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1 Introduction

In this paper we study the existence and uniqueness properties of monetary policy in a limited

commitment framework in the Blanchard and Kahn (1980) class of linear quadratic rational

expectation models (LQ RE). This class of models is typically used to study aggregate fluctuations

in macroeconomics. Building on research in Schaumburg and Tambalotti (2007) and Debertoli

and Nunes (2010) we show the existence of multiple equilibria under limited commitment policy.1

Similar to the case of pure discretion, under limited commitment policy makers cannot manage

private sector expectations which can lead to expectation traps and coordination failures. We

investigate the question of how much precommitment is needed to escape such expectation traps

and to coordinate on the Pareto-preferred equilibrium. We find that the necessary degree of

precommitment to eliminate multiplicity is relatively small — from two to five years - which is

consistent with tenure terms of monetary policy makers in many countries.

It is well known that in LQ models with rational expectations policies under commitment and

discretion may imply very different dynamics for the economy. With full commitment the policy

maker has complete control over the private sector’s expectations about future policy and steers

them in a way that furthers his stabilization goals. The policy maker can coordinate all future

actions of consequent policy makers, which allows him to choose once, and apply indefinitely,

an intertemporal contingency plan (Kydland and Prescott (1977)). In linear quadratic models

a commitment policy, if it exists, is always unique (Kwakernaak and Sivan (1972), Backus and

Driffill (1986)).

With no commitment at all, i.e. under pure discretion, the policy maker does not control the

expectations of the private sector and fails to coordinate the actions of consequent policy makers.

Under discretion the policy maker optimizes in each period of time and the private sector knows

that future policy makers will implement the same decision process in subsequent periods (see

e.g. Oudiz and Sachs (1985), Backus and Driffill (1986), Currie and Levine (1993)). However,

under pure discretionary policy expectation traps and multiple equilibria can arise because the

expectations of the private sector are shaped by anticipations about future policy actions. Since

the policy maker cannot fully control private sector expectations, those expectations may trap

the policy maker into implementing a policy that validates them. The trap is closed if it is less

costly for the policy maker to validate the private sector beliefs about future policy than to ignore

1Originally, their framework is based on Roberds (1987). Lohmann (1992) studied limited commitment policies
in a one-period setting.

1



those expectations, see King and Wolman (2004).2

Under limited commitment a new policy maker arrives in office with an exogenous probability

α every period, reneges on the past policy plan of its predecessor and credibly commits to a

new policy plan that is optimal at this point in time. Clearly, this framework has elements of

both discretion and commitment. However, the policy maker can neither completely control the

expectations of the private sector, nor can he coordinate the actions of all future policy makers.

Therefore coordination failures between the sequence of policy makers and the private sector

can occur and may result in multiple equilibria and expectation traps. Models with expectation

traps can help us to explain the observed excess volatility of macroeconomic data.3 These models

should also be used to improve macroeconomic policy to avoid such traps.

Our contribution is twofold. First, we demonstrate, by example, that similar to discretion

expectation traps also exist under limited commitment.4 We use a simple New Keynesian (NK)

model with government debt accumulation which describes an economic behavior that is familiar

from the literature on the fiscal theory of the price level (see e.g. Leeper (1991)). Second, we ob-

tain the minimum degree of policy precommitment that is required to select the best equilibrium.

We demonstrate that a small degree of precommitment is enough to select the best equilibrium;

a tenure of about 2-5 years is sufficient to eliminate all equilibria except the Pareto-preferred.

The paper is organized as follows. In Section 2 we introduce the NK model with debt ac-

cumulation. We first review properties of discretion and commitment policies for this model

and demonstrate the existence of expectation traps under quasi-commitment. Then we find the

minimum length of precommitment that is required to select the best equilibrium in our model.

Section 5 concludes. Finally, the Appendix presents a numerical algorithm to find policy with

limited commitment.

2 The Model with Government Debt

This section demonstrates the existence of multiple equilibria under limited commitment by

example. We present a simple NK model with government debt accumulation in the spirit of

2Dynamic RE models with multiple discretionary equilibria are presented in King and Wolman (2004) and Blake
and Kirsanova (2012). Lockwood and Philippopoulos (1994), Albanesi et al. (2003) give examples of multiplicity
in models with static expectations.

3Discretionary policy with multiple equilibria generates data series which can be observed as satisfying a Markov-
switching regime (Blake and Kirsanova (2012)). There is much empirical evidence on such regimes; for one example
which uses a similar model as we study here see Davig and Leeper (2006).

4Schaumburg and Tambalotti (2007) term limited commitment ‘quasi-commitment’ and Debertoli and Nunes
(2010) use ‘loose commitment’. In this paper we use these terms interchangeably.
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Leeper (1991). This model is well suited to use as an example to demonstrate the existence of

expectation traps and to study the dynamic properties of an economy under monetary policy with

limited commitment. First, unlike the model in Schaumburg and Tambalotti (2007) this model

has an endogenous predetermined state variable, government debt, which is affected by policy.

The presence of such a variable is crucial to generate multiple equilibria under discretionary policy

in LQ RE models (Blake and Kirsanova (2012)). A necessary condition for multiplicity is the

existence of strategic complementarities between the decisions of agents. An endogenous state

variable ensures that the current policy maker reacts (indirectly) to the past actions of the private

sector and his predecessors. Therefore the policy maker can be trapped into implementing an

undesired policy, if it is less costly to validate the expectations formed in the past, than sticking

to his initial policy plan. Second, the model is simple enough to derive most of our results

analytically.5

We adopt the model from Benigno and Woodford (2003).6 The economy consists of a represen-

tative household, a representative firm that produces the final good, a continuum of intermediate

goods producing firms and a monetary and fiscal authority. The intermediate goods producing

firms act under monopolistic competition and produce according to a production function that

depends only on labor. Goods are combined via a Dixit and Stiglitz (1977) technology to pro-

duce aggregate output. Firms set their prices subject to a Calvo (1983) price rigidity. Households

choose consumption and leisure and can transfer income through time through their holdings

of government bonds. All agents can observe and affect the accumulation of real government

debt. The accumulation of government debt must depend on a fiscal stance. Hence, there is a

non-optimizing fiscal authority facing a stream of exogenous public consumption. These expen-

ditures are financed by levying income taxes and by issuing one-period risk-free nominal bonds.

We assume that the fiscal authority imposes a simple proportional rule for the tax rate: if real

debt is higher (lower) than in the steady state the tax rate rises (falls). We shall refer to the tax

rate as ‘taxes’ and to the parameter of the proportional rule as the ‘fiscal feedback’. The size of

this fiscal feedback measures the strength of the fiscal stabilization of debt and, as we shall show,

plays an important role in the model. The presence of the non-optimizing fiscal authority in the

economy is captured by this single feedback parameter µ.

We assume that all public debt consist of riskless one-period bonds. Accordingly, the nominal

5Debertoli and Nunes (2010) use a non-linear model to illustrate a generalization of the quasi-commitment
equilibrium concept to a non-linear setting. Their model is not suitable for our analysis because of the assumption
of non-linearity.

