprisingly difficult question to answer, at least in full
generality. For the purposes of these all too brief lectures we shall avoid completely
the tricky issue of entanglement for mixed states and discuss only pure states. For
pure states there is a clear definition but it is the definition of states that are not

entangled. A state that is not entangled is a state of two or more quantum systems
that can be factorized into a product of single-system states. States that do not have
this property are entangled. For two quantum systems, A and B, the combined state,
|Ψ〉AB, is entangled if1

|Ψ〉AB 6= |ψ〉A ⊗ |ψ〉B . (4.1)

Consider, for example, the two-qubit state

|Ψ〉 = cos θ|0〉 ⊗ |1〉 − sin θ|1〉 ⊗ |0〉 . (4.2)

This state will not be entangled if θ = nπ/2, but will be entangled for all other values of
θ. For entangled states, the properties of the A and B systems are quantum correlated.
We can see this in the above example in that determining whether the first qubit is
in the state |0〉 or the state |1〉 also determines the, previously undetermined, state of
the second qubit.

The implications of the existence of entanglement are profound and many. In these
lectures we shall address only five:

1. EPR and related non-locality paradoxes.

1For those not familiar with the notation, it is often convenient to use the symbol ⊗ to separate
quantum states and especially operators. Thus σ̂xσ̂y denotes acting first with σ̂y then with σ̂x on a
single qubit, but σ̂x ⊗ σ̂y means act with σ̂x on qubit 1 and with σ̂y on qubit 2 (Barnett 2009).
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2. The abiliy to perform “magic”.

3. Quantum dense coding.

4. Teleportation.

5. Dramatic speed up in quantum computing.

We shall treat the first four of these in this lecture and leave the final one for the next
and final lecture.

Let us begin with the EPR, in the form given by Bohm (1951). To this end, consider
two qubits in the entangled state

|Ψ−〉AB =
1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) . (4.3)

Let us suppose that qubit A is held by Alice and qubit B by Bob and that they are
at a considerable distance from each other. If either party measures their qubit in
any basis then they find either of two possible results, each occurring with probability
1/2. If they measure the same observable as each other then they find opposite or
anti-correlated results. This is a simple consequence of the eigenvalue equation:

a · σ̂ ⊗ a · σ̂|Ψ−〉 = −|Ψ−〉 , (4.4)

which holds for all unit vectors a. The paradox is that a measurement by Alice of
her particle will instantaneously project the state of its partner into an eigenstate of
the observable selected by Alice. If we assume that Alice has a free choice of what
to measure and that any influence of her measurement cannot travel arbitrarily fast,
then Bob’s qubit must have carried values for all possible observables, something that
is clearly at odds with complementarity. We give, here, only a partial resolution of this
in the form of the no-signalling theorem.

4.1.1 Bell’s theorem

Correlations are also common in the classical world and, indeed, underlie classical com-
munications. Are not the quantum correlations associated with entanglement simply
the same thing? It was Bell’s theorem, in the form of the violation of his celebrated
inequality, that gave the definitive answer “no”!

We present here a derivation of Bell’s inequality, in its most common form (Clauser
et al 1969, Bell 1987). Let us start by thinking of our qubit as a spin-half particle. A
measurement of the spin along a direction in space, given by the unit vector a, will
reveal the spin to be aligned or anti-aligned with this direction. We write the first of
these as +1 and the second as −1, so that in any given measurement our measurement
result A with be ±1. We can do the same thing for the second qubit (entangled with
the first) and write the measurement result as B = ±1. If we take the product of
these two values and average over many experimental realisations then we obtain the
correlation function

E(a,b) = 〈AB〉 , (4.5)

which is clearly bounded in magnitude:
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−1 ≤ E(a,b) ≤ 1 . (4.6)

In order to arrive at Bell’s inequality we need to suspend disbelief and wonder what
a theory would look like if the indeterminacy of quantum theory arose from hidden
variables or, more precisely, local hidden variables which we denote by λ and take to
be governed by a probability distribution P (λ). To this end we write the correlation
function in the form

E(a,b) =

∫

dλP (λ)A(a, λ)B(b, λ) . (4.7)

Some words of explanation are in order. We say that this is a form based on a local
hidden-variable theory because each measured result A and B depends only on (i) the
choice of observable made at the observation site (a and b respectively) and (ii) the
hidden variable λ, presumed to have been determined in the source of the particles.
The measurement results do not depend on the choice of measurement made at the
distant site. These considerations lead us to Bell’s inequality as follows. First we write

E(a,b)− E(a,b′) =

∫

dλP (λ)[A(a, λ)B(b, λ) −A(a, λ)B(b′, λ)]

=

∫

dλP (λ)A(a, λ)B(b, λ)[1 ±A(a′, λ)B(b′]

−
∫

dλP (λ)A(a, λ)B(b′ , λ)[1 ±A(a′, λ)B(b] . (4.8)

In the second line we have added and subtracted the same expression. In doing so, we
have assumed it is meaningful for quantities such as A(a, λ) and A(a′, λ) to coexist.
This is the realism part of local-realism; it states that properties exist even if we do
not measure them. We recall that the product AB lies between −1 and +1 and hence
we can obtain from this equality an inequality of the form

|E(a,b) − E(a,b′)| ≤
∫

dλP (λ)[1 ±A(a′, λ)B(b′, λ)]

+

∫

dλP (λ)[1 ±A(a′, λ)B(b, λ)]

= 2± [E(a′,b′) + E(a′,b)] , (4.9)

which implies that

|E(a,b)− E(a,b′)|+ |E(a′,b′) + E(a′,b)| ≤ 2 . (4.10)

This is Bell’s inequality; it states that any correlations of a local-realistic nature must
satisfy this inequality. What do we find for entangled quantum states? Consider again
the EPR spin state:

|Ψ−〉AB =
1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) . (4.11)
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It is straightforward to confirm that for spin measurements on the two qubits prepared
in this state we find

E(a,b) = 〈a · σ̂ ⊗ a · σ̂〉 = −a · b . (4.12)

