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Abstract 

This paper presents a DSGE model in which long run inflation risk matters for social welfare. 

Optimal indexation of long-term government debt is studied under two monetary policy 

regimes: inflation targeting (IT) and price-level targeting (PT). Under IT, full indexation is 

optimal because long run inflation risk is substantial due to base-level drift, making indexed 

bonds a much better store of value than nominal bonds. Under PT, where long run inflation 

risk is largely eliminated, optimal indexation is substantially lower because nominal bonds 

become a better store of value relative to indexed bonds. These results are robust to the PT 

target horizon, imperfect credibility of PT and model calibration, but the assumption that 

indexation is lagged is crucial. From a policy perspective, a key finding is that accounting for 

optimal indexation has important welfare implications for comparisons of IT and PT. 

Keywords: government debt, inflation risk, inflation targeting, price-level targeting. 
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1. Introduction 

Long-term contracts like government bonds and public pensions play an important role in 

many developed economies. Since contracts of this kind are often specified in nominal terms, 

unanticipated changes in inflation that are not reversed will lead to fluctuations in real wealth. 

These fluctuations are important for old generations because they rely on long-term contracts 

to fund their consumption in retirement. The magnitude of revaluations in long-term contracts 

due to unanticipated inflation depends crucially upon the amount of long run inflation risk in 

the economy. This observation motivates a comparison of the costs and benefits of inflation 

targeting (IT) and price-level targeting (PT) regimes. Under IT, unanticipated shocks to the 

price level are not reversed by policy, so there is base-level drift in the price level. 

Consequently, inflation risk rises with the forecast horizon.
2
 By contrast, PT offsets 

unanticipated shocks to inflation in order to return the price level to a target path which is 

known ex ante. As a result, long run inflation risk is largely eliminated under a PT regime.  

In this paper, optimal indexation of long-term government debt is studied under IT and PT 

regimes. Given that government debt accounts for a substantial fraction of net nominal wealth 

in developed economies (Dopeke and Schneider, 2006; Meh and Terajima, 2008), this 

analysis is important for comparing these two regimes. In recent years, both policymakers 

and academics have become interested in this comparison. Several papers have shown that 

PT offers short-term stabilisation benefits over IT when agents are forward-looking. Vestin 

(2006), for example, shows that in the standard New Keynesian model, PT reduces inflation 

variability for a given level of output gap variability if policy is discretionary. In the same 

model, the optimal commitment policy implies a stationary price level (Clarida, Gali and 

Gertler, 1999).
3
 In light of these results, the Bank of Canada recently conducted a detailed 

review of the costs and benefits of PT (see Bank of Canada, 2011).
4
 However, to the author’s 

knowledge, no paper has assessed optimal indexation of long-term nominal debt contracts 

under IT and PT in a DSGE model where long run inflation risk matters for social welfare. 

The main contribution of this paper is to provide an initial assessment of this kind. 

An overlapping generations (OG) model in the spirit of Diamond (1965) is calibrated to 

roughly match the UK economy. The model has three features that make it useful for 

investigating optimal indexation in an environment of long run inflation risk. First, long run 

inflation risk matters for social welfare since revaluations in the return on government debt 

due to unanticipated inflation are a source of consumption risk for old generations. In the 

model, long run inflation risk affects social welfare by two distinct channels: (i) variations in 

the real return on government debt lead to costly consumption variations for old generations; 

and (ii) a rise in long run inflation risk raises the risk premium the government pays on 

nominal debt and so requires higher taxes to maintain government spending. By contrast, 

only short-term inflation risk matters for social welfare in the standard New Keynesian model 

(Woodford, 2003). Second, the effects of optimal indexation on young and old generations 

can be assessed directly, hence providing useful information on the distributional effects of 

government debt policy under IT and PT regimes. Third, consistent with the standard OG 

                                                           
2
 That is, the price level follows a random walk. Inflation risk increases with the forecast horizon in this case 

because inflation between period t and t+k depends on the ratio of the price level in t+k to that in period t.  

3
 The issue of whether optimal policy in the New Keynesian model implies price stationarity is controversial. 

Negative results include Steinsson (2003), Levin et al. (2010) and Amano, Ambler and Shukayev (2012).  

4
 This work is surveyed in Ambler (2009), Crawford, Meh and Terajima (2009) and Bank of Canada (2011).   
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life-cycle model, each period in the model lasts 20 years. As a result, inflation risk and 

equilibrium asset prices can be modelled over a long horizon without introducing a large 

number of state variables. This feature of the model is crucial since a second-order 

approximation is needed to capture the full implications of inflation risk for social welfare,
5
 

making a numerical solution computationally-intensive.  

The main finding of the paper is that full indexation of government debt is optimal under IT, 

in stark contrast to PT where optimal indexation is substantially lower. Intuitively, despite the 

fact that the payoff on indexed bonds is subject to inflation risk due to a one-year indexation 

lag, return risk on nominal bonds is much higher since IT implies that cumulative inflation 

risk over a 20-year horizon is approximately 20 times that at a yearly horizon (due to base-

level drift). Under a PT regime, by contrast, long run inflation risk does not increase with the 

forecast horizon and so is reduced to annual magnitudes. As a result, nominal bonds become 

a much better store of value relative to indexed bonds and optimal indexation is substantially 

lower. The indexation lag is crucial for explaining the sharp reduction in optimal indexation 

because the substantial reduction in long run inflation risk under a PT regime means that even 

a one-year indexation lag is sufficient to make return risk on indexed bonds comparable to 

that on nominal bonds. Consequently, there is no clear-cut benefit to indexation from the 

point of view of consumption stabilisation or government finances under a PT regime. It is 

important to note, however, that if the assumption that indexation is lagged is dropped, full 

indexation is optimal under both IT and PT. 

In order to establish the main result, the analysis begins with a simple version of the model in 

which full indexation is optimal under IT and zero indexation is optimal under PT. Later 

sections then extend the model to more realistic settings and test sensitivity to calibration. 

Three different extensions are considered. First, if the price level is returned to its target path 

gradually over several years, optimal indexation remains somewhat lower under PT but rises 

to around 50 per cent at a 2-year target horizon, and around 75 per cent at a 4-year horizon. 

Second, optimal indexation is lower under a PT regime with imperfect credibility, but again 

the differential is narrowed somewhat: optimal indexation under PT rises to around 60 per 

cent under a regime with high credibility and 80 per cent under low credibility. The reason is 

that imperfect credibility raises the inflation risk premium on nominal government debt, 

because it reflects agents’ belief that policy may revert to IT where long run inflation risk is 

much higher. Consequently, it is more costly for the government to issue nominal debt, 

implying higher taxes and (hence) lower average consumption for the young. Third, the 

baseline case assumes yearly money supply shocks are uncorrelated over time. Moderate 

correlation of money supply shocks raises optimal indexation under PT to around 50 per cent, 

while full indexation remains optimal under IT because indexing with a lag is less costly if 

inflation is persistent. In addition, sensitivity analysis suggests that the result that optimal 

indexation is substantially lower under PT is robust to model calibration.  