6 It was also used in Blake and Kirsanova (2012) to demonstrate existence and investigate the properties of
multiple equilibria under discretionary policy.
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value of end-of-period public debt Bt evolves according to the following law of motion:

Bt = (1 + it−1)Bt−1 + PtGt −ΥtPtYt, (1)

where Υt represents the share of nominal income that the government taxes in period t. Gt

denotes government purchases which are exogenously given. The aggregate price level is denoted

by Pt and the nominal interest rate of government bonds is denoted by it. The national income

identity yields

Yt = Ct +Gt, (2)

where Ct is private consumption. For analytical convenience, we define Bt = (1+ it−1)Bt−1/Pt−1
as a measure of real government debt. Because Bt is observed at the beginning of period t, (1)

can be rewritten as

Bt+1 = (1 + it)

(
Bt

Pt−1
Pt

−ΥtYt +Gt

)
. (3)

We assume that fiscal policy is conducted according to a simple mechanistic feedback rule that

relates the tax rate, Υt, to the stock of real debt, Bt

Υt = Υ̃

(
Bt

B̃

)µ B̃
Ỹ

. (4)

Here and below the tilde denotes the steady-state value of the corresponding variable in the

model’s zero-inflation non-stochastic steady state.

Log-linearizing (3) and (4) yields

bt+1 =
B̃

Ỹ
ιt +

1

β

((
1− µΥ̃

)
bt −

C̃

Ỹ
Υ̃ct −

B̃

Ỹ
πt

)

, (5)

where bt =
B̃
Ỹ
ln
(
Bt
B̃

)
, ct = ln

(
Ct
C̃

)
and ιt = ln (1+it)(1+ı̃) . The private sector’s discount factor,

β, satisfies β = 1/(1 + ı̃). To make the model particularly simple we assume B̃ = 0, which

eliminates the first-order effect of the interest rate and inflation on debt, and obtain the final

version of linearized debt accumulation equation

bt+1 = ρbt − ηct, (6)

where the parameter ρ =
(
1− µΥ̃

)
/β is a function of the tax rate, implying that with stronger

fiscal feedback µ the stock of real debt is stabilized more rapidly, and where the parameter

η = C̃Υ̃/
(
βỸ
)
describes the sensitivity of debt to the tax base.
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The derivation of the appropriate Phillips curve is standard (Benigno and Woodford (2003),

Sec. A.5) and real marginal cost is a function of output and taxes. Log-linearizing the price-

setting-firms’ pricing decision around the zero-inflation non-stochastic steady state yields the

following New Keynesian Phillips curve

πt = βEtπt+1 + δ




(
1

σ
+

θ

ψ

)
ct +

Υ̃(
1− Υ̃

)τ t



+ ut,

where δ = (1−γβ)(1−γ)ψ
γ(ψ+ǫ) is the slope of Phillips curve, τ t = ln

(
Υt
Υ̃

)
, σ is the inverse of the

intertemporal elasticity of substitution, ψ is the elasticity of labour supply, θ = C̃/Ỹ is the

steady state consumption to output ratio and ut is an AR(1) cost push shock with persistence

parameter ρu. Et is the expectation operator conditional on information available at time t.

Substituting the log-linearized equations (2) and (4) into the Phillips curve yields

πt = βEtπt+1 + κct + νbt + ut, (7)

where ν = µκΥ̃/
(
1− Υ̃

)
and κ = δ (1/σ + θ/ψ).

In summary, the model is described by the debt accumulation equation (6) and the Phillips

curve (7). The aggregate agents’ decision variable is inflation, πt, and the initial state, b0 = b̄, is

known to all agents. We assume that the policy maker chooses consumption ct. In contrast to the

standard NK model (used in Schaumburg and Tambalotti (2007)) the next-period predetermined

state variable, bt+1, is affected by policy, ct.

The intertemporal welfare criterion of the policymaker is defined by the following quadratic

objective

L =
1

2
Et

∞∑

t=0

βt
(
π2t + λc2t

)
. (8)

This criterion is microfounded and derived under the assumption of a steady state labour subsidy,

in the absence of technology and taste shocks.7 Parameter λ is a function of model parameters,

λ = θκ/ǫ, and ǫ is the elasticity of substitution between any pair of monopolistically produced

goods.

The policy maker knows the laws of motion (6)-(7) of the aggregate economy and takes them

into account when formulating policy.

7For a derivation see Kirsanova and Wren-Lewis (2011). Of course we could get technology and taste shocks
and reinterpret the log-linearized variables as ‘gap’ variables.
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3 Preliminaries: Discretion and Commitment

We shall compare the dynamics of the model under quasi-commitment policy with dynamics under

the two limiting cases, discretion and commitment.8 This Section gives all necessary definitions

and presents solutions to these two limiting cases in a comparable form using the model above

as an example.

3.1 Discretionary Policy

Under discretion there is a sequence of policy makers: each period a new policy maker arrives

in office. The new policy maker chooses the best policy knowing that he stays in office for only

one period and the next-period’s policy maker will re-optimize again.9 The law of motion of

the aggregate economy (6)-(7) is known by the policy maker and taken into account when he

formulates the optimal policy. Furthermore, the policy maker finds the best action every period

and knows that future policy makers have the freedom to change policy, but will apply the same

decision process. At every point in time t the decision rules of each agent are linear functions of

the current state

ct = cuut + cbbt, (9)

πt = πuut + πbbt. (10)

Note that from

Etπt+1
eq.(10)
= πuEtut+1 + πbbt+1

eq.(6)
= πuρuut + πb (ρbt − ηct)

eq.(7)
=

1

β
πt −

κ

β
ct −

ν

β
bt −

1

β
ut,

it follows that the private sector’s decision can also be written as

πt = (βπuρu + 1)ut + (βρπb + ν) bt + (κ− βηπb) ct. (11)

The policy maker moves first within each period and the private sector observes the action of

the policy maker. Thus, the private sector takes into account the ‘instantaneous’ influence of the

policy choice measured by (κ− βηπb) .

We can give now a more precise definition of discretionary policy: A policy determined by

(9) is discretionary if the policy maker finds it optimal to follow it in every period s > t, given

8 In this section we largely follow the approach and results in Blake and Kirsanova (2012) and in Kirsanova and
Wren-Lewis (2011), but present the results in a form that is most convenient for our purposes.

9Our definition of discretionary policy is standard and follows Oudiz and Sachs (1985), Backus and Driffill
(1986) and Clarida et al. (1999).
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the private sector (i) observes the current policy, (ii) knows that future policy makers re-optimize

and use the same decision process, and (iii) expects policy (9) will be implemented in all future

periods.

We can write the criterion for optimality as

Suuu
2
t + 2Subutbt + Sbbb

2
t = minct

((
π2t + λc2t

)
+ β

(
Suuu

2
t+1 + 2Subut+1bt+1 + Sbbb

2
t+1

))
, (12)

subject to constraints (6) and (11).

