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In this paper, we consider an exchange economy à la Shitovitz
(1973), with atoms and an atomless set. We associate with it a strategic
market game of the kind first proposed by Lloyd S. Shapley and known
as the Shapley window model. We analyze the relationship between the
set of the Cournot-Nash equilibrium allocations of the strategic market
game and the Walras equilibrium allocations of the exchange economy
with which it is associated. We show, with an example, that even when
atoms are countably infinite, any Cournot-Nash equilibrium allocation
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economy. Accordingly, in the original spirit of Cournot (1838), we par-
tially replicate the mixed exchange economy by increasing the number
of atoms, without affecting the atomless part, and ensuring that the
measure space of agents remains finite. We show that any sequence
of Cournot-Nash equilibrium allocations of the strategic market games
associated with the partially replicated exchange economies approxi-
mates a Walras equilibrium allocation of the original exchange econ-
omy.
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Via Tomadini 30, 33100 Udine, Italy.

‡Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Udine,
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1 Introduction

A large literature has been developed in the past decades, aiming at extend-
ing to a general equilibrium framework the classical Cournot (1838)’s theory
of oligopoly, where oligopolistic agents that interact noncooperatively among
them face a sector of consumers taking prices as given. The relevance of this
issue nowadays has been affirmed by Jean Gabszewicz in a recent contribu-
tion (see Gabszewicz (2013), p. 6): “Direct observation of economic activity
reveals that markets are the fields of “giants,” operating simultaneously with
a fringe of small competitors. [...] Behind the demand function there is a
myriad of “small” price-taking agents, while the supply side is occupied by
few agents appearing as giants, contrasting with the dwarfs on the demand
side.”

Most of the contributions on this issue belongs to two main lines of re-
search: the Cournot-Walras equilibrium approach, initiated by Gabszewicz
and Vial (1972), and the strategic market game approach, initiated by Shap-
ley and Shubik (1977).

In their 1972’s paper, Gabszewicz and Vial transposed to a general equi-
librium setting Cournot’s original idea of an asymmetric economy with pro-
duction, in which firms with oligopolistic power that interact strategically
on quantities face a sector of consumers behaving à la Walras. Nevertheless,
in the same paper, they pointed out two major difficulties inherent in the
standard Cournotian approach with strategic firms: first, profit maximiza-
tion may not be a rational objective for firms that have influence on prices;
second, the equilibrium is not independent from the rule chosen to normal-
ize prices. These difficulties have been overcome within the Cournot-Walras
approach by moving to the analysis of pure exchange economies (see Codog-
nato and Gabszewicz (1993), d’Aspremont, Dos Santos Ferreira, and Gérard-
Varet (1997), Gabszewicz and Michel (1997), Shitovitz (1997), among oth-
ers). However, this latter class of models do not avoid a well-known problem
inherent in the Cournot-Walras approach: there, an equilibrium may not ex-
ists, even in mixed strategies, since the Walras price correspondence may fail
to admit a continuous selection (see Dierker and Grodal (1986)). A further
fundamental problem common to the whole Cournot-Walras approach is
that it leaves unexplained why some agents behave strategically while other
agents behave competitively.

A different approach has been developed (still in pure exchange), that
uses strategic market games à la Shapley and Shubik with the aim at provid-
ing a formal explanation of perfectly and imperfectly competitive behavior.
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A fundamental contribution in this line is the paper of Okuno, Postlewaite
and Roberts (1980). In particular, since the work of these authors, results
in this direction have been obtained by incorporating within the framework
of strategic market games a mixed measure space of traders à la Shitovitz
(1973), composed by large traders, represented as atoms, and small traders,
represented by an atomless part. In this setting, while all agents have a
priori the same strategic position, some of them turn out to have influence
on prices and some other turn out to be Walrasian, depending on their char-
acteristics and their weight in the economy. Then, the asymmetric structure
typical of the Cournotian theory is endogenously generated.

Busetto, Codognato, and Ghosal ((2008), (2011)) obtained a general-
ization of Okuno et al.’s work by using a mixed version of the Cournot-
Nash equilibrium model first proposed by Lloyd S. Shapley, and known as
the Shapley window model (this model was analyzed, in the case of finite
economies, by Sahi and Yao (1989)). Busetto et al. (2011) provided an
endogenous explanation of oligopolistic and competitive behavior (see also
Busetto, Codognato, and Ghosal (2013)). Moreover, working within this
strategic market game framework permitted them to show the existence of
an equilibrium in pure strategies, and then to overcome the non-continuity
problem which characterizes the Cournot-Walras approach.

This paper studies the link between Cournot and Walras equilibrium,
with the aim at providing a noncooperative foundation to the theory of per-
fect competition. A mixed exchange economy à la Shitovitz is associated
with the same strategic market game à la Shapley proposed by Busetto
et al. (2011). Within this framework, the relationship between the set of
the Cournot-Nash equilibrium allocations of the strategic market game and
the Walras equilibrium allocations of the underlying exchange economy is
examined. We show, with an example, that even when the set of atoms is
countably infinite, there is the robust possibility that no Cournot-Nash equi-
librium allocation of the strategic market game is a Walras equilibrium of the
underlying exchange economy, because some atoms remain non-negligible in
size. This non equivalence result then motivates us to analyze the asymp-
totic relationship between appropriately defined sequences of Cournot-Nash
equilibrium allocations of the strategic market game and the Walras equi-
librium allocations of the exchange economy. We do this by introducing
a concept of replication which we call à la Cournot, since it extends to
a general equilibrium context the original Cournotian idea of replication:
that is, we partially replicate the economy by increasing only the number
of atoms, this way making them asymptotically negligible, without affect-
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ing the atomless part. At the same time, the mechanism of replication of
atoms is constructed in such a way that the measure space of traders re-
mains finite. If this requirement was not satisfied, the general equilibrium
model of oligopoly studied in the paper would not be well-defined. Our
main theorem establishes that any sequence of Cournot-Nash equilibrium
allocations of the strategic market game associated with the partially repli-
cated exchange economies approaches a Walras equilibrium allocation of the
original exchange economy.