If we put this into our Bell inequality we find

|E(a,b)−E(a,b′)|+ |E(a′,b′)+E(a′,b)| = |−a · (b−b′)|+ |−a′ · (b+b′)| . (4.13)

To find the maximum value we simply choose a and a′ to be parallel, respectively, to
b−b′ and b+b′ and b and b′ to be mutually perpendicular, as depicted in Fig. 4.1.
With this choice we find

|E(a,b)− E(a,b′)|+ |E(a′,b′) + E(a′,b)| = 2
√
2 , (4.14)

which clearly exceeds 2 and hence violates the inequality. It is this, perhaps more
than anything else, that signified the exceptional nature of entanglement. In quantum
information it is often by violating a Bell inequality that we demonstrate most clearly
the presence of entanglement: all entangled pure states violate a Bell inequality (Gisin
1991).

a

b

a `

b `

Fig. 4.1 Orientation of the optimal measurement directions for maximal violation of Bell’s

inequality. Reproduced, with permission, from Barnett(2009).

4.1.2 No-signalling theorem

A resolution, of sorts, to the EPR paradox is that no operation carried out on one of
an entangled pair of quantum systems is detectable by an observation on its entangled
partner. This means, of course, that no signal can be transmitted in this way. The
no signalling theorem was stated rigorously by Ghirardi et al (1980), but rather than
follow their analysis, it is instructive to make use of what we have learned already
about generalised measurements (Barnett 2009).

Let us suppose that Alice and Bob each have one of a pair of entangled systems and
that Alice attempts to communicate with Bob by making a measurement on hers. She
cannot, of course, control the measurement result but can decide what to measure.
We shall allow Alice to choose between any two measurements, which we allow to
be generalised. Let Alice’s measurements have the probability operators {π̂A1

j } for
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measurement choice 1 and {π̂A2
j } for choice 2. In an attempt to detect the effect of

Alice’s choice, Bob makes a measurement characterised by the probability operators
{π̂B

k }. The joint probabilities for Alice’s and Bob’s measurement results are

P (j, k) = 〈Ψ|π̂A1,A2
j ⊗ π̂B

k |Ψ〉 , (4.15)

where |Ψ〉 is the joint state of Alice’s and Bob’s system. If Alice’s choice is to affect
the Bob’s observation, then we need the probabilities for Bob’s measurement results
to depend on Alice’s choice of measurement. This is clearly not the case, however, as

P (k) =
∑

j

P (j, k) = 〈Ψ|π̂B
k |Ψ〉 , (4.16)

where we have used the fact that our probability operators sum to the identity oper-
ator: ∑

j

π̂A1,A2
j = Î . (4.17)

The probabilities of any of Bob’s possible measurement results is independent of Alice’s
choice of measurement and, indeed, are the same whether Alice performs a measure-
ment at all. Nothing Alice does to her quantum system is detectable by Bob and hence
no signalling is possible by quantum measurement of a distant system.

The no-signalling theorem is a rigorous consequence of quantum theory and can be
used, in quantum information theory, to place bounds on what is and is not possible.
As a simple example, we can derive a lower bound on the probability for an incon-
clusive outcome in unambiguous state-discrimination using the no-signalling condition
(Barnett and Andersson 2002).

4.2 Quantum “magic tricks”

The Bell inequality is only one of an impressive array of startling and testable conse-
quences of entanglement (Redhead 1987, Greenberger et al 1990, Mermin 1990). Were
these lectures about the mysteries of quantum theory, then we might enjoy exploring
these, but our purpose is not to test entanglement and its consequences, but rather to
exploit it. We shall present one example, however, of a testable consequence of entan-
glement as it points to a necessary distinction between logical reasoning in quantum
theory and the classical world.

Hardy (1993, Goldstein 1994) presented a simple demonstration of non-locality
without an inequality. This is instructive in that it provides a warning against reasoning
on the basis of what might have been measured rather than what actually was observed.
The following short presentation is reproduced, essentially verbatim, from Barnett
(2009).

Consider a pair of qubits, one held by Alice and the other by Bob, prepared in the
pure state

|Hardy〉 = 1√
3
(|0〉A ⊗ |0〉B + |1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B) . (4.18)

We proceed by noting that this state can also be written in the form
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|Hardy〉 =
√

2

3
|0′〉A ⊗ |0〉B +

1√
3
|0〉A ⊗ |1〉B

=
1√
3
|1〉A ⊗ |0〉B +

√

2

3
|0〉A ⊗ |0′〉B , (4.19)

where |0′〉 = 2−1/2(|0〉+ |1〉), is the eigenstate of σ̂x with eigenvalue +1. The following
statements follow directly from the form of |Hardy〉:

(i) If both Alice and Bob measure the observable correspondding to σ̂z , with eigenstates
|0〉 and |1〉, then at least one of them will get the result +1, corresponding to the state
|0〉.
(ii) If Alice measures σ̂z and gets the value +1 then a measurement by Bob of σ̂x will,
with certainty, find the value +1, corresponding to the state |0′〉.
(iii) If Bob measures σ̂z and gets the value +1 then a measurement by Alice of σ̂x will,
with certainty, find the value +1, corresponding to the state |0′〉.

Local realistic ideas lead us to treat as simultaneously real the values ±1 of the ob-
servables corresponding to the operators σ̂z and σ̂x. The values of these, which we
denote σz and σx, respectively, should be independent of any choice of an observation
carried out on the other qubit. This leads us to express the above three properties as
the following probabilities:

P (σA
z = −1, σB

z = −1) = 0

P (σB
x = +1|σA

z = +1) = 1

P (σA
x = +1|σB

z = +1) = 1 . (4.20)

The first of these tells us that at least one of the properties σA
z and σB

z must take the
value +1 and the following two then tell us that at least one of the properties σA

x and
σB
z must take the value +1. It is a prediction of local realism, therefore, that σA

x and
σB
z cannot both take the value −1:

P (σA
x = −1, σB

x = −1) = 0 . (4.21)

A quantum mechanical treatment, however, shows that measurement by both Alice
and Bob of σ̂x can both give the result +1 and that this occurs with probability 1

12 .
This is clearly at odds with the local-realistic reasoning presented above.