One can solve the problem using Lagrange multipliers. The expected Lagrangian can be

written as

Ldt =
1

2

(
π2t + λc2t

)
+ β

1

2

(
Suuρ

2
uu
2
t + 2Subρuutbt+1 + Sbbb

2
t+1

)
(13)

+ξt+1 (ρbt − ηct − bt+1)

+φt+1 (πt − κct − νbt − ut − β (πuρuut + πbbt+1)) .

This approach exploits the intertemporal representation (6)-(7) together with the underlying

assumption that the private sector’s expectations about its own future decisions will be necessarily

a function of the future state.

Only current period constraints matter for the policy maker and the first order conditions can

be written as

0 = βSbbbt+1 + βSubρuut − ξt+1 − βπbφt+1, (14)

0 = πt + φt+1, (15)

0 = λct − ηξt+1 − κφt+1, (16)

0 = ρbt − ηct − bt+1, (17)

0 = βπbbt+1 + κct + νbt − πt + (1 + βπuρu)ut. (18)

The optimal policy response can be written in the form of (9) with

cu = −((κ− βπbη) (βπuρu + 1)− ηβSubρu)(
βη2Sbb + (κ− βηπb)

2 + λ
) (19)

cb = −((κ− βπbη) (βπbρ+ ν)− ηβSbbρ)(
βη2Sbb + (κ− βηπb)

2 + λ
) (20)
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and so the components of the value function satisfy the following equations

Suu = ((βπuρu + 1) + (κ− βπbη) cu)
2 + λc2u (21)

+β
(
ρ2Suu − 2ρηSubcu + η2Sbbc

2
u

)
,

Sηb = ((βπuρu + 1) + (κ− βπbη) cu) ((βρπb + ν) + (κ− βηπb) cb) (22)

+λcucb + βSubρu (ρ− ηcb)− βSbbηcu (ρ− ηcb) ,

Sbb = ((βρπb + ν) + (κ− βηπb) cb)
2 + βSbb (ρ− ηcb)

2 + λc2b . (23)

This yields the following coefficients in (10)

πu = βπuρu + 1 + (κ− βηπb) cu, (24)

πb = βρπb + ν + (κ− βηπb) cb. (25)

The coefficients {cu, cb, πu, πb, Suu, Sub, Sbb} describe the solution to the discretionary optimiza-
tion problem outlined above. They uniquely define the trajectories {bt, πt, ct}∞t=0 for any given
b0 = b̄. Conversely, if the sequence {bt, πt, ct}∞t=0 solves the discretionary policy outlined above,
then there is a unique set of coefficients {cu, cb, πu, πb, Suu, Sub, Sbb} that satisfies equations (19)-
(25). We call the set of coefficients {cu, cb, πu, πb, Suu, Sub, Sbb} a discretionary equilibrium.
Note that the discretionary equilibrium is fully characterized by the deterministic component

of the solution, {πb, cb, Sbb}. Indeed, we can solve system (19)-(25) in a recursive way. We first

solve (20), (23) and (25) for {cb, πb, Sbb} and then solve the rest of the system for the stochastic
component of the solution. We use this well known fact to find all discretionary equilibria in the

following simple and illustrative way.10

Suppose the policy maker guesses the response of the private sector to the state, πb. Then

the optimal discretionary policy is given by the pair (20) and (23). We find cb and therefore

the optimal response π∗b of the private sector is given by (25). Then, for every - not necessarily

optimal - πb we can compute a unique π∗b and plot the dependence π
∗
b (πb), see the first panel in

Figure 1, Panel I. Clearly, if πb = π∗b we have a solution to the discretionary problem.

Our benchmark calibration is standard and follows Schaumburg and Tambalotti (2007) and

Blake and Kirsanova (2012). The model’s frequency is quarterly. The subjective discount rate β

is set to 0.99, the government share of total output 1− ρ is 0.25. The elasticity of intertemporal

substitution σ is 1/2, the Frisch elasticity of labor supply ϕ = 1/2, and the elasticity of demand

ǫ = 5. The Calvo parameter γ = 0.75 and the cost-push shock is an exogenous process with

10See Anderson et al. (1996) on certainty equivalence in this class of models and Blake and Kirsanova (2012) for
explicit formulae for stochastic components as functions of deterministic components for discretionary models.
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Figure 1: Multiple policy equilibria for different degrees of precommitment
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standard deviation 0.005 and ρu = 0. Finally, the most crucial parameter for our results is the

fiscal feedback, µ. The recent empirical evidence suggests that, although the strength of fiscal

feedback varies across countries and with time, the chosen value of µ = 0.05 is realistic. See e.g.

Leeper et al. (2010) who find a reaction of labour taxes to debt of about 0.05 percentage points

for the post-1960 period in the US; see also Coenen and Straub (2005) and Forni et al. (2009)

who estimate the response of taxes to debt for the Euro Area.

For our baseline calibration the graph of π∗b (πb) intersects the 45
o degree line in three points

labelled A, B and C, so we have three discretionary policy equilibria.11 A moderate inflation,

set by the firms in response to a given debt level, πb, increases the marginal return to a policy

decision that increases consumption in response to this level of debt, cb. Higher consumption

raises demand and firms will increase their response to debt, π∗b . This complementarity ensures

the steepness of π∗b (πb) and three equilibria arise.

The three equilibria, whose characteristics are presented in Table 1 result in qualitatively and

quantitatively different dynamics of the economy. Figure 2, which shows the responses of key

variables to a unit markup shock for equilibria A and C (as equilibrium B is similar to equilibrium

A for the benchmark calibration) using dotted lines with markers.12 Focusing first on equilibrium

A, inflation rises following the markup shock and the policy response is to defer consumption (by

raising the nominal interest rate sufficiently high, this is implicit in our model). The decline in

consumption lowers output and government tax revenues, which leads to a rise in government

debt. In subsequent periods, although interest rates are lowered to stimulate the economy and

bring it out of recession, government debt is brought back to baseline predominantly through

(primary) fiscal surpluses, rather than through a decline in the cost of financing government

debt.

In equilibrium C monetary policy responds to the markup shock by stimulating consumption

and output, raises real marginal costs, and causes inflation to rise by more than it otherwise

would. This monetary policy causes tax revenues to rise and leads to a decline in government

debt. To stabilize government debt, future policy makers raise the cost of financing government

debt, which causes consumption, output, and real marginal costs to decline and places downward

pressure on inflation. In the spirit of Leeper (1991) monetary policy can be thought of as being

active in equilibria A and B and passive in equilibrium C. Table 1 reveals this trade-off between

11The graph is continuous. This is because the denominator of (20) is always positive: Sbb > 0, and λ > 0 (see
Blake and Kirsanova (2012)). In order to find points of intersection we note that π∗b (πb)−πb changes sign in these
points. We obtain the solutions with the tolerance level 1e-12.
12These impulse responses are identical in each panel.
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Eq. A Eq. B Eq. C

Characteristics of Discretionary Policy Equilibria

(1) Policy Reaction
[
cu cb

] [
−4.8 −0.02

] [
−4.5 −0.01

] [
−0.4 1.9

]

(2) Private Sector
[
πu πb

] [
0.7 0.01

] [
0.8 0.02

] [
1.0 0.3

]

Reaction

(3) Value Function

[
Suu Sub
Sub Sbb

] [
0.73 0.01
0.01 0.0004

] [
0.76 0.02
0.02 0.01

] [
1.00 0.28
0.28 0.17

]

(4) Normalized Loss L 1.3326 1.3872 1.8283

Characteristics of Commitment Policy Equilibrium

(5) Policy Reaction
[
cu cb cφ

] [
−3.6 −0.01 3.6

]
— —

(6) Private Sector
[
πu πb πφ

] [
0.5 0.002 0.45

]
— —

Reaction
(7) Normalized Loss L 1.0 — —

Degree of Precommitment Required to Select the Best Equilibrium

(8) Duration of commitment 1/α 7 — —
period to select Eq. A quarters

Table 1: Properties of Discretionary Equilibria in the NK Model with Debt Accummulation

the response to government debt and the response to the markup shock: The more ‘actively’ the

policy maker behaves, the stronger is the policy-induced recession in response to the mark-up

shock.