To prove the limit theorem, we use analytical tools introduced by Sahi
and Yao (1989) to show their convergence result for finite economies, and
by Codognato and Ghosal (2000) to show their equivalence theorem à la
Aumann. However, we have to tackle new technical issues due to the fact
that the space of traders has a mixed nature. To this end, we exploit some
tools previously applied to the Shapley’s window model for mixed economies
by Busetto et al. (2011). In particular, in order to determine the limit
points of the sequences of Cournot-Nash equilibrium allocations, we use
a version of the Fatou’s lemma in several dimensions proved by Artstein
(1979). Moreover, a key point in our paper is that since the Walrasian price
taking behavior of small traders is not assumed a priori, as in the Cournot-
Walras equilibrium models, but endogenously generated, we do not need to
impose any continuity assumption on the selections from the Walras price
correspondence.

The general equilibrium approach adopted here distinguishes our limit
result from the well-known results, obtained within the Cournotian tradition
in partial equilibrium establishing that the Cournot equilibrium approaches
the competitive equilibrium as the number of oligopolists goes to infinity
(see Frank (1965), Ruffin (1971), Novshek (1980), among others).

Our limit result is also different from existing results in the strategic
market game literature: within their Shapley’s window model for finite
economies, Sahi and Yao (1989) showed the convergence of sequences of
Cournot-Nash equilibrium allocations to a Walras equilibrium allocation by
using a replication concept à la Edgeworth, that is in which all types of agents
are replicated (on this kind of replication see Debreu and Scarf (1963)).

On the other hand, Codognato and Ghosal (2000) showed that the set
of the Cournot-Nash equilibrium allocations of the Shapley’s model and the
set of the Walras equilibrium allocations coincide in economies à la Aumann
(1964), where the space of agents is an atomless continuum.

Analogous results for limit exchange economies are obtained within the
Cournot-Walras approach by Codognato and Gabszewicz (1993), for their
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prototypical model in pure exchange, and by Busetto et al. (2013), for the
new version of this model proposed by the same authors in the 2008’s paper.

Also limit results were obtained within the line opened by Gabszewicz
and Vial: see Roberts (1980), Mas-Colell (1983), and Novshek and Sonnen-
schein ((1983), (1987)), among others. All of them are obtained by using
replication concepts in which all types of agents are replicated. Moreover,
as stressed by Mas-Colell (1982) (see, in particular, pp. 203-204)), these
results depend in an essential way on the assumption that there exists a
continuous selection from the Walras price correspondence.

The paper is organized as follows. In Section 2, we build the mathemat-
ical model. In Section 3, we introduce the notion of a δ-positive Cournot-
Nash equilibrium used in the construction of the limit theorem, and we state
a theorem on its existence (the proof is in the Appendix). In Section 4, we
show the example on the non-equivalence between the sets of Cournot-Nash
and Walras equilibrium allocations when the atoms are countably infinite.
In Section 5, we introduce the replication à la Cournot. In Section 6, we
state the existence of a δ-positive atom-type-symmetric Cournot-Nash equi-
librium (the proof is in the Appendix). In Section 7, we state and prove the
limit theorem.

2 The mathematical model

We consider a pure exchange economy, E , with large traders, represented
as atoms, and small traders, represented by an atomless part. The space
of traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout
the paper. Thus, a statement asserted for “all” traders, or “each” trader,
or “each” trader in a certain set is to be understood to hold for all such
traders except possibly for a null set of traders. The word “integrable” is to
be understood in the sense of Lebesgue.

In the exchange economy, there are l different commodities. A com-
modity bundle is a point in Rl

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → Rl

+. There is a fixed initial
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assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T .

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B(Rl
+) denote the Borel σ-algebra of Rl

+. Moreover, let T ⊗B
denote the σ-algebra generated by all the sets E × F such that E ∈ T and
F ∈ B.
Assumption 3. u : T × Rl

+ → R, given by u(t, x) = ut(x), for each t ∈ T
and for each x ∈ Rl

+, is T
⊗B-measurable.

We also need the following assumption (see Sahi and Yao (1989)).

Assumption 4. There are at least two traders in T1 for whom w(t) À 0,
ut is continuously differentiable in Rl

++, and {x ∈ Rl
+ : ut(x) = ut(w(t))} ⊂

Rl
++.

A price vector is a nonnull vector p ∈ Rl
+.

A Walras equilibrium of E is a pair (p∗,x∗), consisting of a price vector
p∗ and an allocation x∗, such that, for each t ∈ T , ut(x

∗(t)) ≥ ut(y), for all
y ∈ {x ∈ Rl

+ : p∗x = p∗w(t)}.
We define now the strategic market game, Γ, associated with E .
A strategy correspondence is a correspondence B : T → P(Rl2) such

that, for each t ∈ T , B(t) = {b ∈ Rl2
+ :

∑l
j=1 bij ≤ wi(t), i = 1, . . . , l},

where bij , i, j = 1, . . . , l, represents the amount of commodity i that trader
t offers in exchange for commodity j. A strategy selection is an integrable
function b : T → Rl2

+, such that, for each t ∈ T , b(t) ∈ B(t). Given
a strategy selection b, we define the aggregate matrix B̄ = (

∫
T bij(t) dµ).