An important finding from a policy perspective is that the potential long run welfare gains 

from PT are overstated substantially if indexation of government debt is held fixed across 

regimes at the current UK level. Indeed, the welfare gain from PT is reduced from around 

0.20 per cent of aggregate consumption to almost zero if indexation is optimised under both 
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 The reason is that in linear or log-linearised models there is ‘certainty equivalence’ – i.e. the coefficients of 

policy functions do not depend on risk (shock volatility). As pointed out by (Kim and Kim, 2003), failure to 

account for the effects of risk can lead to spurious welfare reversals. Since the model is solved using a second-

order perturbation method, it captures the implications of risk for endogenous variables in the model. 
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IT and PT. These results highlight the importance of accounting for optimal indexation of 

government debt when comparing IT and PT regimes. More generally, the results suggest 

that analyses of IT and PT may produce misleading conclusions if they assume that nominal 

indexation is fixed across monetary regimes.   

The analysis in this paper is directly related to two other strands of literature. The first is on 

the aggregate effects of unanticipated inflation. In a seminal paper, Doepke and Schneider 

(2006) document postwar nominal portfolios in the US and show that an unanticipated 

increase in inflation has substantial redistribution effects through revaluations of nominal 

assets and liabilities. Meh and Terajima (2008) later examined nominal portfolios in Canada. 

Building on these two papers, Meh, Rios-Rull and Terajima (2010) simulated aggregate and 

welfare effects from one-off episodes of unanticipated inflation in Canada under IT and PT in 

a quantitative OG model. They find that unanticipated inflation has greater redistribution 

effects under IT because the initial change in inflation is not reversed, so that long-term 

nominal contracts undergo substantial revaluations. Consequently, induced welfare losses are 

somewhat larger under IT. However, a limitation is that nominal portfolios remain fixed 

across monetary regimes in their analysis. As Meh et al. acknowledge, analysing how 

nominal portfolios change following implementation of PT may be important to reach more 

precise estimates of its aggregate and welfare effects. Since the current paper allows nominal 

portfolios to vary, it should provide additional insight into the aggregate and welfare effects 

of PT. It also provides a simple methodology for assessing optimal indexation that could 

potentially be extended to more realistic settings such as quantitative OG models.   

The paper is also related to research on optimal indexation of wage contracts. In a seminal 

paper, Gray (1976) showed that optimal indexation increases with the nominal-to-real 

volatility ratio. More recently, Minford, Nowell and Webb (2003) build a model in which 

households cannot access financial markets and have an incentive to insure against real wage 

fluctuations. To do so, they optimise indexation of wage contracts. They find that optimal 

indexation is lower under a regime that aims at price rather than inflation stability, because 

nominal wage contracts become relatively better real wage stabilisers. Subsequently, Amano, 

Ambler and Ireland (2007) showed that the same conclusion holds in a model with staggered 

cohorts of labour-differentiated wage-setters who have unrestricted access to financial 

markets. An important difference in this paper is that indexation of government bonds has 

direct implications for government finances via the inflation risk premium on nominal 

government debt.
6
 Since the government must satisfy its budget constraint, inflation risk has 

knock-on effects on households and social welfare that are not present under optimal 

indexation of wage contracts. This problem therefore speaks to the need for a general 

equilibrium analysis that takes into account the main effects of inflation risk, including those 

for government finances. This paper provides such an analysis. 

The remainder of the paper proceeds as follows. Sections 2 and 3 present the model and 

monetary policy in the baseline case. In Section 4, the optimal indexation problem and its 

solution are discussed. Then, in Section 5, the model is calibrated. Section 6 reports the 

optimal indexation results from the baseline model and is followed in Section 7 by extensions 

and sensitivity tests. Finally, Section 8 concludes and discusses implications for policy.  

                                                           
6
 For a recent survey of the inflation risk premium, see Bekaert and Wang (2010). In the model that follows, 

indexed debt is risky and the inflation risk premium is defined as the expected difference between the real return 

on nominal bonds and the real return on indexed bonds. 
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2. Model 

The model is a version of Diamond’s (1965) model with capital and government bonds. It 

contains three sectors: a household sector, a government sector, and a sector devoted to 

production of a single output good. Each sector is described in detail below, starting with the 

household sector. This section also describes the aggregate resource constraint and explains 

how preferences of society are related to the preferences of individual generations. 

2.1 Consumers 

A simple overlapping generations (OG) model with generations that live for two periods is 

considered. Each generation is modelled as a representative consumer who inelastically 

supplies a unit of labour when young and retires when old, leaving no bequests. Let 

subscripts {Y, O} denote, respectively, the young and the old. Each period in the model lasts 

20 years. The number of generations born per period is constant and normalized to 1. The real 

wage income of each young generation is taxed by the government at a constant rate τ. Young 

agents’ after-tax wage income is allocated to four assets: indexed government bonds, b
i
; 

nominal government bonds, b
n
; capital, k; and fiat money, m.  

Each young generation consumes and chooses an optimal portfolio of assets z ≡ (k, b
i
, b

n
, m) 

which pays off in old age. Capital earns a real return r
k
,
 
which is taxed by the government at 

rate τ
k
. Indexed bonds pay a risky real return r

i 
as a result of a one-year indexation lag, and   

nominal bonds pay a risky real return r
n
. Nominal bonds are riskless but for unanticipated 

inflation over the holding horizon from youth to old age (i.e. 20 years). Consequently, the 

real return on nominal bonds is r
n
 = R/(1+π), where π is inflation between youth and old age 

and R is the nominal interest rate.
7
 Since indexed bonds are subject to a one-year indexation 

lag, they pay a real return r
i
 = r (1+ π

ind
)/(1+π), where π

ind 
is the inflation rate that indexed 

bonds are linked to and r is the (ex ante) real interest rate. The interest rates R and r are 

endogenously determined and ensure that, for each bond, demand is equated to supply.  

Money pays a real return r
m 

=
 
1/(1+π). Positive money demand arises from the legal 

requirement that young agents hold real money balances of at least δ > 0, so that mt ≥ δ as in 

Champ and Freeman (1990). The main advantage of this constraint is that it provides a role 

for money without requiring that it offer explicit transactions services, so that any differential 

in optimal indexation under IT and PT can be attributed to the implications of these regimes 

for long run inflation risk and not the impact of monetary policy on transactions costs or ease 

of exchange.
  
The constraint binds with equality if Rt > 1 for all t, which is assumed to hold.

8
 

Hence we have that 

           ,tm  t        (1) 

 

                                                           
7
 Bond returns are not taxed as this enables the model to better match the ratio of long-term government debt to 

GDP and the investment-GDP ratio. It is worth noting that UK government bonds with a maturity of 5 years or 

longer are exempt from tax if they are held in an ISA; see the Debt Management Office (DMO) website.  

8
 This condition is proven in the Appendix. It was comfortably satisfied in numerical simulations because 

steady-state inflation is positive and the steady-state real interest rate exceeds 1.  
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The budget constraints faced by the generation born in period t are given by 
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where 0≤ v ≤1 is the share of indexed bonds in total bonds portfolio, b. 

Given the focus in this paper, it is important to use preferences that can match household 

attitudes to risk revealed in applied research. As is well known, standard CRRA preferences 

cannot match the risk-free rate and risk-premia as they imply that the elasticity of 

intertemporal substitution is the reciprocal of the coefficient of relative risk aversion. 

Consequently, Epstein and Zin (1989) and Weil (1989) preferences are used here. With these 

preferences, the elasticity of intertemporal substitution and the coefficient of relative risk 

aversion can be calibrated separately. In a recent paper, Rudebusch and Swanson (2012) 

show that this feature enables an otherwise standard New Keynesian model to match the 10-

year term premium on nominal bonds without compromising its ability to fit key macro 

variables.   