3.2 Commitment Policy

Under the full commitment policy the policy maker optimizes only once, in the initial moment.

He chooses a contingency plan, which is than applied indefinitely but can be implemented sequen-

tially. If there is a change of policy makers, the subsequent policy maker continues the policy of

its predecessor; therefore we can assume that there is only one policy maker which takes office in

period zero and stays infinitely. When optimizing, the policy maker internalizes the effect of its

choice on private sector’s expectations and solves the following Lagrangian

Lc =
∞∑

t=0

βt
(
1

2

(
π2t + λc2t

)
+ ξt+1 (ρbt − ηct − bt+1) + φt+1 (πt − κct − νbt − ut − βπt+1)

)
.
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The corresponding first order conditions are:

0 = −ξt + ρβξt+1 − νβφt+1, (26)

0 = πt + φt+1 − φt, (27)

0 = λct − ηξt+1 − κφt+1, (28)

0 = ρbt − ηct − bt+1, (29)

0 = βπt+1 + κct + νbt + ut − πt, (30)

for t ≥ 0; with initial conditions b0 = b̄ and φ0 = 0, and the transversality condition limt→∞ bt <

∞.

The solution to the commitment problem can be written in the following linear form

πt = πuut + πbbt + πφφt, (31)

ct = cuut + cbbt + cφφt, (32)

ξt = ξuut + ξbbt + ξφφt, (33)

where the coefficients satisfy the following algebraic matrix Riccati equation (see Appendix A for

details):




cu cb cφ
πu πb πφ
ξu ξb ξφ



 =




λ+ η2ξb κ+ ηξφ 0
βηπb−κ βπφ+1 0
βηρξb −β

(
ν − ρξφ

)
1





−1

(34)

×




ηξuρu ηρξb κ+ ηξφ

βρuπu+1 ν + βρπb βπφ
βρξuρu βρ2ξb −β

(
ν − ρξφ

)





and the components of the value function S satisfy the following algebraic matrix Riccati equation:



Suu Sub Suφ
Sub Sbb Sbφ
Suφ Sbφ Sφφ



 =




π2u+λc

2
u πbπu+λcbcu πuπφ+λcucφ

πbπu+λcbcu π2b+λc
2
b πbπφ+λcbcφ

πuπφ+λcucφ πbπφ+λcbcφ π2φ+λc
2
φ



 (35)

+β




ρu −ηcu −πu
0 ρ− ηcb −πb
0 −ηcφ 1− πφ








Suu Sub Suφ
Sub Sbb Sbφ
Suφ Sbφ Sφφ








ρu 0 0
−ηcu ρ− ηcb −ηcφ
−πu −πb 1− πφ





A set of coefficients {πu, πb, πφ, cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} which solves system
(34)-(35) defines a trajectory {bt, πt, ct}∞t=0 which solves system (26)-(30) for any given b0 = b̄.

Conversely, if a sequence {bt, πt, ct}∞t=0 solves system (26)-(30), then its parameters {πu, πb, πφ,
cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} satisfies equations (34)-(35). We call the set

12



of coefficients {πu, πb, πφ, cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} a commitment
equilibrium.

Writing the solution in form (31)-(33) allows us to compare it with the discretionary solution.

Again, suppose the response of the private sector to debt, πb, is given. We can guess the other

feedback coefficients in the system (31)-(33) and iterate the Riccati equation (34) as suggested

in Appendix A, but do not update πb. If the procedure converges, we have obtained the optimal

response of the policy maker to the private sector decision, provided that the private sector

responds to the Lagrange multiplier (set by the policy maker) in an optimal way. Then, we

iterate the Riccati equation (34) once again to obtain π∗b . A solution to the commitment problem

implies π∗b = πb. The graph of π
∗
b (πb) intersects the 45

o degree line in one point labelled A, see

the second panel in Figure 1, and we can verify with standard methods (e.g. Söderlind (1999))

that this point is, indeed, a solution. For the baseline calibration the economy is stabilized by

the policy maker in the unique equilibrium A.

Figure 2 reports the responses of all variables to a positive unit cost push shock. Under

commitment (the blue dotted line with x-markers) the policy maker engineers a fall in private

consumption, which will dampen marginal costs. Although the dynamics of the economy is very

similar to the one in discretionary equilibrium A, in contrast to this discretionary equilibrium,

the policy maker keeps consumption below the steady state for several periods. Such a policy

allows the policy maker to lower expected future inflation and ensures price stability in the long

run. Government debt initially increases due to the fall in consumption, but is brought back to

the steady state with higher taxes.

4 Quasi-Commitment Policy

This Section studies monetary policy within a limited commitment framework. We discuss the

continuum of intermediate cases between commitment and discretion. We want to understand

(i) how a ‘quasi-commitment bridge’ links the economy under commitment and under discretion

when multiple equilibria exist, and (ii) how effectively quasi-commitment helps to select the best

equilibrium.

4.1 Existence of Multiple Policy Equilibria

A quasi-commitment policy, as introduced in Schaumburg and Tambalotti (2007), also assumes

sequential policy making. A new policy maker is appointed with a constant and exogenous prob-

ability α every period. When a new policy maker arrives in office, he reneges on the promises of

13
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Figure 2: Impulse Responses to a 1% cost push shock in the model with government debt
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his predecessor and commits to a new policy plan that is optimal at the time of the change. All

agents understand the possibility and the nature of this change and form expectations accord-

ingly. The private sector knows that a new policy maker will re-optimize, therefore it doubts the

reliability of outstanding promises.

As in Schaumburg and Tambalotti (2007) and Debertoli and Nunes (2010) we assume that

the policy maker’s tenure in office depends on a sequence of exogenous i.i.d. Bernoulli signals

{Ωt}t≥0 with E [Ωt] = α. If α = 1 the policy authority acts under full discretion and every period

a new policy maker arrives in office and re-optimizes the planning problem. If α = 0 the policy

maker stays in office infinitely long and keeps his promises.