Moreover, we denote by b \ b(t) a strategy selection obtained by replacing
b(t) in b with b ∈ B(t). With a slight abuse of notation, b \ b(t) will also
represent the value of the strategy selection b \ b(t) at t.

Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix A is said to be irreducible if,
for every pair (i, j), with i 6= j, there is a positive integer k = k(i, j) such

that a
(k)
ij > 0, where a

(k)
ij denotes the ij-th entry of the k-th power Ak of A.

6



Definition 2. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ Rl
++,

l∑

i=1

pib̄ij = pj(
l∑

i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0, otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi

pj
, if p ∈ Rl

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
Given a strategy selection b and the function p(b), the traders’ final

holdings are determined according with this rule and consequently expressed
by the assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T . It is straightforward to show that this assignment is an
allocation.

We are now able to define a Cournot-Nash equilibrium of Γ (see Codog-
nato and Ghosal (2000) and Busetto et al. (2011)).

Definition 3. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium of Γ if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),

for each b ∈ B(t) and for each t ∈ T .1

1Let us notice that, as this definition of a Cournot-Nash equilibrium explicitly refers
to irreducible matrices, it applies only to active equilibria of Γ, (on this point, see Sahi
and Yao (1989)).
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3 The existence of a δ-positive Cournot-Nash equi-
librium of Γ

In this section, we define the notion of a δ-positive Cournot-Nash equilib-
rium, which was first used by Sahi and Yao (1989) to prove their existence
theorem for the finite version of the Shapley’s model and their limit result.
We will use it, in this paper, for analogous purposes.

Let T̄1 ⊂ T1 be a set consisting of two traders in T1 for whom As-
sumption 4 holds. Moreover, let δ = mint∈T̄1

{1
l min{w1(t), . . . ,wl(t)}}.

We say that the correspondence Bδ : T → P(Rl2
+) is a δ-positive strat-

egy correspondence if Bδ(t) = B(t) ∩ {b ∈ Rl2
+ :

∑
i6∈J

∑
j∈J(bij + bji) ≥

δ, for each J ⊆ {1, . . . , l}}, for each t ∈ T̄1 and if Bδ(t) = B(t), for the
remaining traders t ∈ T . Moreover, we say that a strategy selection b is δ-
positive if b(t) ∈ Bδ(t), for each t ∈ T . Finally, we say that a Cournot-Nash
equilibrium b̂ of Γ is δ-positive if b̂ is a δ-positive strategy selection.

The following theorem shows the existence of a δ-positive Cournot-Nash
equilibrium of Γ. It is a straightforward consequence of the existence theo-
rem in Busetto et al. (2011).

Theorem 1. Under Assumptions 1, 2, 3, and 4, there exists a δ-positive
Cournot-Nash equilibrium of Γ, b̂

Proof. See the Appendix.

4 An example

Sahi and Yao (1989) formalized the Shapley’s window model in the context
of an exchange economy with a finite set of traders. Codognato and Ghosal
(2000) reconsidered the Sahi and Yao’s model within an exchange economy
with an atomless continuum of traders. In this framework, they showed an
equivalence result à la Aumann (1964) between the set of the Cournot-Nash
equilibrium allocations of the window model and the set of the Walras equi-
librium allocations of the underlying exchange economy. The mixed measure
space we are considering here may contain countably infinite atoms. This
raises the question whether an equivalence result can be obtained also in
this case. The following example analyzes an exchange economy E with
countably infinite atoms and it shows that any Cournot-Nash equilibrium
allocation of the strategic market game Γ is not a Walras equilibrium allo-
cation of E .
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Example. Consider an exchange economy E where l = 2, T1 = T ′
1 ∪ T ′′

1 ,
T ′
1 = {2, 3}, T ′′

1 = {4, 5, . . .}, T0 = [0, 1]; w(2) = w(3) À 0, w(t) = (0, 1), for
each t ∈ T ′′

1 ∪ T0; ut(·) satisfies Assumptions 2 and 3, for each t ∈ T , u2(·)
and u3(·) satisfy Assumption 4, u2(x) = u3(x), ut(x) > ut(y), whenever
x ∈ Rl

++ and y ∈ (Rl
+ \ Rl

++), for each t ∈ T ′′
1 ∪ T0; µ is the Lebesgue

measure, when restricted to T0, and µ(t) = (12)
t, for each t ∈ T1. Then, if b̂

is a Cournot-Nash equilibrium of Γ, the pair (p̂, x̂) such that p̂ = p(b̂) and
x̂(t) = x(t, b̂(t), p̂), for each t ∈ T , is not a Walras equilibrium of E .
Proof. Suppose that b̂ is a Cournot-Nash equilibrium of Γ and that the
pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for each t ∈ T , is
a Walras equilibrium of E . Clearly, b̂21(t) > 0, for each t ∈ T ′′

1 ∪ T0. Let
v =

∫
T ′′
1 ∪T0

b̂21(t) dµ. At a Cournot-Nash equilibrium, for each t ∈ T ′
1, the

marginal rate of substitution must be equal to the rate at which he can trade
off commodity 1 for commodity 2 (see Okuno et al. (1980)). Moreover, at a
Walras equilibrium, this marginal price must be in turn equal to the relative
price of commodity 1 in terms of commodity 2. These two conditions are
expressed by the following equations:

dx2
dx1

= −(p̂1)2
b̂12(t)

b̂21(t) + v
= −p̂1,

for each t ∈ T ′
1. But then, we must also have

b̂21(2) + v

b̂12(2)
=

b̂21(2) + b̂21(3) + v

b̂12(2) + b̂12(3)
=

b̂21(3) + v

b̂12(3)
. (2)

The last equality in (2) holds if and only if b̂21(2) = z(b̂21(3) + v) and
b̂12(2) = zb̂12(3), with z > 0. But then, the first and the last members of
(2) cannot be equal because

z(b̂21(3) + v) + v

zb̂12(3)
6= b̂21(3) + v

b̂12(3)
.