Consumers solve a maximisation problem of the form 
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where 0 < β < 1, γ is the coefficient of relative risk aversion, and 1/(1–ε) is the elasticity of 

intertemporal substitution. 

The first-order conditions are summarized by the following Euler equations: 
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Here t
~  is the ratio of the Lagrange multiplier on the CIA constraint to that on the budget 
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9
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 For a full derivation of consumers’ first-order conditions, see Section A of the Appendix. 

10
 The dating on R and r reflects the fact that these (ex ante) returns must clear the markets for nominal and 

indexed bonds at the time when bonds are purchased, that is, at the end of period t. Note that the inflation rate to 

which indexed bonds are linked is not equal to the previous period’s inflation rate because the indexation lag is 

one year, whereas each period in the model lasts 20 years. For the determination of π and π
ind

, see Section 3. 
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2.2 Firms 

The production sector consists of a representative firm that produces output using a Cobb-

Douglas production function. The share of capital in output is equal to α and the labour share 

is equal to 1–α. The firm hires capital and labour in competitive markets to maximise current 

period profits. Total factor productivity, A, is stochastic and follows an AR(1) in logs.
11

  

The real wage and the return on capital are given by  

  ttt

k

ttt kAkryw )1(           (9) 

 1/   tttt
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2.3 Government 

The government performs three functions. First, to meet government spending commitments, 

it taxes wage income of the young at a constant rate τ > 0, and capital income of the old at a 

constant rate τ
k
 > 0. Second, it conducts monetary policy by committing to a money supply 

rule. Third, the government sets the total supply of government bonds and chooses the share 

of indexed government bonds to maximise social welfare, subject to the monetary policy 

regime in place. 

The government budget constraint is given by 
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The total supply of government bonds is b = b
i
 + b

n
, and the shares of indexed and nominal 

government bonds in the total bond portfolio are constant and equal to v and 1–v, 

respectively. Since the tax rates on wage income and capital are constant, it follows that τ
k
 = 

aτ for some constant a > 0, so that tax policy can be described by the single tax rate τ. The 

government sets the total supply of bonds to facilitate consumption smoothing between youth 

and old age. In particular, it chooses the total supply of government debt so that  

 Et (sdft+1) = β                    (12) 

where Et is the conditional expectations operator.  

The bond supply rule in (12) implies a steady-state real interest rate of 1/β and hence perfect 

consumption smoothing in the deterministic steady-state. Consequently, there is a degree of 

social insurance without the burden of modelling a social security system.  The government 

sets the nominal money supply according to an IT or PT rule. These policy rules are 

discussed in Section 3. The government sets the constant tax rate τ to ensure that it achieves a 

long run target ratio of government spending to output, or  

 E(gt/yt) = G* > 0                    (13) 

where E is the unconditional expectations operator.  

                                                           
11

 Long run productivity risk is included because the risk aversion coefficient is calibrated to match the 20-year 

Sharpe ratio on capital. Including long run real risk also ensures that the implications of indexation for 

consumption risk are not significantly overstated.  
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Although τ is constant over time, it will differ across IT and PT regimes because the level of 

long run inflation risk affects the average real return on money balances and the inflation risk 

premium on nominal government debt. It should thus be understood that the tax rate is 

regime-specific, though this dependence is suppressed in order to minimize notational 

burden. Taking into account the equilibrium conditions of the model and the requirement that 

τ be set so that E(gt/yt) = G*, the government chooses the share of indexed government bonds 

to maximise social welfare. The full details of the government’s optimal indexation problem 

are presented in Section 4.     

2.4 Aggregate resource constraint 

Capital depreciates fully within a period, an assumption which is empirically reasonable 

given that each period in the model lasts 20 years. It follows that investment in period t is it = 

kt+1. The economy’s aggregate resource constraint in period t is  

 ttOtYtt gkccy  1,,                   (14) 

where the sum of the first two terms on the right hand side is aggregate consumption. 

2.5 Social welfare 

Welfare is given by the discounted sum of lifetime utilities across all generations:
12
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where 0<ω<1 is the social discount factor, and E is the unconditional expectations operator. 

It is clear from (15) that the social discount factor ω will not affect optimal indexation. 

Consequently, the social discount factor can be left unspecified. 
 

3. Monetary Policy and inflation 

The government conducts monetary policy using money supply rules set yearly with annual 

inflation in mind.
13

 The government can commit to these rules but cannot control the money 

supply perfectly and so has imperfect control over inflation. In order to obtain money supply 

rules consistent with the 20-year horizon of the model, the implications of these rules are 

traced out over a 20-year horizon. This section first derives expressions for equilibrium 

inflation under IT and PT, before turning to the one-year-lagged measure of inflation to 

which indexed bonds are linked. In the discussion that follows, Mn  denotes the nominal 

                                                           
12

 This social welfare function ignores the utility of the initial old, but this does not affect the main results. 

13
 This assumption is more consistent with the policy horizon in practice and brings two additional advantages: 

(i) calibrating at a 20-year horizon is problematic given that IT has been in place for less than 20 years as part of 

an independent monetary policy regime, and (ii) the impact of a target horizon longer than one year is 

investigated as a robustness test, since proponents of PT argue that the short-term costs of undoing shocks to the 

price level could be diminished in this way (e.g. Gaspar, Smets and Vestin, 2007). This investigation is not 

possible with monetary policy rules that have a 20-year target horizon. 
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money stock at the end of year n, and εn is an IID-normal innovation in year n with mean zero 

and standard deviation σ.   

3.1 Inflation targeting (IT)  

Under IT, the yearly nominal money supply grows at the annual target inflation rate, π*, plus 

any deviation due to an exogenous yearly money supply innovation ε: 

   )1*)(1(1 nnn MM                                                                  (16) 

Substituting repeatedly for the previous year’s money supply, 

 


 
n

nj

jnn MM
19

20

20 )1(*)1(  .                                                                            (17) 

It is clear from this equation that the IT money supply rule aims at a constant inflation target 

and does not attempt to offset past money supply shocks – i.e. ‘bygones are bygones’. Given 

that each period lasts 20 years and the nominal money supply is the end-of-year stock, the 

implied money supply rule in period t is  




 
20

1

,

20

1 )1(*)1(
j

tjtt MM                    (18) 

where the money innovations are indexed by j = 1,2,…,20 and Mt  ≡ Pt mt is the nominal 

money stock at the end of period t.  

By money market equilibrium Mt = Ptmt, where mt = δ by the legal requirement on cash 

holdings. Hence Mt/Mt-1= Pt/Pt-1 = 1+πt.  

Inflation is period t is therefore given by 

  



20

1

,

20 )1(*)1(1
j

tjt                   (19) 

It is clear from (19) that there is base-level drift. As a result, inflation risk accumulates over a 

20-year horizon. Note that this rule would stabilise inflation perfectly at the long-term 

inflation target (1+π*)
20

 in the absence of money supply innovations, consistent with annual 

inflation of π* every year. Finally, note that inflation expectations are anchored at target: 
20

1 *)1(1    ttE . 