Schaumburg and Tambalotti (2007) and Debertoli and Nunes (2010) demonstrate that the

optimization problem under limited commitment can be expressed by the following Lagrangian

Lqc =
∞∑

t=0

(β (1− α))t
(
1

2

(
π2t + λc2t + βα

(
Sαuuu

2
t+1 + 2S

α
ubut+1bt+1 + Sαbbb

2
t+1

))
(36)

+φt+1 (πt − κct − νbt − ut − β (1− α)πt+1 − βαπαb bt+1 − βαπαuut+1)

+ξt+1(ρbt − ηct − bt+1)
)

for 0 ≤ α < 1. Here we use superscript α to denote parameters of solution to the limited

commitment problem. The first order conditions are

0 = βαSαubut + βαSαbbbt − ξt + ρβ (1− α) ξt+1 − νβ (1− α)φt+1 − βαπαb φt, (37)

0 = πt + φt+1 − φt, (38)

0 = λct − ηξt+1 − κφt+1, (39)

0 = ρbt − ηct − bt+1, (40)

0 = β (1− α)πt+1 + βαπαb bt+1 + κct + νbt + (βαπ
α
uρu + 1)ut − πt, (41)

for t ≥ 0, with initial conditions b0 = b̄ and φ0 = 0, and the transversality condition limt→∞ bt <

∞. These first order conditions are similar to those for commitment, but depend additionally on

the parameters {παb , Sαbb, Sαub}. These parameters are a part of solution to the limited commitment
problem as we explain next.

A solution to system (37)-(41) can be written in the following linear form (see Appendix B

for details)

πt = παuut + παb bt + παφφt, (42)

ct = cαuut + cαb bt + cαφφt, (43)

ξt = ξαuut + ξαb bt + ξαφφt. (44)

15



where coefficients
{
παu , π

α
b , π

α
φ, c

α
u , c

α
b , c

α
φ

}
solve the following algebraic Riccati equation:




cαu cαb cαφ
παu παb παφ
ξαu ξαb ξαφ



 =




λ+ η2ξαb κ+ ηξαφ 0

βηπαb−κ (1− α)βπαφ+1 0
βηρξαb (1− α) β

(
ρξαφ−ν

)
(1− α) 1





−1

(45)

×




ηξαuρu ηρξαb κ+ ηξαφ

βρuπ
α
u+1 ν + βρπαb βπαφ (1− α)

β (αSαbu+(1− α)ρξαuρu) β
(
αSαbb+(1− α)ρ2ξαb

)
β
(
(1− α)

(
ρξαφ−ν

)
−απαb

)





and parameters Sαbu and Sαbb are a part of the solution to the following matrix equation:




Sαuu Sαub Sαuφ
Sαub Sαbb Sαbφ
Sαuφ Sαbφ Sαφφ



 =






(παu)
2+λ (cαu)

2 παb π
α
u+λc

α
b c
α
u παuπ

α
φ+λc

α
uc
α
φ

παb π
α
u+λc

α
b c
α
u (παb )

2+λ (cαb )
2 παb π

α
φ+λc

α
b c
α
φ

παuπ
α
φ+λc

α
uc
α
φ παb π

α
φ+λc

α
b c
α
φ

(
παφ

)2
+λ

(
cαφ

)2




 (46)

+β (1− α)




ρu −ηcαu −παu
0 ρ− ηcαb −παb
0 −ηcαφ 1− παφ










Sαuu
(1−α)

Sα
ub

(1−α) Sαuφ
Sα
ub

(1−α)

Sα
bb

(1−α) Sαbφ
Sαuφ Sαbφ Sαφφ









ρu 0 0
−ηcαu ρ− ηcαb −ηcαφ
−παu −παb 1− παφ





Coefficients {πu, πb, πφ, cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} uniquely define the tra-
jectories {bt, πt, ct}∞t=0 which solve system (37)-(41) for any given b0 = b̄. Conversely, if the

sequence {bt, πt, ct}∞t=0 solves system (37)-(41), then there is a unique set of coefficients {πu, πb,
πφ, cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} that satisfies equations (45)-(46). We call
the set of coefficients {πu, πb, πφ, cu, cb, cφ, ξu, ξb, ξφ, Suu, Sub, Suφ, Sbb, Sbφ, Sφφ} a limited
commitment equilibrium.

We can plot the solution to system (45)-(46) using the same approach as we used for commit-

ment in Section 3.2. Suppose we guess the response of the private sector to the state variable,

παb . Then, we can iterate system (45)-(46), but do not update π
α
b . If the procedure has converged,

we iterate it once to obtain the update πα∗b . Solutions to the system (45)-(46) will be among the

points where πα∗b = παb .

For the baseline calibration of α = 1/2 (which implies an average regime duration of two

quarters) the graph of π
1/2∗
b

(
π
1/2
b

)
intersects the 45o degree line in three points labelled A, B

and C, see the third panel in Figure 1.13 Therefore, if we move from the case of pure discretionary

policy to the case were the policy maker stays in office on average for two periods then all three

equilibria survive.

The survival of all discretionary equilibria under some degree of precommitment is not obvious.

Note that if α = 1, the policy maker defaults with certainty every period. Then, the Lagrangian

13Again, we can verify with standard methods (based on Oudiz and Sachs (1985) and Backus and Driffill (1986),
and discussed in Appendix C) that these are indeed solutions to the optimization problem.
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(36) takes the form of (13), which describes the discretionary optimization problem. The first

order conditions for the limited commitment optimization problem (37)-(41) are left-discontinuous

at point α = 1. System (37)-(41) does not collapse to (14)-(18) as taking the limit α→ 1 in system

(37)-(41) does not eliminate the Lagrange multiplier on the previous-period constraint φt in

equation (38). Because for any α < 1 the private sector does not expect the occurrence of default

with certainty in the next period, this property holds at the limit and implies discontinuity of the

first order conditions. Nevertheless, the number of equilibrium is a locally continuous function of

α at α = 1, as we prove next.

Proposition 1 Assume that all roots of the polynomial system (19)-(25) are of multiplicity one

so that there are K ∈ {1, 3} distinct solutions under discretionary policy. There exists α, 0 <

α < 1 such that if α ∈ (α, 1] then there are as many quasi-commitment policy equilibria as under

discretion.

Proof. First, we prove that the system of first order conditions to the limited commitment

problem, taken at the limit α → 1, has as many solutions as has the system of first order

conditions to the discretionary problem.