This implies that the pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂),
for each t ∈ T , cannot be a Walras equilibrium of E .

The example shows that the condition that E contains a countably in-
finite number of atoms is not sufficient to guarantee that the set of the
Cournot-Nash equilibrium allocations of Γ coincides with the set of the Wal-
ras equilibrium allocations of E .
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5 The replication à la Cournot of E
The non equivalence result obtained in the previous section leads us to deal
with the question whether a limit result can be instead obtained by replicat-
ing the exchange economy E and by generating sequences of Cournot-Nash
equilibrium allocations which converge to a Walras equilibrium allocation.

We address this question by introducing a concept of replication in the
original spirit of Cournot (1838). By analogy with the replication proposed
by Cournot in a partial equilibrium framework, the concept we propose is
obtained in fact by replicating only the atoms of E , while making them
asymptotically negligible, and without affecting the atomless part.

This partial replication à la Cournot of E can be formalized as follows.
Let En be an exchange economy characterized as in Section 2, where each
atom is replicated n times. For each t ∈ T1, let tr denote the r-th element of
the n-fold replication of t. We assume that, for each t ∈ T1, w(tr) = w(ts) =

w(t), utr(·) = uts(·) = ut(·), r, s = 1, . . . , n, and µ(tr) = µ(t)
n , r = 1, . . . , n.

Clearly, E1coincides with E .
Then, the strategic market game Γn associated with En can be character-

ized, mutatis mutandis, as in Section 2. Clearly, Γ1 coincides with Γ. A strat-
egy selection b of Γn is said to be atom-type-symmetric if bn(tr) = bn(ts),
r, s = 1, . . . , n, for each t ∈ T1.

We provide now the definition of an atom-type-symmetric Cournot-Nash
equilibrium of Γn.

Definition 4. A strategy selection b̂ such that ¯̂B is irreducible is an atom-
type-symmetric Cournot-Nash equilibrium of Γn if b̂ is atom-type-symmetric
and if

utr(x(tr, b̂(tr), p(b̂))) ≥ utr(x(tr, b̂ \ b(tr), p(b̂ \ b(tr)))),
for each b ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
for each b ∈ B(t) and for each t ∈ T0.

6 The existence of a δ-positive atom-type-symmetric
Cournot-Nash equilibrium of Γn

In this section, we introduce the notion of a δ-positive atom-type-symmetric
Cournot-Nash equilibrium of Γn. Moreover, we state and prove that an
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equilibrium of this kind exists under Assumptions 1, 2, 3, and 4. This result
is needed to show our limit theorem by using the replication à la Cournot
introduced in Section 5.

Let δ be determined as in Section 3. Also a δ-positive strategy corre-
spondence, Bδ, is defined, mutatis mutandis, as in Section 3. Notice that
Bδ(tr) = Bδ(ts), r, s = 1, . . . , n, for each t ∈ T1. We say that a strategy
selection b is δ-positive if b(tr) ∈ Bδ(tr), r = 1, . . . , n, for each t ∈ T1, and
b(t) ∈ Bδ(t), for each t ∈ T0. Then, we say that an atom-type-symmetric
Cournot-Nash equilibrium b̂ of Γn is δ-positive if b̂ is a δ-positive strategy
selection.

The following theorem establishes the existence of a δ-positive atom-
type-symmetric Cournot-Nash equilibrium of Γn. The proof of the theorem
adapts to our context tools and arguments developed by Say and Yao (1989)
and Busetto et al (2011) to show the existence of a Cournot-Nash equilibrium
of the Shapley’s window model, respectively in the case of a finite set of
traders and in the case of a mixed measure space of traders à la Shitovitz.

Theorem 2. Under Assumptions 1, 2, 3, and 4, there exists a δ-positive
atom-type-symmetric Cournot-Nash equilibrium of Γn, b̂.

Proof. See the Appendix.

7 The limit theorem

In this section, we state and prove the limit theorem. It establishes that
the sequences of Cournot-Nash equilibrium allocations generated by repli-
cating E à la Cournot approximate a Walras equilibrium allocation of the
economy. In particular, the theorem shows that, given a sequence of atom-
type-symmetric Cournot-Nash equilibrium allocations of Γn, for n = 1, 2, . . .,
there exists a Walras equilibrium allocation of E with this property: for each
trader t ∈ T , the assigment corresponding to this Walras equilibrium allo-
cation is a limit point of the sequence of final holdings of t associated with
the sequence of atom-type-symmetric Cournot-Nash equilibria of Γn, for
n = 1, 2, . . ..

Theorem 3. Under Assumptions 1, 2, 3, and 4, let {b̂n} be a sequence of
strategy selections of Γ and let {p̂n} be a sequence of prices such that b̂n(t) =
b̂Γn

(tr), r = 1, . . . , n, for each t ∈ T1, b̂
n(t) = b̂Γn

(t), for each t ∈ T0, and
p̂n = p(b̂Γn

), where b̂Γn
is a δ-positive atom-type-symmetric Cournot-Nash

equilibrium of Γn, for n = 1, 2, . . .. Then, (i) there exists a subsequence
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{b̂kn} of the sequence {b̂n}, a subsequence {p̂kn} of the sequence {p̂n}, a
strategy selection b̂ of Γ, and a price vector p̂, with p̂ À 0, such that b̂(t)
is the limit of the sequence {b̂kn(t)}, for each t ∈ T1, b̂(t) is a limit point

of the sequence {b̂kn(t)}, for each t ∈ T0, the sequence {B̂kn} converges

to ¯̂B, and the sequence {p̂kn} converges to p̂; (ii) x̂(t) is the limit of the
sequence {x̂kn(t)}, for each t ∈ T1, and x̂(t) is a limit point of the sequence
{x̂kn(t)}, for each t ∈ T0, where x̂(t) = x(t, b̂(t), p̂) for each t ∈ T , x̂kn(t) =
x(t, b̂kn(t), p̂kn), for each t ∈ T , and for n = 1, 2, . . .; (iii) the pair (p̂, x̂) is a
Walras equilibrium of E .
Proof. (i) Let {b̂n} be a sequence of strategy selections of Γ and let {p̂n}
be a sequence of prices such that b̂n(t) = b̂Γn