Since indexed bonds are subject to a one-year indexation lag, the inflation rate to which 

indexed bond are linked is given by the one-year lagged value of (19): 

  


 
19

1

,1,20

20 )1()1(*)1(1
j

tjt

ind

t                             (20) 

Equation (20) shows that indexed inflation will covary strongly with actual inflation under 

IT: they have 19 of 20 shocks in common, with the difference accounted for by the one-year 

indexation lag. Consequently, indexed bonds will be excellent stabilisers of long run 

purchasing power under IT. This point is important for understanding the results that follow. 
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3.2 Price-level targeting (PT) 

Under PT, policy aims to stabilize the price level around a target price path whose slope is 

consistent with an annual inflation target of π*. The crucial difference relative to IT is that 

past deviations from the inflation target are offset to return the price level to target. The 

yearly money supply rule therefore includes a correction for the previous year’s innovation:
14
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where the second equality follows from repeated substitution for the previous money supply.  

Given that the nominal money supply is the end-of-year stock, this equation implies a period t 

money supply rule 
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Again, Mt/Mt-1= Pt/Pt-1 = 1+πt, so inflation is period t is given by 
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where ε20,t is the money supply innovation in year 20 of period t. 

Notice that the PT money supply rule prevents base-level drift: money supply innovations 

have a temporary impact on the price level. As a result, long run inflation risk is somewhat 

lower than under IT.
15

 Intuitively, inflation in period t depends on the money supply 

innovation in year 20 of period t because policy offsets innovations after one year and so 

cannot offset the innovation in year 20 until the first year of the next period. Inflation in 

period t also depends on the money supply innovation in year 20 of period t–1, because this 

should be offset in year 1 of period t to correct for the past deviation from the target price 

path. Since rational agents expect past deviations from the target price path to be offset, 

inflation expectations vary with the past money supply innovation according to: 
1

1,20

20

1 )1(*)1(1 

  tttE  . 

Since indexed bonds are subject to a one-year indexation lag, the inflation rate to which 

indexed bond are linked is given by 
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 The intuition can be seen easily by taking logs: Mn ≈ Mn-1 + π* + εn  – εn-1. Mn  and εn are defined as above. 

15
 It can be shown that the unconditional variance of inflation is approximately 10 times higher under an IT 

regime. (See the Appendix) 
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In this case, the inflation rate to which indexed bonds are linked will not covary with actual 

inflation at all, since yearly innovations to the money supply are uncorrelated.
16

 As a result, 

indexed bonds will be a poor stabiliser of purchasing power under a PT regime. The key to 

this result is that, under PT, cumulative inflation over a 20-year horizon depends only on two 

yearly innovations – the money supply innovation in year 20 of the current period, and the 

money supply innovation from year 20 of the previous period (i.e. the innovation from 20 

years earlier) – because all innovations in intervening years have been offset by the end of 

period t in order to return the price level to its target path.  

The key point is that since indexed bonds have a maturity of 20 years, the one-year 

indexation lag implies indexation to a measure of 20-year inflation whose start date and end 

date are one year earlier than those for actual inflation. This will tend to make indexed 

inflation a poor measure of actual inflation because all changes in actual inflation in period t 

come from the innovations that hit the economy at the start and end of each 20 year period. 

Of course, indexed inflation under IT also ‘misses’ innovations at the start and end of the 

period, but the crucial difference is that base-level drift implies that cumulative 20-year 

inflation under IT depends on all the other shocks that occur during period t, and not just 

those at the start and end of the period.             

4. Optimal indexation 

The government chooses the indexation share that maximises social welfare subject to 

generational budget constraints, the economy’s aggregate resource constraint, consumers’ 

and firms’ first-order conditions, fiscal policy (i.e. the total bond supply equation  and the 

long run government spending target), and the monetary policy regime in place.  

The government’s optimal indexation problem can be stated as follows: 
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 This assumption is relaxed as a robustness test in Section 7. Allowing for correlation between yearly 

innovations does not overturn the main result unless innovations are strongly positively correlated. 

17
 Notice that we do not need to include the nominal money supply rules in this optimisation problem because, 

in conjunction with the binding constraint on cash holdings, they imply an equilibrium inflation rate under each 

regime (see Section 3 for the details).  
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The optimal indexation share that satisfies (25) is computed numerically. To do so, the model 

was solved using a second-order perturbation approximation in Dynare++. In particular, 

social welfare was computed for a discrete number of indexation shares in the interval [0,1]. 

This was achieved by looping over the parameter v in discrete steps in Dynare++, with the aid 

of an algorithm available on Wouter Den Haan’s webpage.
18

  

The problem in (25) is more complicated than might appear at first sight since the researcher 

must solve for an indexation share that maximises social welfare, subject to the constraint 

that (13) holds, which pins down a unique tax rate τ*. The optimal indexation share was 

therefore computed by simultaneously looping over v and τ in discrete steps in order to find: 

(1) the tax rate τ*(vk) such that (13) holds for each discrete value of the indexation share v1, 

v2,…, vK in the interval [0,1]; and (2) the indexation share v*(τ*(v*)) in the set {v1, v2,…, vK} 

that maximises social welfare. 

To understand the indexation results that follow, it is helpful to consider a second-order 

Taylor expansion of social welfare around the point ct,Y  = E[ct,Y ] and ct+1,O  = E[ct+1,O ]:
19
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where ])[],[(~
,,,, OtOtYtYttt cEccEcuu  ; 

xx

tu~ denotes the second derivative of tu~  with 

respect to variable x, evaluated x at the point E[x]; and )(xabsx  . 

This expression shows that social welfare increases with mean consumption levels in youth 

and old age but falls, ceteris paribus, with the variance around these mean outcomes, due to 

risk-aversion. There is additionally a consumption covariance term which has a negative 

impact. However, since the correlation between consumption in youth and consumption in 

old age is fixed by the structure of consumer portfolios, we can say that this term will also 

depend upon the consumption variances.
20

 Consequently, any difference in optimal 

indexation under IT and PT must be driven by the impact of policy on mean consumption 

levels or the variances of consumption. The numerical analysis that follows therefore 

explains optimal indexation with reference to these means and variances.     

5. Calibration 

The model was calibrated to roughly match the UK economy since 1997. Free parameters are 

calibrated to match standard values in the literature. 

 

                                                           
18

 See http://www.wouterdenhaan.com/numerical/dynareprograms.htm 

19
 This expression makes use of the fact that, under stationarity, E[ct+1,O ] = E[ct,O ] and var[ct+1,O] = var[ct,O]. 

20
 This point follows since cov[x,y] = corr[x,y].(var[x])

1/2
(var[y])

1/2
. 

http://www.wouterdenhaan.com/numerical/dynareprograms.htm
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5.1 Aggregate uncertainty 

The model contains two aggregate shocks: a money supply innovation and a total factor 

productivity (TFP) shock. Calibrating the money supply rules requires a standard deviation 

for the annual money supply innovation. This standard deviation was set at σ = 0.0105 to 

match the standard deviation of annual CPI inflation from 1997 to 2011 in data from the 

Office for National Statistics (ONS). This calibration should give the model a good chance of 

matching the amount of long run inflation risk that would be observed with typical price level 

shocks in an IT regime.
21, 22

    

The AR(1) productivity shock is also calibrated for a generational horizon using annual 

data.
23

 Productivity is thus given by 

 ttAmeanAt eAAA  1lnln)1(ln                                                                       (27) 

where et is a zero-mean IID innovation to productivity and ρA and σe are calibrated based on 

the 20-year properties implied by an annual AR(1) productivity process.  