Indeed, taking the limit α→ 1 of system (45)-(46) we obtain system the following system

S1u =
(
π1u
)2
+ λ

(
c1u
)2
+ β

(
ρ2uS

1
u + η2

(
c1u
)2

S1bb − 2ηρuc1uS1bu
)
, (47)

Sub = π1bπ
1
u + λc1bc

1
u + βρu

(
ρ− ηc1b

)
S1ub + βηc1u

(
ηc1b − ρ

)
S1bb, (48)

Sbb =
(
π1b
)2
+ λ

(
c1b
)2
+ β

(
−ρ+ ηc1b

)2
S1bb, (49)

ηβS1buρu = κπ1u + λc1u + η2βS1bbc
1
u − ηβπ1bπ

1
u, (50)

ηρβS1bb = κπ1b + λc1b + η2βS1bbc
1
b − ηβπ1bπ

1
b , (51)

βρuπ
1
u + 1 = π1u − κc1u + βηπ1bc

1
u, (52)

ν + βρπ1b = π1b − κc1b + βηπ1bc
1
b , (53)
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ξ1u = βS1bu, ξ1b = βS1bb, ξ1φ = −βπ1b , π1φ =

(
κ− ηβπ1b

)2
((

κ− ηβπ1b
)2
+ λ+ η2βS1bb

) , (54)

c1φ =
κ− ηβπ1b((

κ− ηβπ1b
)2
+ λ+ η2βS1bb

) , S1φφ =

(
κ− ηβπ1b

)2
((

κ− ηβπ1b
)2
+ λ+ η2βS1bb

) , (55)

S1uφ =
(
κ− ηβπ1b

) π1u
(
κ− ηβπ1b

)
+ c1u

(
λ+ βη2S1bb

)
− βηρuS

1
bu((

κ− ηβπ1b
)2
+ λ+ η2βS1bb

) , (56)

S1bφ =
(
κ− ηβπ1b

) π1b
(
κ− ηβπ1b

)
+ c1b

(
λ+ βη2S

)1
bb
− βηρS1bb((

κ− ηβπ1b
)2
+ λ+ η2βS1bb

) , (57)

which can be split into two sub-systems, (47)-(53) and (54)-(57). The first sub-system (47)-

(53) does not depend on {π1φ, c1φ, ξ1u, ξ1b , ξ1φ, S1uφ, S1bφ, S1φφ}; and it is equivalent to system (19)-

(25), which determines solution to the discretionary problem, {πu, πb, cu, cb, Suu, Sub, Sbb}. The
second sub-system (54)-(57) is linear in variables {π1φ, c1φ, ξ1u, ξ1b , ξ1φ, S1uφ, S1bφ, S1φφ} and has a unique
solution given

{
π1u, π

1
b , c

1
u, c

1
b , S

1
uu, S

1
ub, S

1
bb

}
. If follows that the solutions to system (19)-(25) and

to system (47)-(57) are identical.

Second, we prove that the system of first order conditions to the limited commitment problem

has the same number of solutions in some neighborhood of α = 1.

Indeed, system (45)-(46) is a polynomial system in {π, c, S}, which coefficients are polynomial
functions of α. Therefore, all solutions to (45)-(46) at α = 1 are continuous functions in α. For

any solution j, j ∈ {1, 3}, to system (45)-(46) for α = 1 there exists a αj < 1 such that solution

j is a continuous function of α for α ∈ (αj, 1]. A solution which exists for α = 1 also exists for
α ∈ (ᾱ, 1] where ᾱ = maxj{αj}. If there are K solutions to (45)-(46) for α ∈ (ᾱ, 1], then there
are K paths which solve (37)-(41) for α ∈ (ᾱ, 1].
Therefore, the system of first order conditions to the limited commitment problem has as many

solutions as has the system of first order conditions to the discretionary problem if α ∈ (α, 1].
We plot the case α → 1 in the fourth panel in Figure 1. The π1∗b

(
π1b
)
line intersects the 45o

degree line in three points, which are the same points as under pure discretion.14

In Figure 2 we show the responses of all variables to a positive 1% cost push shock under a

quasi-commitment policy. We set α = 1/2, which implies average regime duration of two quarters.

We also demonstrate impulse responses under commitment and discretion (equilibria A and C).

Panel I of Figure 2 shows the impulse response functions of Type (i).15 These impulse re-

14The shape of π1∗b
(
π1b
)
is different than in Panel I because we take into account the Lagrange multipliers when

computing π1∗b
(
π1b
)
. But in equilibrium π1b = πb.

15The categorization of the impulse response functions follows Schaumburg and Tambalotti (2007).

18



sponses demonstrate the evolution of the economy if no reoptimization happens over the horizon

of interest, while the private sector expects them to happen every period with probability 1/2.

In this scenario a central banker stays in office unexpectedly long, which becomes more and more

unrealistic over time. To generate these impulse responses we use the transition matrix given by

the conditions (37)-(41). Similar to discretion we plot the two quasi-commitment equilibria A

and C. We use solid and dash-dotted lines correspondingly. Compared to the full commitment

policy, quasi-commitment policy in the active monetary policy equilibrium A delivers a stronger

and longer lasting decrease in consumption. As reoptimizations are expected to happen the price

setters expect future policy makers to increase consumption and therefore expect a high inflation

in the future. Therefore, if the policy maker wants to exploit private sector expectations he has

to pay a higher cost in from of a stronger recession. In the absence of reoptimizations this results

in stronger future deflation and higher debt, compared to commitment.

Type (i) impulse responses under quasi-commitment policy in equilibrium C are explosive.

In this case the ‘passive’ monetary policy is not able to stabilize inflation, while trying to keep

debt under control. After the shock occurred the policy maker cannot move consumption by

much, since he has to avoid excessive debt accumulation. This behavior is similar to the one

in discretionary equilibrium C. Because the private sector expects defaults in the future and

hence high future inflation, inflation can only be controlled with low demand. However, lower

consumption would result in excessive debt accumulation. Therefore the reduction in consumption

counteracts the effort of the central bank to ensure fiscal solvency and therefore the economy

exhibits explosive behavior. As the fourth chart in the first panel shows, the Lagrange multiplier

φt which measures the shadow price of controlling the private sector inflation expectations is

much higher in equilibrium C and explodes with time.16 The result is not surprising, given that

the monetary policy maker has to control debt in the passive equilibrium. This task becomes

incompatible with inflation stabilization if expected defaults do not happen.17

Impulse responses of Type (ii) in Panel II of Figure 2 characterize a more typical behavior of

the economy under quasi-commitment. Suppose reoptimizations happen in periods 2, 3, 6 and

8 after the initial shock. In each of these periods the reoptimizing policy maker reneges on the

plan of its predecessor. When the policy maker defaults on the promises of his predecessor, he

resets the predetermined Lagrange multiplier to zero. The policy maker takes this opportunity

to end the promised recession of his predecessor and raises consumption back to its initial level.

16This Lagrange multiplier is set on the Phillips curve in the optimization problem of the policy maker.
17Using an analogy with a roulette game, system (37)-(41) describes the history when ‘red’ never realizes while

it is expected — and it is bet on — with probability 1/2.
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The increase in consumption also leads to a faster reduction of government debt.

Type (iii) impulse responses (Panel III in Figure 2) are the ex ante averages of all the possible

conditional IRFs integrated over the distribution of the corresponding reoptimization draws.

Therefore they demonstrate the expected evolution of the system following the initial shock.

Naturally, they are in between the IRF of the respective discretionary equilibria and the IRF

under full commitment.

4.2 Equilibrium Selection

Proposition 2 There exists α, 0 < α ≤ 1 such that if (i) α ∈ [0, α) and (ii) a quasi-commitment

equilibrium exists, than the equilibrium is unique.