As with all the best magic tricks, it is what the audience assumes to have happened
that makes the trick appear to be impossible.

4.3 Ebits and shared entanglement

In quantum information we think of entanglement not as a mystery, but rather as a
resource to be exploited. The first question to be addressed, as with any resource, is to
decide how to quantify it. This is a subtle question but we can give, at least, a simple
preliminary answer in terms of “ebits”. If two spatially separated individuals share a
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pair of maximally entangled qubits then we say that they share 1 ebit. By maximally
entangled we mean pure state such that the reduced density operator for each of the
component qubits is of the form Î/2. This means that we can identify the state only
by bringing together the component qubits and that a measurement of just a single
qubit is maximally uncertain.

It is important to ask how we can get to a situation in which two parties share
an ebit. One way, of course, is to prepare an entangled state at one site and then
transport (carefully) one of the entangled qubits to the other site. We might very
reasonably ask, however, if it is not possible to achieve the same result by means of
classical communications, by exchanging instructions between the distant sites. That
this is not possible follows directly from what we already know. Let us suppose that
Alice prepares the entangled state

|Ψ−〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) . (4.22)

To share this state with Bob she can send the second qubit to Bob by means of a
suitable quantum communications channel. The resulting quantum correlations be-
tween the qubits (at least for a sufficient number of entangled pairs) could be used to
demonstrate a violation a Bell inequality. Such a violation is not possible, of course,
for any classical or classically-mediated correlations. Hence we can conclude, without
the need for further analysis, that classical and quantum communications are radically
different in nature.

The antisymmetric state, |Ψ−〉 is not the only maximally entangled state of two
qubits. Indeed, we can create a complete basis of four orthonomal states for two qubits,
each of which is similarly maximally entangled. One simple choice is the set of states,
now referred to as the Bell states or the Bell basis. These four states are

|Ψ±〉 = 1√
2
(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

|Φ±〉 = 1√
2
(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉) . (4.23)

As these states form an orthonormal basis, we can perform a von Neumann measure-
ment on the two qubits with each of these four corresponding to a different outcome.
This “Bell measurement” cannot be performed, however, simply combining a von Neu-
mann measurement on each individual qubit.

4.4 Quantum dense coding

A very simple application of the Bell states, perhaps the simplest, is in quantum dense
coding (Bennett and Wiesner 1992). The starting point is the observation that a (von
Neumann) measurement of a qubit can provide at most one bit of information. To
see how this works, we need only consider a qubit that has been prepared with equal
probability in either of the two orthogonal states, |0〉 and |1〉. A simple projective
measurement in this basis will reveal the state that has been prepared and provide a
single bit.
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By using an ebit we can, in a sense, double this rate by communicating two bits
of information for every qubit sent from Alice to Bob. Let us start with a single ebit
shared by Alice and Bob, prepared in the state

|Ψ−〉AB =
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) . (4.24)

Bob selects one of four unitary transformations to perform on his qubit. These trans-
formations, and the effect of the corresponding entangled state, are listed below:

Û1
|0〉B
|1〉B ⇒

|0〉B
|1〉B |Ψ−〉AB ⇒ |Ψ−〉AB

Û2
|0〉B
|1〉B ⇒

|1〉B
|0〉B |Ψ−〉AB ⇒ |Φ−〉AB

Û3
|0〉B
|1〉B ⇒

−|0〉B
|1〉B |Ψ−〉AB ⇒ |Ψ+〉AB

Û4
|0〉B
|1〉B ⇒

−|1〉B
|0〉B |Ψ−〉AB ⇒ |Φ+〉AB . (4.25)

We see that the effect of Bob’s choice is to transform the state of the entangled pair of
qubits into one of the four orthogonal Bell states. Hence by sending just his single qubit
to Alice he can send two bits of information (recall that 4 = 22 states corresponds to
2 bits). In order to retrieve the information Alice simply performs a Bell measurement
on the two qubits comprising the ebit and extracts the two bits2.

It is interesting to reflect on the nature of a Bell measurement and, in particular,
to try to understand it in terms of spin measurements. We know, of course, that the
Pauli operators σ̂x, σ̂y and σ̂z do not mutually commute. It may come as something
of a surprise, therefore, that the products of these cartesian components of the spin,
σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y and σ̂z ⊗ σ̂z , commute for any pair of qubits. The Bell states are the
simultaneous eigenstates of these three product operators:

σ̂x ⊗ σ̂x|Ψ−〉 = −|Ψ−〉 σ̂y ⊗ σ̂y|Ψ−〉 = −|Ψ−〉 σ̂z ⊗ σ̂z|Ψ−〉 = −|Ψ−〉
σ̂x ⊗ σ̂x|Ψ+〉 = |Ψ+〉 σ̂y ⊗ σ̂y|Ψ+〉 = |Ψ+〉 σ̂z ⊗ σ̂z|Ψ+〉 = −|Ψ+〉
σ̂x ⊗ σ̂x|Φ−〉 = −|Φ−〉 σ̂y ⊗ σ̂y|Φ−〉 = |Φ−〉 σ̂z ⊗ σ̂z |Φ−〉 = |Φ−〉
σ̂x ⊗ σ̂x|Φ+〉 = |Φ+〉 σ̂y ⊗ σ̂y|Φ+〉 = −|Φ+〉 σ̂z ⊗ σ̂z|Φ+〉 = |Φ+〉 . (4.26)

Thus the Bell states are those in which the products of the cartesian components of
the spin are defined and we can view a Bell measurement as a comparison of the three
components of spin for the two qubits. You may have noticed, in fact, that it suffices to
compare only two components of the spin as the final one is then defined. The reason
for this has its origins in the fact that the product of any two Pauli spin components
is proportional to the third and, in particular σ̂xσ̂y = iσ̂z. It follows that

(σ̂x ⊗ σ̂x) (σ̂y ⊗ σ̂y) = −σ̂z ⊗ σ̂z (4.27)

2Although it sounds easy to perform a Bell measurement, achieving this in practice is, perhaps
not surprisingly rather more of a challenge (Mattle et al 1996).
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and hence that the product of the eigenvalues of σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y and σ̂z ⊗ σ̂z must
be −1. This means that there can be no state of two qubits, for example, in which the
x-, y- and z- components of the spin are all the same.