(tr), r = 1, . . . , n, for each
t ∈ T1, b̂n(t) = b̂Γn

(t), for each t ∈ T0, and p̂n = p(b̂Γn
), where b̂Γn

is a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γn, for

n = 1, 2, . . .. The fact that the sequence {B̂n} belongs to the compact
set {bij ∈ Rl2 : bij ≤ ∫

T wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, the sequence {b̂n(t)} belongs to the com-

pact set Bδ(t), for each t ∈ T1, and the sequence {p̂n}, belongs, by Lemma
9 in Sahi and Yao, to a compact set P, implies that there is a subse-

quence {B̂kn} of the sequence {B̂n} which converges to an element of the
set {bij ∈ Rl2 : bij ≤ ∫

T wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, a subsequence {b̂kn(t)} of the sequence

{b̂n(t)} which converges to an element of the set Bδ(t), for each t ∈ T1,
and a subsequence {p̂kn} of the sequence {p̂n} which converges to an el-
ement p̂ of the set P . Moreover, by Lemma 9 in Sahi and Yao, p̂ À 0.
Since the sequence {b̂kn} satisfies the assumptions of Theorem A in Art-
stein (1979), there is a function b̂ such that b̂(t) is the limit of the sequence
{b̂kn(t)}, for each t ∈ T1, b̂(t) is a limit point of the sequence {b̂kn(t)},
for each t ∈ T0, and such that the sequence {B̂kn} converges to ¯̂B. (ii)
Let x̂(t) = x(t, b̂(t), p̂) for each t ∈ T , x̂kn(t) = x(t, b̂kn(t), p̂kn), for each
t ∈ T , and for n = 1, 2, . . .. Then, x̂(t) is the limit of the sequence {x̂kn(t)},
for each t ∈ T1, as b̂(t) is the limit of the sequence {b̂kn(t)}, for each
t ∈ T1, and the sequence {p̂kn} converges to p̂, x̂(t) is a limit point of
the sequence {x̂kn(t)}, for each t ∈ T0, as b̂(t) is a limit point of the
sequence {b̂kn(t)}, for each t ∈ T0, and the sequence {p̂kn} converges to

p̂. (iii) B̂Γn = B̂n as b̂Γn

ij =
∑

t∈T1

∑n
r=1 b̂

Γn

ij (tr)µ(tr) +
∫
t∈T0

b̂Γn

ij (t) dµ =
∑

t∈T1
nb̂n

ij(t)
µ(t)
n +

∫
t∈T0

b̂n
ij(t) dµ =

∑
t∈T1

b̂n
ij(t)µ(t)+

∫
t∈T0

b̂n
ij(t) dµ = b̂n

ij ,
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i, j = 1, . . . , l, for n = 1, 2, . . .. Then, p̂n = p(b̂n) as p̂n and b̂n satisfy (1), for
n = 1, 2, . . .. But then, by continuity, p̂ and b̂ must satisfy (1). Therefore,

Lemma 1 in Sahi and Yao implies that
¯̂
B is completely reducible. More-

over, b̂(t) ∈ Bδ(t) since b̂(t) is a limit point of the sequence {b̂kn(t)}, for
all t ∈ T . Then, b̂ is δ-positive. But then, by Remark 3 in Sahi and Yao,
¯̂
B must be irreducible. Consider the pair (p̂, x̂). It is straightforward to
show that the assignment x̂ is an allocation as p̂ and b̂ satisfy (1) and that
x̂(t) ∈ {x ∈ Rl

+ : p̂x = p̂w(t)}, for all t ∈ T . Suppose that (p̂, x̂) is not a
Walras equilibrium of E . Then, there exists a trader τ ∈ T and a commodity
bundle x̃ ∈ {x ∈ Rl

+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)). By Lemma

5 in Codognato and Ghosal (2000), there exist λ̃j ≥ 0,
∑l

j=1 λ̃
j = 1, such

that

x̃j = λ̃j

∑l
i=1 p̂

iwi(τ)

p̂j
, j = 1, . . . , l.

Let b̃ij = wi(τ)λ̃j , i, j = 1, . . . , l. Then, it is straightforward to verify that

x̃j = wj(τ)−
l∑

i=1

b̃ji +
l∑

i=1

b̃ij
p̂i

p̂j
,

for each j = 1, . . . , l. Consider the following cases.
Case 1. τ ∈ T1. Let {hn} denote a sequence such that hn = kn, if
k1 > 1, hn = kn+1, otherwise, for n = 1, 2, . . .. Let ρ denote the k1-th

element of the n-fold replication of E and let B̂Γhn \ b̃(τρ) denote the ag-

gregate matrix corresponding to the strategy selection b̂Γhn \ b̃(τρ), where
b̃(τρ) = b̃, for n = 1, 2, . . .. Let ∆B̂Γhn , ∆B̂Γhn \ b̃(τρ), and ∆B̂hn denote

the diagonal matrices of row sums of, respectively, B̂Γhn , B̂Γhn \ b̃(τρ), and
B̂hn , for n = 1, 2, . . .. Moreover, let qΓ