Proof. Under commitment the policy equilibrium in LQ RE models, if it exists, is always

unique, see e.g. Backus and Driffill (1986).18 Equations (45)-(46) determine the parameters

of the solution to the limited commitment problem. Equation (46) collapses to a symmetric

discrete algebraic Riccati equation for the value function if α → 0; this equation is known to

have a unique symmetric positive semi-definite solution, see e.g. Lancaster and Rodman (1995).

Equation (45) collapses to a Riccati equation (34) if α→ 0; if a solution to this equation exists, it

is unique. System (45)-(46) is a polynomial system in {πk, ck, ξk}k∈{u,b,φ}, and in components of
S, which coefficients are polynomial functions of α. Therefore, all solutions to (45)-(46) at α = 0

are continuous functions in α. If a solution to system (45)-(46) exists for α = 0 there exists a

α > 0 such that the solution is a continuous functions of α for α ∈ [0, α). These three solutions
determine three paths which solve (26)-(30) for α ∈ [0, α).
By continuity the selected equilibrium is always Pareto-optimal because the commitment

equilibrium, to which the selected equilibrium converges at the limit, delivers the lowest loss.

The value of α which selects the unique equilibrium can be smaller than the value of α which

ensures the same number of equilibria as under discretion. How big are these values for our model?

In particular, what is the sufficient degree of precommitment α such that only one equilibrium

survives?

Panel I in Figure 3 plots the expected welfare loss for each equilibrium as a function of

the average duration of the period of precommitment 1/α for a given fiscal feedback parameter

µ = 0.05. In the case of pure discretion (α = 1) we have three equilibria denoted by triangular

markers. With higher degrees of precommitment all three equilibria survive. The losses in the

corresponding equilibria are marked with crosses. Panel I suggests that for the benchmark value

18A commitment policy which stabilises the economy may not exist, see Appendix A.
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of the fiscal feedback parameter the worst and the middle equilibria are eliminated if α = α = 1/8,

as we also report in row (7) of Table 1. If the policy maker stays in the office only for two years

on average this will guarantee the unique equilibrium under quasi-commitment policy.19

To summarize, only a relatively small degree of commitment is required to select the best

equilibrium. If a limited commitment technology is available, then it is a more powerful selection

mechanism than a formation of a coalition of consequent discretionary policy makers, see Dennis

and Kirsanova (2009). If consequent policy makers form coalitions and reoptimize under discretion

only in the first period of each coalition tenure, sticking to the same time-consistent policy

between reoptimizations, it requires a tenure period of three years to select the best equilibrium

in this model.20 An access to the limited commitment technology reduces the necessary tenure

period which is required to avoid falling into an expectation trap. Panel I in Figure 3 shows

that for µ = 0.05 multiplicity is eliminated, if a policy maker can commit on average for 2

years.21 Moreover, and more generally, Proposition 2 claims that there is some sufficient degree

of commitment which will certainly select the Pareto-preferred equilibrium (if the corresponding

commitment equilibrium exists), while no coalition of discretionary policy makers might exist to

select it (Dennis and Kirsanova (2009)).

Panel II in Figure 3 investigates the robustness of the above result for different values of

the fiscal feedback parameter µ, which is crucial for multiplicity. We concentrate on the range

of the fiscal feedback µ which generates multiplicity of quasi-commitment equilibria for a given

average regime duration, 1/α. For every (discrete) regime duration the square marker denotes

the minimum level of µ above which there is a unique equilibrium characterized by an ‘active’

monetary policy. The area below the round markers displays unique equilibria characterized by

a ‘passive’ monetary policy. In the area between the two markers we observe multiplicity of

policy equilibria. Panel II demonstrates that with longer periods of precommitment the area of

multiplicity shrinks very quickly: if the average period of precommitment is more than five years

then expectation traps only exist for very small and empirically irrelevant values of the fiscal

feedback µ.

Parameter µ is crucial for multiplicity and, as we argued in Section 3.1, the range of fiscal

19Panel I in Figure 3 also demonstrates that the welfare loss is quickly reduced for a higher degree of precommit-
ment. The initial gap between the loss in the best discretionary equilibrium A and commitment is nearly halved
after one year of precommitment. A further reduction in α demonstrates that the gains from even minimal levels
of credibility are substantial.
20For the base line calibration of the model with µ = 0.05.
21Our numerical experiments with different (and more complex) models show consistently that the best equilib-

rium is selected only after a few periods of precommitment.
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feedbacks in Panel II in Figure 3 is empirically relevant. The baseline value of µ = 0.05 creates

multiplicity under pure discretionary policy. However, it is enough for a policy maker to stay in

the office for two years in order to select the best equilibrium.

Our results are robust to different calibrations of other parameters of the model. Two para-

meters were found to affect the quantitative results most. More myopic agents (i.e. lower β) put

higher relative weight on stabilization of the economy in the first periods after the shock. This

eliminates the good equilibrium for low values of the fiscal feedback parameter µ, because in this

equilibrium the adjustment is relatively slow. Differently, a higher degree of price stickiness (big-

ger Calvo parameter γ) slows the adjustment process down and eliminates the bad equilibrium

for high values of µ. However, the shape of the curve in Panel I of Figure 3 stays in both cases

the same and quantitative differences are not very large.

5 Conclusion

In this paper we study monetary policy in a limited commitment framework using a simple

New Keynesian model with government debt. We show by example the existence of multiple

equilibria under quasi-commitment policy using a model with government debt accumulation.

We demonstrate the existence of expectation traps similar to those under pure discretionary

policy. Because the private sector expects eventual re-optimizations to happen the current policy

maker formulates its policy based on the forecast of the private sector about future policy makers’

behavior. We find that there can be at least as many limited commitment policy equilibria as in

the corresponding discretionary policy problem.

Although the previously developed equilibrium selection mechanism may suggest that eco-

nomic agents are likely to coordinate on the best equilibrium, our example demonstrates that a

limited commitment technology helps the policy maker to avoid falling into an expectation trap

even if the degree of precommitment is very small.

In this paper we also provide an algorithm for computing quasi-commitment equilibria in the

general class of LQ RE models with endogenous state variables and with exogenous probability

of default. We leave the numerical investigation of properties of quasi-commitment policy in a

wider class of non-linear dynamic models for future research. This research might investigate

how much commitment is required to select the best equilibrium in a King and Wolman (2004)

type of model with multiple discretionary equilibria. Once a robust algorithm to solve non-linear

models is developed, future research will be able to endogenize the probability of default along

the lines suggested in Debertoli and Nunes (2010).
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A Commitment FOCs in the Form of a Riccati Equation

When optimizing, the policy maker internalizes the effect of its choice on private sector’s expec-

tations and solves the following Lagrangian

Lc =
∞∑

t=0

βt
(
1

2

(
π2t + λc2t

)
+ ξt+1 (ρbt − ηct − bt+1) + φt+1 (πt − κct − νbt − ut − βπt+1)

)
.

The corresponding first order conditions are:

0 = −ξt + ρβξt+1 − νβφt+1, (58)

0 = πt + φt+1 − φt, (59)

0 = λct − ηξt+1 − κφt+1, (60)

0 = ρbt − ηct − bt+1, (61)

0 = βπt+1 + κct + νbt + ut − πt, (62)

for t ≥ 0; with initial conditions b0 = b̄ and φ0 = 0, and the transversality condition limt→∞ bt <

∞.