4.5 Teleportation

Our final application is quantum teleportation. This is an important application of
entanglement and came as something of a surprise when it was first proposed (Ben-
nett et al 1993). We should be very clear before proceeding however, that quantum
teleportation is not matter transportation like something out of the popular science
fiction series Star Trek. A better understanding may be reached, I feel, by adopting the
description proposed by Haroche, which is quantum teleportation is a “fax machine
for quantum information”. It is the quantum information, or rather the quantum state
that is transferred and not the physical system on which the qubit state is stored.

Let us suppose that Alice wishes to send a qubit to Bob. She may know the state of
the qubit or she may not. We have seen that quantum communications and classical
communications are very different and so should not be surprised that there is, in
general, no classical way to achieve this. Alice has two ways to achieve the desired
result (i) she can send the physical qubit carrying the quantum information to Bob
(we might call this “qmail”), or (ii) she can teleport the quantum information to Bob
using an ebit of shared entanglement (which we might call a “qfax”).

Alice can teleport the qubit state

|ψ〉1 = α|0〉1 + β|1〉1 (4.28)

by making use of an ebit of the form

|Ψ−〉AB =
1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) , (4.29)

shared with Bob. We can write the combined state of the three qubits as

|Ψ〉1AB = |ψ〉1 ⊗ |Ψ−〉AB

=
1

2

[
|Ψ−〉1A (−α|0〉B − β|1〉B)

+|Ψ+〉1A (−α|0〉B + β|1〉B)
+|Φ−〉1A (α|1〉B + β|0〉B)
+|Φ+〉1A (α|1〉B − β|0〉B)

]
. (4.30)

In arriving at the final expression, we have only rewritten the state, but the quantum
information, in the form of the coefficients α and β, have appeared connected with
Bob’s qubit. We know, however, that Bob cannot yet access this information, for to
do so would violate the no-signalling theorem.

If Alice performs a Bell measurement on her two qubits (qubits 1 and A) she can
then tell Bob which of four possible transformations to perform on qubit B in order
to change its state into |ψ〉B. The idea is best understood in terms of an example. Let
us suppose that Alice’s Bell measurement gives a result corresponding to the state
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|Ψ+〉1A, then she knows that Bob’s qubit is in the state −α|0〉B+ β|1〉B. She then has
only to use a two-bit classical channel to tell Bob to perform unitary transformation
number 3 so that:

Û3
|0〉B
|1〉B ⇒

−|0〉B
|1〉B − α|0〉B + β|1〉B ⇒ α|0〉B + β|1〉B (4.31)

and the teleportation is complete in that Bob’s qubit is in the same state as that in
which the original qubit started, |ψ〉1. Each of the other three possible Bell-measurement
outcomes corresponds to a different unitary transformation that Bob is required to
perform.

We can understand why teleportation works by recalling that a Bell measurement
is one in which we compare the cartesian components of the two spins. In particular
the four possible measurement results tell us that

|Ψ−〉 ⇒ σx different, σy different, σz different

|Ψ+〉 ⇒ σx same, σy same, σz different

|Φ−〉 ⇒ σx different, σy same, σz same

|Φ+〉 ⇒ σx same, σy different, σz same . (4.32)

We know, also, that in the shared entangled state, |Ψ−〉AB, has the three components
of the spins all opposite to each other. Hence we can reason as follows: (i) If the Bell
measurement gives the state |Ψ−〉1A then the spin components for the qubits 1 and A
are anti-aligned but we know also that the qubits A and B are anti-aligned and hence
we are left with Bob’s qubit in initial state of qubit 1. (ii) If the Bell measurement
gives the state |Ψ+〉1A then the x- and y-components of the spins for the qubits 1
and A are the same but the z-component is different. It follows that qubit B is left
in a state in which the x- and y-components of the spin are opposite to that for the
initial state of qubit 1, but the z-component is the same. Instructing Bob to perform a
rotation, through π about the z-axis will leave his qubit in the initial state of qubit 1.
Similarly, (iii) if the Bell measurement gives the state |Φ−〉 then Bob needs to perform
a qubit-rotation about the x-axis and (iv) a Bell measurement giving the state |Φ+〉
means that Bob needs to perform a rotation about the y-axis.

There is much more that could be said about teleportation, but we conclude this
all too brief introduction by describing a few features worthy of further thought:

1. We note that there is a sense in which Bob already has the information after Alice’s
measurement. This is a direct consequence of the projective nature of Alice’s Bell
measurement. What saves us from violating the no-signalling theorem is simply that
Bob does not know where to look for it.

2. Alice’s copy of the original qubit is destroyed in the teleportation process. This
is inevitable and not simply a consequence of the scheme we have adopted. Were it
otherwise, then we would be violating the no-cloning theorem.

3. Alice does not have to know the state that is to be teleported. We have chosen a
general qubit state parametrized by the amplitudes α and β, but no process undertaken
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by either Alice or Bob is dependent on these amplitudes and it follows that Alice does
not need to know the state to be teleported.

4. The qubit to be teleported may itself be part of an entangled state and in this
way we can teleport entanglement. In this way, if Alice shares an ebit with Bob and
also one with Claire then she can teleport the entanglement to leave Bob and Claire
sharing an ebit:

|Ψ−〉C1 ⊗ |Ψ−〉AB ⇒ |Ψ−〉CB . (4.33)

This process of transferring entanglement by teleportation is commonly referred to as
entanglement-swapping.
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Quantum Computation