hn
, qΓ

hn

τρ , and qhn denote the vec-

tors of the cofactors of the first column of, respectively, ∆B̂Γhn − B̂Γhn ,

∆B̂Γhn \ b̃(τρ) − B̂Γhn \ b̃(τρ), and ∆B̂hn − B̂hn , for n = 1, 2, . . .. Clearly,

qΓ
hn

= qhn as B̂Γhn = B̂hn , for n = 1, 2, . . .. Let ∆
¯̂
B be the diagonal matrix

of row sums of
¯̂
B and q be the cofactors of the first column of ∆

¯̂
B− ¯̂

B. The

sequences {qΓhn} and {qhn} converge to q as the sequence B̂hn converges

to
¯̂
B and qΓ

hn
= qhn , for n = 1, 2, . . .. Let w̄ = max{w1(τ), . . . ,wl(τ)}.

Consider the matrix B̂Γhn − B̂Γhn \ b̃(τρ), for n = 1, 2, . . .. Then, b̂Γhn

ij −
b̂Γhn

ij \ b̃ij(τρ) = ( 1n b̂
Γhn

ij (τρ) − 1
n b̃ij(τρ)), i, j = 1, . . . , l, for n = 1, 2, . . ..

But then, the sequence of Euclidean distances {‖B̂Γhn − B̂Γhn \ b̃(τρ)‖}

13



converges to 0 as | 1n b̂Γhn

ij (τρ) − 1
n b̃ij(τρ)|= 1

n |b̂Γhn

ij (τρ) − b̃ij(τρ)| ≤ 1
n w̄,

i, j = 1, . . . , l, n = 1, 2, . . .. The sequence {B̂Γhn \ b̃(τρ)} converges to
¯̂
B as, by the triangle inequality, ‖B̂Γhn \ b̃(τρ)} − ¯̂

B‖ ≤ ‖B̂Γhn − B̂Γhn \
b̃(τρ)‖+‖B̂Γhn − ¯̂

B‖ = ‖B̂Γhn − B̂Γhn \ b̃(τρ)‖+‖B̂hn − ¯̂
B‖, for n = 1, 2, . . .,

and the sequences {‖B̂Γhn − B̂Γhn \ b̃(τρ)‖} and {‖B̂hn − ¯̂
B‖} converge to 0.

Then, the sequence {qΓhn

τρ } converges to q. uτρ(x(τρ, b̂
Γhn

(τρ), p(b̂Γhn
))) ≥

uτρ(x(τρ, b̂
Γhn \ b̃(τρ), p(b̂Γhn \ b̃(τρ)))) as b̂Γhn

is a δ-positive atom-type-
symmetric Cournot-Nash equilibrium of Γhn , for n = 1, 2, . . .. Let b̂hn \ b̃(τ)
be a strategy selection obtained by replacing b̂hn(τ) in b̂hn with b̃, for

n = 1, 2, . . .. Then, uτ (x(τ, b̂
hn(τ), qΓ

hn
)) ≥ uτ (x(τ, b̂

hn \ b̃(τ), qΓ
hn

τρ )) as

b̂hn(τ) = b̂Γhn
(τρ), p(b̂Γhn

) = αhnq
Γhn

, with αhn > 0, by Lemma 2 in

Sahi and Yao, b̂Γhn \ b̃(τρ) = b̂hn \ b̃(τ), and p(b̂Γhn \ b̃(τρ)) = βhnq
Γhn

τρ ,
with βhn > 0, by Lemma 2 in Sahi and Yao, for n = 1, 2, . . .. But then,
uτ (x̂(τ)) ≥ uτ (x̃), by Assumption 2, as the sequence {b̂hn(τ)} converges to

b̂(τ), the sequence {qΓhn} converges to q, the sequence {qΓhn

τρ } converges to
q, and p̂ = θq, with θ > 0, by Lemma 2 in Sahi and Yao, a contradiction.
Case 2. τ ∈ T0. Let {b̂hkn (τ)} be a subsequence of the sequence {b̂kn(τ)}
which converges to b̂(τ). Moreover, let b̂Γhkn \ b̃(τ) be a strategy se-

lection obtained by replacing b̂hkn (τ) in b̂Γhkn with b̃, for n = 1, 2, . . ..

uτ (x(τ, b̂
Γhkn (τ), p(b̂Γhkn ))) ≥ uτ (x(τ, b̂

Γhkn \b̃(τ), p(b̂Γhkn \b̃(τ)))) as b̂Γhkn

is a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γhkn , for
n = 1, 2, . . .. Let b̂hkn \ b̃(τ) be a strategy selection obtained by replacing
b̂hkn (τ) in b̂hkn with b̃, for n = 1, 2, . . ... Then, uτ (x(τ, b̂

hkn (τ), p̂hkn )) ≥
uτ (x(τ, b̂

hkn \ b̃(τ), p̂hkn )) as b̂hkn (τ) = b̂Γhkn (τ), p̂hkn = p(b̂Γhkn ), b̂Γhkn \
b̃(τ) = b̂hkn \ b̃(τ), and p̂hkn = p(b̂Γhkn \ b̃(τ)). But then, uτ (x̂(τ)) ≥ uτ (x̃),
by Assumption 2, as the sequence {b̂hkn (τ)} converges to b̂(τ) and the se-
quence {phkn} converges to p̂, a contradiction.

Hence, the pair (p̂, x̂) is a Walras equilibrium of E .