In particular, if the AR(1) coefficient in the annual productivity process is ρ, the implied 

AR(1) coefficient at a 20-year horizon is ρA ≡ ρ
20

 and the implied 20-year innovation 

standard deviation is the standard deviation of the annual innovation to productivity, 

multiplied by [(1 – ρ
40

)/(1 – ρ
2
)]

1/2
. A standard calibration based on the business cycle 

literature is ρ = 0.955 and the annual innovation standard deviation was set at 0.018 based on 

the standard deviation of annual UK TFP growth from 1998-2010 in ONS data. Hence          

ρA = 0.40 and σe = 0.0557. 

5.2 The indexation lag 

As noted, indexed government bonds have a one-year indexation lag in the model.  Up until 

September 2005, all index-linked gilts in the UK were indexed to the Retail Prices Index 

(RPI) with a lag of 8 months, but all index-linked gilts issued since this time have a 3-month 

lag. Consequently, both types of gilts are in existence today, with 3-month gilts accounting 

for 53 per cent of the index-linked gilts market as of March 2011 and 8-month gilts 

accounting for the remaining 47 per cent (DMO 2011, p. 10).
24

 The proportion of 8-month 

gilts in the market will fall over time as debt issued before September 2005 reaches maturity; 

in fact, real-time data suggests that around two-thirds of the current market is in index-linked 

gilts with a 3-month indexation lag, and one-third in old-style gilts with an 8-month 

indexation lag.
25

 Crucially, however, the main findings in the paper would not be overturned 

if the indexation lag was 3 months rather than 1 year, provided that it was assumed that 

shocks hit the economy at a quarterly frequency. The baseline assumption of an indexation 

                                                           
21

 Under IT, annualised inflation, (1+πt)
1/20

 has a standard deviation approximately equal to σ when π* ≈ 0. 
 
  

22
 The variance of actual inflation at a 20-year horizon cannot be used since IT was not adopted as part of an 

independent monetary policy regime until 1997.  

23
 Lungu and Minford (2006) also calibrate a TFP shock at a generational horizon with annual data.  

24
 These figures refer to the size of the market in uplifted nominal terms. 

25
 See the UK Debt Management Office (DMO) website. The data was accessed on 10 May 2013. 
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lag of one year is made primarily to keep down the number of shocks in the model in the IT 

case, hence making a second-order approximation of the model computationally feasible.           

5.3 Model parameters 

Preference parameters 

The parameter ε was set at –0.35, which implies an elasticity of intertemporal substitution 

(EIS) of 0.74. This calibration is consistent with micro studies that estimate an EIS less than 

1. The discount factor β was set at 0.70, implying an annual discount factor of 0.982 and an 

annual risk-free real rate of 1.8 per cent per annum. The annual risk-free real rate was 

deliberately set below the average UK estimate of 2.9 per cent from 1965 to 2005 (Mills, 

2008) since matching a real rate this high gives an investment-GDP ratio somewhat lower 

than in the data. Finally, the coefficient of relative risk aversion γ was calibrated to match the 

Sharpe ratio on capital, E[r
k
–r

f
]/std(r

k
–r

f
).

26
 The target value of 0.43 is based on 

Constantinides, Donaldson and Mehra (2002), who estimate the Sharpe ratio using 20-year 

holding period returns on equity and bonds in the US. Accordingly, γ was set at15. 

Other model parameters 

The parameter α was set at 0.263, implying a share of capital income in GDP of 26.3 per 

cent. This value is on the low side of standard calibrations but helps the model to match a 

target ratio of long-term government bonds to GDP of around 10 per cent, which roughly 

matches the share of long-term government bonds in UK GDP over the past decade.
27

 The tax 

rate on capital was set at 2.3 times the income tax rate, that is, a = 2.3. A substantially higher 

tax rate on capital is consistent with UK data over the period 1970-2005: Angelopoulos, 

Malley and Phillippopoulos (2012) calculate that the average tax rate on capital was 0.44, 

compared to an average tax rate on labour of 0.27, implying that capital taxes should be 

roughly 1.6 times as high as labour taxes. The higher calibrated ratio of 2.3 enables the model 

to get close to a target ratio of government bonds to investment of 2/3.
28

   

There are four additional parameters that need to be calibrated. First, an annual inflation 

target enters both the IT and PT money supply rules. This target was set at 0.02, consistent 

with the 2 per cent UK inflation target for the Consumer Prices Index (CPI). Second, real 

money balances are equal to δ by the legal requirement on cash holdings. The calibration sets 

δ = 0.015 so that money balances are around 3 per cent of steady-state GDP in the model, 

consistent with annual UK data on notes and coins (ONS 2011, Table 1). Third, the long run 

government spending to GDP target, G*, was set at 0.11 since this implies a tax rate τ in the 

model solution such that government bonds and investment have plausible GDP shares. 

5.4 Steady-state solution and key ratios 

This section discusses the performance of the calibrated model against target ratios. In the 

model, investment equals the capital stock since there is full depreciation. The UK 

investment-GDP ratio has been close to 15 per cent over the past decade (ONS 2012, Table 

                                                           
26

 Returns are annualised here. The Sharpe ratio was computed using the after-tax return on capital.  

27
 See ONS (2011) and historical data available on the Debt Management Office (DMO) website. 

28
 This figure was reached by dividing the target ratio of government bonds to GDP of 0.10 by a target ratio of 

investment to GDP of 0.15 (see Section 5.4). 
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1.2) and over the same period the consumption share was around 65 per cent, implying target 

ratios of 0.15 and 0.65. Turning to government debt, the bonds-GDP ratio has fluctuated 

somewhat over the past decade but has averaged around one-third (ONS 2011, Table 1.1D). 

Together with a 2005 share of long-term government debt in total government debt of around 

30 per cent,
29

 this figure implies a target long-term government bonds to GDP ratio of around 

0.1. Table 1 shows that the model does fairly well against target ratios.
30

 

 

Table 1 – Target versus model ratios 

Ratio Target Model  Definition 

b/y 0.10 0.11 Long-term bonds/GDP 

i/y (=k/y) 0.15 0.14 Investment/GDP 

b/i 0.67 0.79 Long-term bonds/Investment 

(cY + cO) /y 0.65 0.75 Aggregate consumption/GDP 

E[r
k
–r

f
]/std(r

k
–r

f
) 0.43 0.40 Sharpe ratio 

m/y 0.03 0.03 Notes and Coins/GDP 

 

 

6. Results 

The model was solved using a second-order perturbation approximation in Dynare++ 

(Julliard, 2001), with the optimal indexation share computed as described in Section 4. To 

determine optimal indexation, 100 simulations of length 1100 periods were run, with the first 

100 periods of each disregarded to randomise initial conditions. Hence, a total of 100,000 

simulated values were used to compute unconditional moments and social welfare for each 

indexation share. In this section, results are reported for the baseline model described above.   

6.1 The baseline model 

This section first investigates optimal indexation under inflation targeting (IT), before turning 

to the price-level targeting (PT) case. Optimal indexation is compared under IT and PT and 

the implications for welfare comparisons of these regimes are discussed.  