No course on quantum information would be complete without a treatment of quantum
computation. Yet covering such a diverse topic in a single lecture presents, if anything,
an even greater challenge than the areas addressed in the preceding lectures. The
material selected for this lecture can only provide a modest foretaste of the topic that
spans a number of disciplines, including physics and computer science, and for a more
satiating introduction I can only recommend some texts for further reading (Nielsen
and Chuang 2000, Stenholm and Suominen 2005, Vedral 2006, Mermin 2007, Kaye et

al 2007, Barnett 2009, Gay and Mackie 2010, Pachos 2012).
We should start by asking why the idea of quantum computers seems to have be-

come so prominent. There are, I think, two very good reasons. The first is in response
to a very pressing need. The speed of development in computers has been truly re-
markable and follows an exponential increase in performance first described by Moore
in 1965 (Moore 1965). There are many versions of this law, but perhaps the simplest is
that the number of transistors on chip doubles roughly every two years. The way this
is achieved is by making the individual transistors ever smaller. As we make compo-
nents ever smaller, however, we must inevitably run into quantum effects. Rather than
fight against quantum mechanics (a battle we must lose at some size scale) perhaps
it would be better to embrace the new possibilities provided by quantum information
processing. The second reason is the distinctively new possibilities offered by quantum
algorithms (which can only run on a quantum computer). These address problems that
will always remain intractable for a computer based on classical logic and include sim-
ulations of complex quantum systems (like large molecules) and the headline-grabbing
Shor’s algorithm for factoring, of which more later.

5.1 Digital electronics

We begin our discussion by describing the way in which logical bits and logic operations
are implemented classically. In the simplest form, the logical bits 1 and 0 are encoded
as voltages - a high voltage for 1 and ground or zero volts for 0. These values are
manipulated by transistor-based devices called gates (Smith 1983). The most common
of these act either on a single bit value or couple two together. There is only one
single-bit gate, the NOT gate, which simply changes a 0 to 1 and a 1 to 0. The symbol
for the NOT gate and its truth table are given in Fig 5.1. The simplest two-bit gates
are the AND and the OR gate, depicted in Fig 5.2. Combinations of these together
with a NOT gate to form NAND and NOR gates are also common. These two bit
gates, together with the NOT gate allow us to perform any logical operation (strictly
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a Boolean operation) on a string of bits. Such an operation is, at a fundamental level,
what we mean by a computation.

A

NOT

A

1 0

0 1

A A

Fig. 5.1 The NOT gate and its truth table. Reproduced, with permission, from Bar-

nett(2009).
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0
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1

1

1

0

1
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1

0

1
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Fig. 5.2 The AND and OR gates and their truth tables. Reproduced, with permission, from

Barnett(2009).

5.2 Quantum gates

The simplest way in which to introduce quantum elements into information processing
is to replace each classical bit with a qubit and to design devices that operate upon
them. We are not completely free in the operations we can devise, however, as we
must respect the laws of quantum mechanics. This means, in particular, that the
transformations we can perform are necessarily limited to the unitary transformations.
Even at the single qubit level, however, there is already a great deal more we can
do that for a classical bit, as we are allowed to generate superpositions of the two
qubit states |0〉 and |1〉. A single qubit-gate may perform any single-qubit unitary



46 Quantum Computation

transformation, that is any rotation on the Bloch sphere. Six of the more commonly
occurring one-qubit gates, together with the unitary transformations they enact are
presented in Fig 5.3.

XPauli-X X =                 = σ
^

YPauli-Y Y =                  = σ 
^

Tπ/8 T = 
^

SPhase S = 
^

ZPauli-Z Z =                  = σ
^

HHadamard ^
H =  

x
^

y
^

z
^

Fig. 5.3 Some of the more common one-qubit gates together with their associated unitary

transformations. Reproduced, with permission, from Barnett(2009).

We require in addition gates that couple qubits. Unlike their classical counterparts,
these gates have two output qubits as well as two input ones; where this not the case
then we would not respect unitarity. Principal among the vast array of possible two-
bit gates is the controlled NOT gate, or CNOT gate, depicted in Fig 5.4. The two
qubits entering the gate are designated the control qubit, C and the target qubit, T.
The gate enacts the transformation |1〉 → |0〉, |0〉 → |1〉 if the control qubit is in
the state |1〉 but leaves it unchanged if the if the control qubit is in the state |0〉.
Despite its innocuous looking truth table, it is straightforward to show that this gate
is intrinsically quantum-mechanical in nature. To see this, let the control bit entering
the gate be in a superposition of computational basis states. The transformation is
then

1√
2
(|0〉C + |1〉C) |0〉T →

1√
2
(|0〉C |0〉T + |1〉C |1〉T ) , (5.1)

which we recognise as one of the entangled Bell states. The fact that the CNOT gate
has generated an entangled state from an unentangled one (and therefore introduced
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the possibility of non-locality) suffices to establish the intrinsically quantum nature of
the CNOT gate.

Control

Target

=

X

C CT T

0 00 0> > > >
0 01 1> > > >
1 10 1> > > >
1 11 0> > > >

Fig. 5.4 The CNOT gate and its effect on the computational basis states. Reproduced, with

permission, from Barnett(2009).

In digital electronics, a small number of gates suffices to allow all possible Boolean
operations and, remarkably, something very similar holds for quantum gates. We can
perform any unitary evolution of a set of qubits by acting on them only with single-
qubit gates and a suitable two-qubit gate; the CNOT gate suffices for this purpose.
We do not prove this assertion here as the required demonstration would take too
long and occupy too much space. The proof is not particularly difficult, however, and
may be find in the (Nielsen and Chuang 2000, Barnett 2009). As an example we can
construct the three-qubit Toffoli gate, or controlled, controlled NOT gate using single-
qubit and two-bit gates. The operation of the Toffoli gate is most readily understood
in the computational basis, |0〉, |1〉 for the three qubits:

|A〉 ⊗ |B〉 ⊗ |C〉 → |A〉 ⊗ |B〉 ⊗ |C⊕ (A · B)〉 , (5.2)

where A, B, and C take the values 0 or 1. In words, the gate leaves the computational-
basis of the first and second qubits unchanged but flips the state, |0〉 ↔ |1〉, of the
third qubit if both the first and second qubits are in the state |1〉. The Toffoli gate
and its implementation in terms of two-qubit gates is given in Fig 5.5. This involves
two CNOT gates and three controlled unitary gates, in which the designated unitary
transformation,

Ŵ =
1− i
2

(

Î + iσ̂x

)

Ŵ † =
1 + i

2

(

Î− iσ̂x
)

, (5.3)

is performed on the target qubit if the control qubit is in the state |1〉 and the iden-
tity is applied if it is in the state |0〉. The controlled unitary operation may also be
implemented using CNOT gates and single-qubit gates if desired (Barnett 2009).
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=

W W W

A>

B>

C>
Fig. 5.5 The three-qubit Toffoli gate constructed from two-qubit gates. Reproduced, with

permission, from Barnett(2009).