8 Appendix

Proof of Theorem 1. Busetto et al. (2011) showed that, under Assump-
tions 1, 2, 3, and 4, there exists a Cournot-Nash equilibrium of Γ, b̂, such
that, for each t ∈ T , b̂(t) ∈ Bδ(t). This implies that b̂ is a δ-positive
Cournot-Nash equilibrium of Γ.
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Proof of Theorem 2. Let us introduce a slightly perturbed version of the
game Γn, denoted by Γn(ε). Given ε > 0 and a strategy selection b, we
define the aggregate bid matrix B̄ε = (b̄ij + ε). Clearly, the matrix B̄ε is
irreducible. The interpretation is that an outside agency places fixed bids
of ε for each pair of commodities (i, j). Given ε > 0, we denote by pε(b) the
function which associates, with each strategy selection b, the unique, up to
a scalar multiple, price vector which satisfies

l∑

i=1

pi(b̄ij + ε) = pj(
l∑

i=1

(b̄ji + ε)), j = 1, . . . , l. (3)

Then, let us introduce the following notion of equilibrium for Γn(ε).

Definition 5. Given ε > 0, a strategy selection b̂ε is an atom-type-symmetric
ε-Cournot-Nash equilibrium of Γn(ε) if b̂ε is atom-type-symmetric and

utr(x(tr, b̂
ε(tr), pε(b̂ε))) ≥ utr(tr, b̂

ε \ b(tr), pε(b̂ε \ b(tr)))),

for all b ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂
ε(t), pε(b̂ε))) ≥ ut(t, b̂

ε \ b(t), pε(b̂ε \ b(t)))),

for all b ∈ B(t) and for each t ∈ T0.

Moreover, we say that an atom-type-symmetric ε-Cournot-Nash equilib-
rium b̂ε of Γn(ε) is δ-positive if b̂ε is a δ-positive strategy selection.

To show Theorem 2, we first need to prove the existence of a δ-positive
atom-type-symmetric ε-Cournot-Nash equilibrium of Γn(ε). To do so, we
apply, as in Busetto et al. (2011), the Kakutani-Fan-Glicksberg Theorem
(see Theorem 17.55 in Aliprantis and Border (2006), p. 583).

We neglect, as usual, the distinction between integrable functions and
equivalence classes of such functions and denote by L1(µ,R

l2) the set of
integrable functions taking values in Rl2 , by L1(µ,B(·)) the set of strategy
selections, and by L1(µ,B

∗(·)) the set of atom-type-symmetric strategy se-
lections. Note that the locally convex Hausdorff space we shall be working
in is L1(µ,R

l2), endowed with its weak topology.
The proof of existence of a δ-positive atom-type-symmetric ε-Cournot-

Nash equilibrium of Γn(ε) is articulated in three lemmas.
The first lemma establishes the properties of L1(µ,B

∗(·)) required to
apply the Kakutani-Fan-Glicksberg Theorem.
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Lemma 1. The set L1(µ,B
∗(·)) is nonempty, convex and weakly compact.

Proof. L1(µ,B
∗(·)) is nonempty, convex and it has a weakly compact clo-

sure by the same argument used by Busetto et al. (2011) to prove their
Lemma 1. Now, let {bm} be a convergent sequence of L1(µ,B

∗(·)). Since
L1(µ,R

l2) is complete, {bm} converges in the mean to an integrable func-
tion b. But then, there exists a subsequence {bkm} of {bm} such that
bkm(tr) converges to b(tr), r = 1, . . . , n, for each t ∈ T1, and bkm(t) con-
verges to b(t), for each t ∈ T0 (see Theorem 25.5 in Aliprantis and Burkin-
shaw (1998), p. 203). The compactness of B(t), for each t ∈ T , and the
fact that bkm(tr) = bkm(ts), r, s = 1, . . . , n, for each t ∈ T1, implies that
b ∈ L1(µ,B

∗(·)). Hence L1(µ,B
∗(·)) is norm closed and, since it is also

convex, it is weakly closed (see Corollary 4 in Diestel (1984), p. 12).

Now, given ε > 0, let αε
tr : L1(µ,B

∗(·)) → B(tr) be a correspondence
such that αε

tr(b) = argmax{utr(x(t,b\b(tr), pε(b\b(tr)))) : b ∈ B(tr)}, r =
1, . . . , n, for each t ∈ T1, and let αε

t : L1(µ,B(·)) → B(t) be a correspondence
such that αε

t(b) = argmax{ut(x(t,b\ b(t), pε(b\ b(t)))) : b ∈ B(t)}, for each
t ∈ T0. Let αε : L1(µ,B

∗(·)) → L1(µ,B(·)) be a correspondence such
that αε(b) = {b ∈ L1(µ,B(·)) : b(tr) ∈ αε

tr(b), r = 1, . . . , n, for each t ∈
T1, and b(t) ∈ αε

t(b), for each t ∈ T0}.
The second lemma provides us with the properties of the correspondence

αε. The proof is obtained by readapting to our context the arguments used
to show Lemma 2 in Busetto et al. (2011), and we omit it here.

Lemma 2. Given ε > 0, the correspondence αε : L1(µ,B
∗(·)) → L1(µ,B(·))

is such that the set αε(b) is nonempty and convex, for all b ∈ L1(µ,B
∗(·)),

and it has a weakly closed graph.

Now, given ε > 0, let αεδ
tr : L1(µ,B

∗(·)) → B(tr) be a correspon-
dence such that αεδ

tr(b) = αε
tr(b) ∩ Bδ(tr), r = 1, . . . , n, for each t ∈ T1,

and let αε
t : L1(µ,B(·)) → B(t) be a correspondence such that αεδ

t (b) =
αε
t(b) ∩ Bδ(t), for each t ∈ T0. Let αεδ : L1(µ,B

∗(·)) → L1(µ,B(·)) be a
correspondence such that αεδ(b) = {b ∈ L1(µ,B(·)) : b(tr) ∈ αεδ

tr(b), r =
1, . . . , n, for each t ∈ T1, and b(t) ∈ αεδ

t (b), for each t ∈ T0}. Moreover,
let αεδ∗ : L1(µ,B

∗(·)) → L1(µ,B
∗(·)) be a correspondence such that αεδ∗(b) =

αεδ(b) ∩ L1(µ,B
∗(·)).