 

 

                                                           
29

 See historical data on the DMO website. The DMO classifies gilts as ‘long-term’ if maturity exceeds 15 years. 

30
 The model overshoots the target ratio of long-term government bonds to GDP, but this can be justified by the 

presence of substantial unfunded public sector and state pension liabilities that play a similar role to long-term 

government bonds. The estimated annual cost of unfunded UK public sector pensions in 2007-8 was 1.5 per cent 

of GDP (Table 2.6, Public Sector Pensions Commission 2010) and Müller et al. (2009) report annual 

expenditure on social security pensions of 4.1 per cent of GDP in 2006. The Basic and Additional state pensions 

in the UK are indexed under a triple-lock system (highest of earnings, CPI inflation with an 8-month lag or 2.5 

per cent), while public sector pensions are indexed to CPI inflation with an 8-month lag.   
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Inflation targeting (IT) 

Figures 1 and 2 report the baseline results under IT:  

Fig 1 – Indexation and social welfare under IT 

 

Fig 2 – Factors driving optimal indexation (IT) 

 

As can be seen from Fig 1, social welfare is maximised when the government issues only 

indexed government debt – i.e. full indexation of 100 per cent is optimal.  Fig. 2 sheds light 

on why this is the case. The key factor driving the full indexation result is old agents’ 

consumption risk, which is minimised under full indexation. Old generations’ consumption 

risk is crucial for two reasons: first, it has a direct impact on social welfare because 

consumers are risk-averse; second, higher consumption risk implies a higher inflation risk 

premium,
31

 so that higher taxes are necessary to meet the long run government spending 

target. In turn, a rise in taxes implies lower mean consumption by the young. Intuitively, old 

agents’ consumption risk is minimised by full indexation of government debt because, as 

explained in Section 3.1, indexed government debt provides far better insurance against 

unanticipated inflation than nominal debt and so commands a much lower risk premium in 

equilibrium. Indeed, since cumulative inflation risk over 20 years is (approximately) 20 times 

                                                           
31

 The inflation risk premium is defined as the differential between the expected real return on an indexed bond 

and the expected real return on an indexed bond – i.e. E(r
n
) – E(r

i
). Graphs report the annualised risk premium. 
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that at a yearly horizon under IT due to base-level drift, the 1-year indexation lag on indexed 

debt exposes bondholders to only 1 year of inflation risk, as compared to exposure to the full 

20 years in the case of nominal government debt.   

Since consumption risk is minimised under full indexation, both the inflation risk premium 

and taxes are minimised with full indexation. The latter means that average consumption by 

the young is maximised. Consequently, the young gain from higher average consumption 

under full indexation, while the old gain directly from a substantial reduction in consumption 

risk (and indirectly from a lower capital tax rate). Indeed, although average consumption by 

the old falls as indexation is increased (because a higher inflation risk premium raises the 

average real return paid on nominal government debt) and consumption risk for the young 

rises marginally, the rise in average consumption by the young and the reduction in 

consumption risk for the old are sufficient to ensure social welfare rises under full indexation. 

  

Price-level targeting (PT) 

Figures 3 and 4 report the baseline results under PT: 

 

Fig 3 – Indexation and social welfare under PT 

 

Fig 4 – Factors driving optimal indexation (PT) 
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In stark contrast to the IT case, zero indexation of government debt is optimal under PT.     

Figure 4 shows that this is because indexed bonds are more risky than nominal bonds, so that 

consumption risk for the old is minimised at close to zero indexation.  The riskiness of 

indexed government debt shows itself clearly in a negative inflation risk premium on nominal 

bonds, in stark contrast to the IT case. As a result, the relationship between taxes and 

indexation is positive under PT, so that average consumption by the young is maximised 

under zero indexation. In short, the main factors driving optimal indexation work in exactly 

the opposite direction under PT, because nominal government debt is a better store of value 

than indexed debt and so commands a lower risk premium. The impact of the one-year 

indexation lag on indexed government debt is crucial for understanding this result. Indeed, 

the relatively poor performance of indexed debt under PT is driven solely by the indexation 

lag, since full indexation is optimal under both IT and PT in the absence of an indexation lag. 

The one-year indexation lag is crucial because cumulative inflation risk over a 20-year 

horizon is reduced to yearly levels, due to the absence of base-level drift under PT. This 

makes nominal government bonds rather effective stabilisers of long run purchasing power, 

while indexed bonds ‘miss’ completely the yearly shocks that matter for 20-year inflation 

because they are indexed with a one-year lag. The results also highlight clearly the 

importance of allowing for changes in indexation of government debt when evaluating 

consumption risk and social welfare. In particular, changes in indexation are associated with 

much larger changes in consumption risk and social welfare under an IT regime – as can be 

seen clearly by comparing Figures 1 to 4. Consequently, if indexation is fixed at 20 per cent 

(which is close to the current share of index-linked gilts in the UK) there is an implied 

welfare gain from PT equivalent to 0.20 per cent of aggregate consumption.
32

 But when 

indexation is optimised under both regimes, this welfare gain is reduced to essentially zero.  

7. Extensions and robustness 

The baseline model makes a number of simplifying assumptions, including a PT target 

horizon of one year (i.e. all inflationary shocks are undone after one year);
33

 perfect 

credibility of PT; and uncorrelated yearly money supply innovations. In this section, each of 

these assumptions is relaxed. Sensitivity to calibrated values is also discussed. 

7.1 A flexible target horizon under PT 

Gaspar, Smets and Vestin (2007) argue that the short-term stabilization costs of undoing price 

level shocks could be reduced by restoring the price level to its target path gradually 

following deviations from target. The analysis in this section therefore investigates optimal 

indexation under a PT regime that returns the price level to target over several years, in 

contrast to the maintained assumption of one year in the baseline case. To do so, the target 

horizon in the PT money supply rule is varied from 1 to 4 years. 

For the general case where the price level is returned to target in uniform steps over H years, 

the yearly money supply rule is as follows: 

                                                           
32

 The welfare gain (or loss) from PT was computed as the fractional increase in aggregate consumption, λ, 

necessary to equate social welfare under IT with that under PT, i.e. SW 
IT

(1+λ)
1 – γ 

= SW 
PT

. 

33
 Under IT, the target horizon is irrelevant because base-level drift means that shocks to inflation are not offset 

by policy.  
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Note that innovations up to H years old enter in the denominator of this rule because each is 

offset only after H years in total, with a fraction 1/H offset each year.  

By substitution, (28) implies that: 
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Inflation is therefore given by 
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Consider setting H = 2. In this case, only money supply shocks in years 19 and 20 of period t 

matter for inflation because shocks in years 1 to 18 will have been offset fully by the end of 

the period t (i.e. by year 20), since the target horizon is 2 years. Shocks in years 19 and 20 

from the previous period enter in the denominator because these shocks will not have been 

offset before the end of period t–1 and so must be offset in period t to return the price level to 

its target path.  

Since the inflation rate to which indexed bonds are linked is the one-year lagged value of 

actual inflation, indexed inflation for a target horizon of H years is now given by 

 

HkH
H

k tk

tkind

t

/)(
1

0 1,19

,1920

1

1
*)1(1




 



 





















                 (31) 

Equation (31) shows that a gradual return of the price level to target has two effects. First, 

returning the price level to target gradually raises long run inflation risk because the price 

level is allowed to deviate from its target path for longer. Second, a PT target horizon longer 

than one year implies that actual and indexed inflation are positively correlated, because past 

deviations from the target price path are ‘smoothed’ back to target over several years. Hence 

indexed bonds become better stabilisers purchasing power relative to indexed bonds. 