If we can combine enough qubits and produce enough gates then we can produce
any desired unitary transformation. This would then constitute a quantum processor,
designed to take input data in the form of an input multi-qubit state and generate
output in the form of another state. The information could then be extracted by
means of a measurement on the qubits. What is necessary in order to achieve this
goal? The answer was provided by DiVincenzo (1996) in the form of five critteria
for implementing a quantum computer. These have been modified somewhat over the
intervening period, but the original five serve to convey the key requirements:

1) We need well-defined extendible qubit array that is stable.

2) The qubit array should be preparable in a suitable starting state, such as that in
which all the qubits are in the state |0〉.
3) We need good isolation from the environment, i.e. long coherence times.

4) It must be possible to perform a universal set of gate operations, such as single-qubit
rotations and CNOT operations for any chosen pair of qubits.

5) Finally, we need to be able to perform something close to ideal von Neumann
measurements on each of the qubits.

These demands present a significant technical challenge and, although great advances
have been made, I think it safe to say that, at present, not proposed implementation
of a quantum processor has managed to achieve them all.

We should note that the gate model of a quantum processor, described above,
is not the only possible one. An alternative is provided by the use of cluster states
(Raussendorf et al 2003). In this approach we first prepare a highly entangled state of
our qubits and then proceed by performing a sequence of single-qubit measurements
followed by single-qubit unitary transformations the form of which depends on the
preceding measurement results.

5.3 Principles of quantum computation

The basic idea of a quantum computation is quite simple. We start with an input
string of bits, which we encode onto the initial states of our by preparing each in one
of the states |0〉 or |1〉. We then use our collection of gates to perform on this state a
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unitary transformation:

101101001→ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉
→ Û |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 . (5.4)

The computation is completed by measuring each qubit to give back a (classical) bit
string which, hopefully, is the desired output:

Û |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 → 000111010 . (5.5)

This is not quite all there is to it. There is a problem if the function we wish
to calculate gives the same value for two distinct inputs. Consider, for example, the
two-bit transformation in two bits, A and B, are transformed into A and (A AND B):

00→ 00 01→ 00 10→ 10 11→ 11 . (5.6)

The difficulty in realising this computation on a quantum processor in the manner
indicated above is that the transformation must be unitary and that unitary transfor-
mation maintain the overlap of the initial states and our computation requires

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉 |0〉 ⊗ |1〉 → |0〉 ⊗ |0〉

〈0, 0|0, 1〉 = 0 −→ 〈0, 0|0, 0〉 = 1 , (5.7)

which clearly violates this requirement.
In order to be able to compute any function, we input into our quantum processor

not one string of qubits but two. Let the input states of the two strings be |a〉 and |b〉.
The first of these is the input data, with the sequence of bits encoded onto the qubits
as in Eq (5.4). The second string is to act as our output and is often prepared in the
state |b〉 = |0〉⊗N , so that every qubit is in the state |0〉. If the processor is to calculate
the Boolean function f(a) then we require it to realise the transformation

|a〉 ⊗ |b〉 → |a〉 ⊗ |b ⊕ f(a)〉 , (5.8)

where ⊕ denotes the bit-wise modulo addition. (See in Fig 5.6.) It is straightforward to

u
^

f

>a >a

>b >b + f(a)

Fig. 5.6 A quantum processor designed to compute the function f(a). Reproduced, with

permission, from Barnett(2009).
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confirm, by explicit construction, that such a unitary transformation is always possible:

Ûf =
∑

a

|a〉〈a| ⊗



|f(a)〉〈a|+ |a〉〈f(a)|+
∑

b6=a,f(a)

|b〉〈b|



 . (5.9)

Of course this is not the only unitary operator that performs this task, but this simple
operator suffices to demonstrate that a suitable unitary operator exists.

The remarkable properties of a quantum computer derive largely from the fact that
we can put into the processor not just a single number but rather a superposition of
many. If each qubit in the first qubit string is prepared in the state 2−1/2(|0〉 + |1〉)
then the string of N qubits is in a superposition of every number between 0 and 2N−1:

2−N/2 (|0〉+ |1〉)⊗N = 2−N/2
2N−1∑

a=0

|a〉 . (5.10)

The linearity of quantum mechanics means that the output state is an entangled one
in which the function f(a) has been calculated for every possible input number, as in
Fig 5.7.

>a

>b

Σ
a >a >b + f(a)Σ

a
xu

^

f }

Fig. 5.7 If a superposition of possible input numbers is prepared then the output state is

an entangled one in which values of the function for each of the inputs appear. Reproduced,

with permission, from Barnett(2009).

A simple example may serve to illustrate the potential of a quantum processor.
With this aim in mind we present Deutsch’s algorithm and its many-bit extension, the
Deutsch-Jozsa algorithm (Deutsch 1985, Deutsch and Jozsa 1992, Cleve et al 1998).
Although somewhat contrived in nature, these serve to illustrate in a very simple way
the potential for speed-up offered by a quantum computer. These are examples of a
class of challenges called oracle-problems.