We are ready to prove the existence of a δ-positive atom-type-symmetric
ε-Cournot-Nash equilibrium of Γn(ε).

Lemma 3. Given ε > 0, there exists a δ-positive atom-type-symmetric
ε-Cournot-Nash equilibrium of Γn(ε), b̂ε.
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Proof. Let ε > 0 be given. By Lemma 6 in Sahi and Yao (1989), we know
that, for each b ∈ L1(µ,B

∗(·)), αεδ
tr(b) is nonempty, r = 1, . . . , n, for each

t ∈ T̄1. Moreover, for each b ∈ L1(µ,B
∗(·)) and for each t ∈ T1, there

exists b̄ ∈ B(t) such that b̄ ∈ αεδ
tr(b), r = 1, . . . , n as b is an atom-type-

symmetric strategy profile. But then, by the same argument of Lemma 2 in
Busetto et al. (2011), αεδ∗(b) is nonempty. The convexity of αεδ(b), for each
b ∈ L1(µ,B

∗(·)), is a straightforward consequence of the convexity of αε
tr(b)

and Bδ(t), r = 1, . . . , n, for each t ∈ T1, and of αε
t(b) and Bδ(t), for each

t ∈ T0. But then, α
εδ∗ is convex valued as L1(µ,B

∗(·)) is convex. αεδ
tr is upper

hemicontinuous and compact valued, r = 1, . . . , n, for each t ∈ T1, as it is the
intersection of the correspondence αε

tr, which is upper hemicontinuous and
compact valued by Lemma 2 in Busetto et al. (2011), and the continuous
and compact valued correspondence which assigns to each strategy selection
b ∈ L1(µ,B

∗(·)) the strategy set Bδ(tr) (see Theorem 17.25 in Aliprantis
and Border (2006), p. 567). Moreover, αεδ

t is upper hemicontinuous and
compact valued, for each t ∈ T0, using the same argument. Therefore,
αεδ has a weakly closed graph, by the same argument used in the proof of
Lemma 2. Finally, αεδ∗ has a weakly closed graph as it is the intersection of
the correspondence αεδ and the continuous correspondence which assigns to
each strategy selection b ∈ L1(µ,B

∗(·)) the weakly closed set L1(µ,B
∗(·))

which, by the Closed Graph Theorem (see Theorem 17.11 in Aliprantis and
Border (2006), p. 561), has a weakly closed graph (see Theorem 17.25 in
Aliprantis and Border (2006), p. 567). But then, by the Kakutani-Fan-
Glicksberg Theorem (see Theorem 17.55 in Aliprantis and Border (2006), p.
583), there exists a fixed point b̂ε of the correspondence αεδ∗ and hence a
δ-positive atom-type-symmetric ε-Cournot-Nash equilibrium of Γn(ε).

To complete the proof of Theorem 2, we have to show that there exists
the limit of a sequence of δ-positive atom-type-symmetric ε-Cournot-Nash
equilibria and that this limit is a δ-positive atom-type-symmetric ε-Cournot-
Nash equilibrium of Γn. Following Busetto et al. (2011), in this part of the
proof we essentially refer to Lemma 9 in Sahi and Yao (1989) and a gener-
alization of the Fatou’s lemma in several dimensions provided by Artstein
(1979).

Then, let εm = 1
m , m = 1, 2, . . .. By Lemma 3, for each m = 1, 2, . . .,

there is a δ-positive atom-type-symmetric ε-Cournot-Nash equilibrium b̂εm .

The fact that the sequence {B̂εm} belongs to the compact set {bij ∈ Rl2 :
bij ≤ n

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥
n
∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, the sequence {b̂εm(tr)} belongs to the
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compact set Bδ(tr), r = 1, . . . , n, for each t ∈ T1, and the sequence {p̂εm},
where p̂εm = p(b̂εm), for each m = 1, 2, . . ., belongs, by Lemma 9 in Sahi and

Yao (1989), to a compact set P, implies that there is a subsequence {B̂εkm}
of the sequence {B̂εm} which converges to an element of the set {bij ∈
Rl2 : bij ≤ n

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij +
bji) ≥ n

∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, a subsequence {b̂εkm (tr)} of the

sequence {b̂εm(tr)} which converges to an element of the set Bδ(tr), r =
1, . . . , n, for each t ∈ T1, and a subsequence {p̂εkm} of the sequence {p̂εm}
which converges to an element of the set P . Since the sequence {b̂εkm}
satisfies the assumptions of Theorem A in Artstein (1979), there is a function
b̂ such that b̂(tr) is the limit of the sequence {b̂εkm (tr)}, r = 1, . . . , n, for
each t ∈ T1, b̂(t) is a limit point of the sequence {b̂εkm (t)}, for each t ∈ T0,

and such that the sequence {B̂εkm} converges to ¯̂B. Then, b̂(tr) = b̂(ts)
as {b̂εkm (tr)} = {b̂εkm (ts)}, r, s = 1, . . . , n, for each t ∈ T1, and b̂(tr) is
the limit of the sequence {b̂εkm (tr)}, r = 1, . . . , n, for each t ∈ T1. Hence,
it can be proved, by the same argument used by Busetto et al. (2011) to
show their existence theorem, that b̂ is an atom-type-symmetric δ-positive
Cournot-Nash equilibrium of Γn(ε).
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