The results for PT target horizons of 1 to 4 years are reported in Figure 5. Optimal indexation 

rises with the target horizon, from zero when H = 1 (the baseline case), to 44 per cent when   

H = 2, and up to 76 per cent when H = 4. The reason is that, as noted above, a target longer 

than one year implies that actual and indexed inflation are positively correlated, so that 

indexed bonds become better stabilisers of purchasing power relative to nominal bonds. This 

relative reduction in risk is reflected in a positive inflation risk premium on nominal bonds,
34

 

which implies that taxes can be reduced – and hence average consumption by the young 

increased – by issuing some indexed bonds. This rise in average consumption for the young is 

                                                           
34

 However, the inflation risk premium turns negative at relatively high indexation shares, which helps explain 

why full indexation is not optimal.  



20 

 

crucial for social welfare because it dominates the fall in average consumption for the old, 

and is not discounted in lifetime utility unlike the latter. 

Fig 5 – Optimal indexation and the target horizon of policy (PT) 

 

 

7.2 Imperfect credibility of PT 

The argument that PT would be imperfectly credible is appealing since a regime of this kind 

has not been adopted in recent history. As such, imperfect credibility was an important 

consideration in the Bank of Canada’s deliberations about the relative merits of PT (Bank of 

Canada, 2011).  

Imperfect credibility of PT has been studied by Gaspar, Smets and Vestin (2007) and Masson 

and Shukayev (2011). Gaspar et al. argue that PT would experience an initial period of 

imperfect credibility when agents would learn about the workings of the new regime. They 

use a New Keynesian model with learning and find that an initial period of imperfect 

credibility is sufficient to turn the net welfare gains from PT negative if agents are slow to 

learn, because expectations become backward-looking. Masson and Shukayev build a New 

Keynesian model where PT operates with an ‘escape clause’, such that sufficiently large 

shocks lead to rebasing of the target price path. They show that there are two stable 

equilibria: one with a low probability of rebasing, and one with a high probability. 

Consequently, both high and low credibility PT regimes are long run equilibrium outcomes. 

In contrast to these two papers, the analysis in this section concentrates on the impact of 

imperfect credibility through the long run inflation risk channel. The analysis also differs in 

that the model is non-linear, so that imperfect credibility influences aggregate outcomes 

through the inflation risk premium on nominal bonds, as well as by the inflation expectations 

channel.  

In order to model imperfect credibility, it is assumed that young agents assign a constant 

probability pIT  to the event that that monetary policy will switch back to IT in the next period. 

Accordingly, agents assign a constant probability 1– pIT to the event that the current PT 

regime will remain in place next period. The probability pIT  can thus be taken as a measure of 

credibility, with pIT  = 0 corresponding to the perfect credibility case (the baseline case 

analysed above). It is important to note that although agents assign a positive probability to 

reversions to IT, no such reversions actually occur in equilibrium. Hence the analysis is one 

of imperfect credibility and not regime switching. 
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Given beliefs over regimes s = {IT, PT} and period-t information Ωt, lifetime utility is 
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The first-order conditions are given by the following Euler equations:
35
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where SDFt+1(s) ≡ sdft+1(s)/(1+πt+1(s)), 
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The model was simulated for two different values of pIT : 0.1 and 0.3. These values represent 

fixed beliefs that policy will revert to IT next period with 10 and 30 per cent probability. The 

former is interpreted as a situation where PT has high credibility and the latter as a situation 

where it has low credibility. The results for these two cases are reported in Figures 6 and 7. 

 

Fig 6 – Indexation and social welfare under imperfect credibility of PT 

 

 

 

                                                           
35

 The government is assumed to set the total bond supply so that the conditionally expected stochastic discount 

factor across regimes is equal to β (a natural extension of (12)), implying that 1 = βr in the deterministic steady-

state. The first-order conditions are derived in the Appendix. Note that first-order condition for capital holdings 

reflects agents’ belief that if there were a change in regime back to IT, the long run IT tax rate would apply. 
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Fig 7 – Factors driving optimal indexation (PT) 

 

Optimal indexation is somewhat higher than in the baseline model, at around 60 per cent 

under high credibility and 80 per cent under low credibility. Optimal indexation rises because 

imperfect credibility increases the inflation risk premium on nominal government debt. The 

reason is that agents’ expectations reflect their belief that policy may revert to the high 

inflation risk IT regime under which indexed debt is a far better store of value than nominal 

debt. In turn, this increase in the inflation risk premium makes it more costly (in real terms) 

to issue nominal rather than indexed government debt, implying higher taxes to meet the long 

run government spending target and lower average consumption for the young. An interior 

solution for optimal indexation balances the welfare loss from this increase in taxes against 

the welfare gain from the fact that nominal government debt stabilises old age consumption 

more effectively than indexed debt under PT.  

Intuitively, the level of indexation is higher under low credibility because there is a larger rise 

in the inflation risk premium, so that the increase in taxes necessary to meet the long run 

government spending target is higher. Hence, while the welfare loss and welfare gain referred 

to above are of roughly equal magnitude under high credibility, a situation of low credibility 

shifts the balance in favour of indexed government debt because it raises the welfare loss 

from higher taxes whilst leaving the welfare gain side of the equation unaffected.
36

        

7.3 Correlated shocks to inflation 

The baseline model assumes that yearly money supply innovations are uncorrelated. As 

discussed in Section 6, this assumption is likely to be important for optimal indexation 

because it implies that current and past shocks to inflation are uncorrelated, so that indexation 

to lagged inflation is more costly than it would under positive autocorrelation. In this section, 

the assumption of uncorrelated innovations is relaxed. In particular, it is assumed that the 

money supply innovation in any given year n of period t is positively correlated with the 

innovation in the previous year n–1. The correlation was set at 0.5 because empirical 

evidence suggests inflation persistence has fallen to moderate levels in the Great Moderation, 

in contrast to much of the postwar period (e.g. Benati, 2008; Minford et al. 2009).       

                                                           
36

 The latter is unchanged because it depends only on actual policy (i.e. PT) and not consumers’ beliefs about 

which regime will be in place next period. 



23 

 

Since allowing for correlated innovations leaves optimal indexation unchanged under IT, the 

focus in this section is on the impact of correlated innovations under PT. More specifically, 

the question of interest is whether correlated innovations close substantially the optimal 

indexation differential between IT and PT. The results are reported in Figures 8 and 9. 

Fig 8 – Indexation and social welfare (PT) 

 

Fig 9 – Factors driving optimal indexation (PT) 

 

 

Optimal indexation under PT is somewhat higher than in the baseline case at 48 per cent. 

Intuitively, correlated money supply innovations make indexed bonds a better store of value 

as compared to nominal bonds, so that consumption risk in old age is now minimised at 

around 50 per cent indexation, rather than at zero as in the baseline case. The fall in riskiness 

of indexed bonds is reflected directly in the inflation risk premium – it is now positive up to 

an indexation share of almost 50 per cent, so that the taxes necessary to meet the government 

spending target are minimised, and average consumption by the young maximised, at an 

indexation share of around 50 per cent. Since an indexation share of around 50 per cent 

maximises mean consumption by the young and minimises consumption risk for the old, it is 

intuitive that the optimal indexation share is close to 50 per cent.  
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7.4 Calibration sensitivity analysis  

This final subsection is concerned with sensitivity of the baseline result to calibrated 

parameters. In particular, the baseline model was solved for the optimal indexation share 

under ‘high’ and ‘low’ calibrations of model parameters, including shock standard deviations. 