We start with Deutsch’s algorithm (Deutsch 1985). Let us suppose that we have a
‘black box’ (an oracle) and that this device evaluates a one-bit function of a one-bit
input. This means that we input a single bit, with value either 0 or 1, and that this
generates an output value of either 0 or 1. There are four possible such functions, two
constant functions:

f(0) = 0 f(1) = 0 ,

and f(0) = 1 f(1) = 1 , (5.11)

and two balanced functions (balanced in the sense that both possible bit values occur
in the output, one for each input):

f(0) = 0 f(1) = 1 ,
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and f(0) = 1 f(1) = 0 . (5.12)

If we want to know which function the oracle calculates then we need to input both
bits values and examine the corresponding outputs. Let us suppose, however, that our
task is simply to determine whether the function calculated is a constant function or
a balanced one. Classically, of course, this requires us to input both possible bit values
and so also requires two computations. A suitable quantum processor, however, can
do this in a single step. Consider the general transformation given in Eq. (5.8), but
with the two subit strings each replaced by a single qubit so that the transformation
enacted by the processor is

|A〉 ⊗ |B〉 → |A〉 ⊗ |B⊕ f(A)〉 . (5.13)

We can make use of the superposition principle to prepare both of our qubits in a
superposition state and so produce the transformation

1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉)→ 1

2

(
|0〉 ⊗ |f(0)〉 − |0〉 ⊗ |f̄(0)〉+ |1〉 ⊗ |f(1)〉 − |1〉 ⊗ |f̄(1)〉

)

=
1

2

[
|0〉 ⊗

(
|f(0)〉 − |f̄(0)〉

)
+ |1〉 ⊗

(
|f(1)〉 − |f̄(1)〉

)]

=
1

2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

⊗ (|0〉 − |1〉) . (5.14)

A simple measurement carried out on the first qubit then tells us what we need to
know: if it is found to be in the state 2−1/2(|0〉 + |1〉) then the function is constant
and if we find it in the orthogonal state 2−1/2(|0〉− |1〉) then the function is balanced.
We have found out what we need to know by addressing the oracle only once, rather
than twice as would be required classically.

The Deutsch algorithm may seem, at least at first sight, not to be an especially
convincing illustration, after all we do input two qubits into the processor. The real
power appears when we consider an extension of it to the Deutsch-Jozsa algorithm. In
this algorithm, our input is an n-bit number a and our output is again a single bit, 0
or 1. The function is either constant, giving either 0 or 1 for all inputs, or balanced,
giving 0 for half of the inputs and 1 for the other half. Our task is to determine an
algorithm that determines with certainty whether the function is constant or balanced.
We can start putting in different strings and has soon as we get two different output
values then we know for certain that the function compute is balanced. To know its
nature for certain, however, we may have to input over half of the possible inputs
which means addressing the oracle 2n−1 + 1 times. A quantum processor can achieve
this task in a single shot, however. To see how this works, we let the first string consist
of n qubits, each prepared in the superposition state 2−1/2(|0〉+ |1〉) with the second
string being just a single qubit prepared in the state 2−1/2(|0〉 − |1〉). The oracle then
performs the transformation

2−(n+1)/2(|0〉+ |1〉⊗n)⊗ (|0〉 − |1〉)→ 2−(n+1)/2
2n−1∑

a=0

(−1)f(a)|a〉 ⊗ (|0〉 − |1〉) . (5.15)

If the function is constant then the first string of n qubits remain in their input state,
as equally-weighted superposition of the states |a〉, but if the function is balanced then
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the qubit-string will be in a state orthogonal to this. Hence only a single computation
is required to determine whether the function is constant or balanced. This represents
an improvement over the classical requirement of 2(n−1) + 1 that is exponential in n,
the number of bits. Such dramatic improvements are characteristic of a number of
quantum algorithms, but not all.

5.4 Quantum algorithms

Let us suppose that we have a suitable quantum processor, what might we do with it?
One important thing that we might do is to use it to simulate a complicated quantum
process (Feynman 1982). As quantum systems get larger it becomes ever more difficult
to simulate them; were this not the case, then we could emulate a large quantum com-
puter on a classical one. We might also use a quantum computer to speed-up searching
in an unstructured database using Grover’s algorithm, which provides a dramatic im-
provement (albeit not an exponential one) over classical methods (Grover 1998). The
most dramatic possibility to date, however, is Shor’s algorithm for determining the
two prime factors of a large number. You will recall that it is the difficulty in perform-
ing this task that underlies to security of the RSA public-key cryptosystem and with
it, much of the world’s secure communications (Shor 1997). It was Shor’s proposal
more than any other single factor that truly changed quantum computation, and with
it quantum information, from a small-scale research field into a major international
endeavour. There is space, in these lectures, to present briefly only one quantum al-
gorithm and, because of its significance, we choose Shor’s algorithm. Several others,
including Grover’s algorithm, and a more complete presentation of Shor’s algorithm
may be found in (Barnett 2009).

At the heart of Shor’s algorithm is the remarkable ability of a quantum computer to
perform, highly efficiently, a quantum Fourier transform and hence to find the period
of a function. To see why this helps in factoring, we need to consider an idea from
number theory. We start with three bits of input data: N , the number to be factorized,
m, a small integer chosen at random and the non-negative integers, n = 0, 1, 2, · · ·. We
first make the series FN (n) = mnmodN . If we can then find the period of this function,
r, such that FN (n+ r) = FN (n), then the greatest common divisor of mr/2± 1 and N
divides N . In other words, one of the factors of each of mr/2± 1 is also a prime factor
of N . There are, of course, some additional subtleties, but the number theory to prove
this is by no means difficult, and may be found in Barnett (2009). Let us consider
two examples to demonstrate the idea. Let us consider the problem of factoring 15 by
means of this process. Let us first select m = 2, so that our series is

20mod15 = 1

21mod15 = 2

22mod15 = 4

23mod15 = 8

24mod15 = 1
...

... . (5.16)

We see that the period is 4 and hence
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mr/2 + 1 = 5

mr/2 − 1 = 3 (5.17)

and these are the required prime factors. Let us try another example, m = 11, for
which our series is

110mod15 = 1

111mod15 = 11

112mod15 = 1
...

... , (5.18)

so the period is 2. This gives

mr/2 + 1 = 12

mr/2 − 1 = 10 . (5.19)

The greatest common divisor of 12 and 15 is 3, which is one of the prime factors we
seek and the creates common divisor of 10 and 15 is 5, which is the other factor.

So why do we need a quantum computer to run this seemingly simple algorithm?
The answer is that each step can be run efficiently, even for very large numbers, on
a classical computer with the single exception of finding the period of the function
FN (n). This is a very difficult task and it is no exaggeration to state that it is this
period finding problem that underlies the security of the RSA cryptosysem.