The main result was not overturned in any of these sensitivity tests.
37

 Consequently, we can 

say that this finding is robust to (i) more realistic versions of the model, and (ii) alternative 

calibrations of the baseline model. 

 

8. Conclusion  

This paper has investigated optimal indexation of long-term government debt under inflation 

targeting (IT) and price-level targeting (PT). These two monetary regimes have very different 

long run implications. Under IT, inflation risk increases with the forecast horizon since there 

is base-level drift in the price level. By contrast, a PT regime rules out base-level drift. As a 

result, long run inflation risk is largely eliminated under PT, with the implication that the 

purchasing power of nominal assets is maintained over long horizons. Optimal indexation 

was studied in the context of a simple overlapping generations (OG) model that was roughly 

calibrated to match the UK economy. The model is well-suited for this task because each 

period lasts 20 years and long run inflation risk matters for social welfare. In order to capture 

base-level drift under IT – and its absence under PT – the standard OG model was augmented 

to include money supply shocks at a yearly horizon. 

 

The main finding is that when indexed government debt is subject to a one-year indexation 

lag, optimal indexation is substantially lower under PT. In order to demonstrate this result, 

the analysis began with a simple version of the model in which full indexation in optimal 

under IT, and zero indexation is optimal under PT. Intuitively, return risk on long-term 

nominal bonds is somewhat higher than on indexed debt under IT, since cumulative inflation 

risk over a 20-year horizon is approximately 20 times that at a yearly horizon (due to base-

level drift), while indexed bonds are subject to only one year’s worth of inflation risk. Under 

a PT regime, by contrast, 20-year inflation risk is lowered to annual magnitudes, and so is 

similar to the one year’s worth of inflation risk to which the return on indexed bonds is 

exposed. However, indexed bonds are worse stabilisers of purchasing power than nominal 

bonds under PT because actual and lagged inflation are entirely uncorrelated when money 

supply innovations are white noise. As a result, there is no clear-cut benefit to indexation 

from the point of view of consumption stabilisation or government finances under a PT 

regime. 

 

The result that optimal indexation is substantially lower under PT holds in more realistic 

versions of the model in which the PT target horizon exceeds one year; where PT is 

imperfectly credible; and where yearly money innovations are serially correlated, so that 

indexing with a one-year lag is less costly than in the baseline case. In each case the 

differential between optimal indexation under IT and PT is closed by 50 per cent or more, 

indicating that moderate levels of indexation become optimal under PT. In the case of a low 

credibility PT regime there is quite a large impact: optimal indexation rises to 80 per cent, 

since the belief that policy may revert to IT next period (where long run inflation risk is much 

higher) raises the inflation risk premium on nominal government debt substantially. 

                                                           
37

 The results are available from the author on request and may be included in a separate web appendix. 
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Sensitivity analysis on model parameters does not overturn the main result, but it is important 

to note that relaxing the assumption that indexation is lagged makes full indexation of 

government debt optimal under both IT and PT.  

An additional finding is that the long run welfare gains from PT are overstated non-trivially if 

indexation of government debt is held fixed under both regimes at the current UK level. 

Therefore, changes in the structure of the government bond portfolio have potentially 

important welfare implications for comparing IT and PT regimes. Policymakers and 

researchers should bear this in mind when assessing the case for a change in regime from IT 

to PT. More generally, the results in this paper suggest that it may be important to account for 

changes in the structure of long run nominal portfolios when comparing IT and PT regimes.  
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Technical appendix (Not for publication) 

Section 1 – Derivations and proofs 

A – Derivation of first-order conditions in the baseline case 

Consumers solve a maximisation problem of the form 
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First-order conditions are as follows: 
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By substitution, this system can be reduced to four Euler equations: 
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The partial derivatives of the utility function are as follows: 
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Dividing (A4) by (A3) gives 
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where Yttt ,
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B – The binding legal constraint on money holdings 

It is shown in this section that the constraint binds with strict equality if the gross money return on a 

nominal bond exceeds 1.  

Proposition: The constraint binds with strict equality when Rt > 1 

Proof. 

By equations (A7) and (A9), the Lagrange multiplier on the cash constraint is given by 
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since the nominal yield on nominal government bonds, Rt, is known at the end of period t. 

 The Kuhn-Tucker conditions associated with μt are as follows: 
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The second condition in (B3) is the complementary slackness condition. It implies that the cash 

constraint will be strictly binding iff μt > 0 for all t.  
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Since λt,Y > 0 (as the budget constraint of the young will always hold with equality), it follows that μt > 

0 iff Rt > 1 for all t.      Q.E.D. 
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C – Approximate analytical expressions for long run inflation risk under IT and PT 

This appendix derives approximate expressions for the inflation variance under IT and PT. 

Inflation Targeting (IT) 

Under IT, inflation is period t is given by 
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where εj,t are IID-normal innovations with mean zero and variance σ
2
. 

Since a general non-linear function g(ε) (where ε is a vector of variables) can be approximated by 

var(g(ε)) ≈ ∑[gj’(μ)]
2
var(εj) using the ‘Delta method’ (where μ is the unconditional mean of the vector 

ε, and gj’ is the first derivative of g(ε) with respect to variable εj), the inflation variance under IT can 

be approximated as follows: 
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Price-level targeting (PT) 

Under PT, inflation in period t is given by 
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where ε30,t and ε30,t-1 are IID-normal innovations with mean zero and variance σ
2
. 

Using the same approximation method as above, the inflation variance under PT is given by 
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Hence the unconditional variance of inflation under IT is (approx.) 10 times that under PT. 

 

D – First-order conditions under imperfect credibility 

In this case, consumers solve the following problem where s = {IT, PT}: 
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where ]|[ )(1 tstXE   is the expectation of Xt+1 in regime s, conditional upon period-t information, Ωt. 

The Lagrangian for this problem is as follows: 
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First-order conditions are as follows: 

:,Ytc  Yt

Yt

t

c

u
,

,





,    :)(,1 ITOtc   )(,1

)(,1

ITOt

ITOt

t

c

u








 ,    :)(,1 PTOtc   )(,1

)(,1

PTOt

PTOt

t

c

u








  

:1tk )  ])1()1(([ 1)(,11)(,1, t

k

t

k

PTPTOt

k

t

k

ITITOtYt rrE     

:1

i

tb   )  ][( )(1)(,1)(1)(,1, t

i

PTtPTOt

i

ITtITOtYt rrE      

:1

n

tb   )  ][( )(1)(,1)(1)(,1, t

n

PTtPTOt

n

ITtITOtYt rrE       

:tm  tt

m

PTtPTOt

m

ITtITOtYt rrE    )  ]([ )(1)(,1)(1)(,1,  

 

By substitution, this system can be reduced to four Euler equations: 
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The partial derivatives of the utility function are as follows: 
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where SDFt+1(s) ≡ sdft+1(s)/(1+πt+1(s)) and Yttt ,
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