Central to Shor’s algorithm for factoring on a quantum computer is the quantum
Fourier transform (Nielsen and Chuang 2000, Mermin 2007, Barnett 2009). We do not
attempt a detailed account of the quantum Fourier transform, but present instead only
an outline of the steps involved in Shor’s algorithm. It is, perhaps, clearest to give a
list of the five major steps:

Shor’s algorithm to find the two prime factors of N

1. We start by finding two integers, q and M , such that

q = 2M > N2 (5.20)

and prepare two registers, each containing M qubits.

2. We set each on the qubits in the first register to the state 2−1/2(|0〉+ |1〉) and each in
the second register in the state |0〉, so that the state input into our quantum processor
is

|ψ〉 = 1√
q

q−1
∑

n=0

|n〉1 ⊗ |0〉2 , (5.21)

where we have used the short-hand notation

|0〉 = |00 · · · 000〉
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|1〉 = |00 · · · 001〉
|2〉 = |00 · · · 010〉
|3〉 = |00 · · · 011〉
...

... . (5.22)

3. Next we chose an integer m at random and use the quantum processor to entangle
the two registers so that

|ψ〉 → 1√
q

q−1
∑

n=0

|n〉1 ⊗ |mnmodN〉2 . (5.23)

This can be achieved efficiently by means of a unitary transformation on a suitably
programmed quantum computer.

4. Next comes the crucial quantum Fourier transform, which again can be performed
efficiently as a unitary transform on a quantum computer. We use our quantum com-
puter to perform a quantum Fourier transform on the first register to generate the
transformation

1√
q

q−1
∑

n=0

|n〉1 ⊗ |mnmodN〉2 →
1

q

q−1
∑

n=0

q−1
∑

k=0

|k〉1 ⊗ |mnmodN〉2 exp
(

i2π
kn

q

)

. (5.24)

Let us pause to think and see what has been achieved by all of this. The number
mnmodN has period r, which means, of course, that

mn+srmodN = mnmodN , (5.25)

so that we have some identical states in the second register:

|mnmodN〉 = |mn+rmodN〉 = |mn+2rmodN〉 = · · · . (5.26)

The coefficients of these states in our state will have the phases are

exp

(

i2π
k(n+ sr)

q

)

= exp

(

i2π
kn

q

)

× exp

(

i2π
ksr

q

)

, (5.27)

which will be in phase (or nearly in phase) for k ≈ q/r.

5. Finally, we need only measure the first register in the computational basis and we
will find, because of constructive interference, with high probability a value k for which
the amplitude is large, one for which k ≈ q/r, or r ≈ q/k. This allows us to greatly
narrow the range of allowed values of r and hence greatly restrict the range of possible
factors. All possible candidate factors can be checked efficiently and simply by dividing
them into N .

This is just one example, albeit the most prominent and newsworthy, of an effi-
cient quantum algorithm. There are others and the field of quantum algorithm design
promises to gain in importance as the first quantum processors become available.
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5.5 Errors and decoherence

So what stops us building a quantum processor, revolutionising computation and
breaking into RSA? The short answer is that we don’t yet have any suitably scal-
able implementation of quantum logic elements such as qubits and gates.

Many technical challenges remain to be solved before we can build a quantum
computer to challenge current devices based on classical logic. I mention here only one
problem, that of decoherence. In a quantum computer our information is encoded onto
two-state quantum systems, our qubits and these are made to interact with each other
by the implementation of desired Hamiltonians. Yet the quantum natures, both of the
qubits and of the Hamiltonian, makes them extremely sensitive to their environment
and even weak interactions can have a disastrous effect. As an illustration, let us
consider the effect of a single-qubit error in an implementation of Deutsch’s algorithm.
To keep things simple, let us consider only a phase error:

|0〉 → |0〉 |1〉 → −|1〉 , (5.28)

and a bit-flip error
|0〉 → |1〉 |1〉 → |0〉 . (5.29)

Recall that we obtain the desired information, as to whether the computed function is
constant or balanced, by measuring the first qubit to be in the state 2−1/2(|0〉+ |1〉) or
2−1/2(|0〉 − |1〉), respectively. If a bit-flip error occurs for this qubit then we are safe,
but if a phase-error occurs then we get the wrong answer!

Clearly we need to work hard to suppress all sources of errors and decoherence,
but this is not the end of the problem. For large-scale computations we need a large
number of qubits and the scaling is not at all favourable. To see this let us suppose
that the probability that a single qubit has no error in a time t is

exp (−Γt) .
If we have n qubits then the probability that none of these experiences an error in
this time is

exp (−nΓt) ,
which is exponential in n. But worse is to come. Let us suppose that t is the typical
amount of time it takes to perform a single gate operation. If we need a sequence of
m of these then we find

exp (−nmΓt) .

Typically we might need each qubit to interact with every other qubit so m may be of
the same rode as n. We do not need to perform the gate operations one at a time, of
course, and by suitably optimising the order of operations, we might have m ≈ logn
to give a final zero-error probability of

exp (−n lognΓt) . (5.30)

For 300 qubits, the exponent is about 2,000 times smaller than the single-qubit and
single-gate error rate, e−Γt, that we started with. The zero-error probability is the
2, 000th power of the no error probability for a single qubit and a single-gate operation.
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Clearly we need to control sources of decoherence to an extraordinary degree but
ultimately this will always be a losing battle. Is it all hopeless? By no means; the
solution is essentially the same as we encountered in the first lecture. We can combat
errors in a quantum computer by redundancy, just as we do to combat classical errors.
This is a more subtle problem than in the classical regime, however. Firstly there is the
no-cloning theorem which tells us that we cannot literally make multiple copies of our
qubits and there is also the problem that quantum measurements, if not performed
carefully, will modify the very qubit states that we are trying to protect. Nevertheless,
there are protocols detecting and correcting qubit errors. Perhaps the most important
of these is the Steane code, in which each logical qubit is ended onto seven logical
qubits (Steane 1996, Barnett 2009), but a description of how this works will have to
wait for next time.
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