Assume that ρ 
= 0 and η 
= 0 in system (6)-(7). Then the system (6)-(7) is controllable,

and there always exists a unique path {ct, πt, bt}t≥0 which (i) satisfies system (58)-(62) and the

initial conditions and (ii) all eigenvalues of the resulting transition matrix are less than 1/
√
β in

modulus (see, e.g. Kwakernaak and Sivan (1972), Backus and Driffill (1986)). For the rest of

this paper we use the following definition: The economy is stabilized by a policy if all eigenvalues

of the transition matrix are inside the unit circle. If the economy is stabilized by a policy we

call such a policy stabilizing. In general, because β < 1 a stabilizing commitment policy may not

exist for all problems in the LQ RE class.

One way to solve the system (58)-(62) is to use the Schur decomposition, see e.g. Söderlind

(1999). Alternatively, and more convenient for our purpose, we can also solve the system using

an iterative scheme.

System (58)-(62) can be written as



0 0 η
0 β 0
0 0 ρβ








ct+1
πt+1
ξt+1



 =




0 0 −κ
−1 −ν 0
0 0 νβ








ut
bt
φt



+




λ κ 0
−κ 1 0
0 −νβ 1








ct
πt
ξt



 (63)




ut+1
bt+1
φt+1



 =




ρu 0 0
0 ρ 0
0 0 1








ut
bt
φt



+




0 0 0
−η 0 0
0 −1 0








ct
πt
ξt



 (64)
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Substitute (31)-(33) into both sides of (63) and use (64) to substitute out ut+1, bt+1, φt+1. We

obtain




λ+ η2ξb κ+ ηξφ 0
βηπb−κ βπφ+1 0
βηρξb −β

(
ν − ρξφ

)
1








ct
πt
ξt



 =




ηξuρu ηρξb κ+ ηξφ

βρuπu+1 ν + βρπb βπφ
βρξuρu βρ2ξb −β

(
ν − ρξφ

)








ut
bt
φt





Substitution of (31)-(33) yields the matrix algebraic Riccati equation (34) in the main text. We

can guess all feedback coefficients in (31)-(33) and thus in the right hand side of the equation

above. Then, the Riccati equation (34) gives an update of these coefficients: in the next step

we update the right hand side of it and iterate until convergence. The algorithm will converge

(Lancaster and Rodman (1995)).

Although the baseline calibration delivers a stabilizing solution, note that if the fiscal feedback

is weak, 0 < µ < µ∗, where µ∗ =
(
1− Υ̃

)
(1− β)κ/

(
Υ̃
((
1− Υ̃

)
κ− ζθΥ̃

))
, the economy is not

stabilized by policy. The optimal monetary policy still delivers a finite value of the loss function

(8), but all variables exhibit slow explosion with a rate of explosion less than 1/
√
β. However,

this solution should be disregarded as it violates the assumption of a finite working week.22

Finally, note that equation (59) implies price stability: if φt = 0 and limt→∞ φt = 0 it follows

that
∑∞
t=0 πt = 0.

B Limited Commitment and Matrix Equations

System (37)-(41) can be written as




0 0 η
0 β (1− α) 0
0 0 ρβ (1− α)








ct+1
πt+1
ξt+1



 =




λ κ 0
βαηπαb−κ 1 0
0 −νβ (1− α) 1








ct
πt
ξt





+




0 0 −κ
−βαπαuρu−1 −βαπαb ρ− ν 0
−βαSαub −βαSαbb β (ν (1− α) + απαb )








ut
bt
φt



 (65)




ut+1
bt+1
φt+1



 =




0 0 0
−η 0 0
0 −1 0








ct
πt
ξt



+




ρu 0 0
0 ρ 0
0 0 1








ut
bt
φt



 (66)

Substitute (31)-(33) into both sides of (65) and use (66) to substitute out ut+1, bt+1, φt+1. We

obtain the matrix equation (45) in the main text.

22This result was shown in a similar model in Schmitt-Grohe and Uribe (2004) and in Kirsanova and Wren-Lewis
(2011).
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Parameters Sαbb and Sαub are the components of the value function; to close the system we write

(36) in the form of Bellman equation and substitute (31)-(33). We obtain the matrix equation

(46). Equations (45) and (46) solve the limited commitment problem.

C Limited Commitment Policy in General LQ RE Framework

We assume a non-singular linear deterministic rational expectations model, augmented by a vector

of control instruments. Specifically, the evolution of the economy is explained by the linear system

[
yt+1
Etxt+1

]
=

[
A11 A12
A21 A22

][
yt
xt

]
+

[
B1
B2

]
ut +C

[
ξt+1
0

]
, (67)

where yt is an n1-vector of predetermined variables with initial conditions y0 given, xt is n2-

vector of non-predetermined (or jump) variables with limt→∞ xt = 0, ut is a k−vector of policy
instruments of the policy maker, and ξt is a vector of i.i.d. shocks with covariance matrix Σ. For

notational convenience we define the n-vector zt = (y′t, x
′
t)
′ where n = n1 + n2. We assume A22

is non-singular.

The inter-temporal policy maker’s welfare criterion is defined by the quadratic loss function

L0 =
1

2
E0

∞∑

t=0

βtg′tQgt =
1

2
E0

∞∑

t=0

βs−t
(
z′tQzt + 2z

′
tPut + u′tRut

)
. (68)

The elements of vector gs are the goal variables of the policy maker, gt = C(z′t, u′t)′. Matrix Q is
assumed to be symmetric and positive semi-definite.23

Schaumburg and Tambalotti (2007) and then Debertoli and Nunes (2010) demonstrate that

the optimization problem can be written as

minE0

∞∑

t=0

(β (1− α))t
(
z′tQzt + 2z

′
tPut + u′tRut + βαy′t+1Syt+1

)
(69)

subject to

yt+1 = A11yt +A12xt +B1ut +Cξt+1

(1− α)Etxt+1 + αHyt+1 = A21yt +A22xt +B2ut

23 It is standard to assume that R is symmetric positive definite (see Anderson et al. (1996), for example).
However, since many economic applications involve a loss function that places no penalty on the control variables,
we note that the requirement of Q being positive definite can be weakened to Q being positive semi-definite if
additional assumptions about other system matrices are met (Clements and Wimmer (2003)). The analysis in this
paper is valid for R ≡ 0.
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where H and S are components of the solution to the corresponding discretionary problem,

xt = Hyt and the loss is Lt (yt) =
1
2y
′
tSyt.

The first order conditions to the appropriate Lagrangian

Lqc =
∞∑

t=0

(β (1− α))t
(
z′tQzt + 2z

′
tPut + u′tRut + βαy′t+1Syt+1

+2ϕ′t+1 (A21yt +A22xt +B2ut − (1− α)xt+1 − αHyt+1)

+2ψ′t+1
(
A11ys +A12xs +B1us + ξt+1 − ys+1

))

can be written as





I 0 0 0 0
0 βA′22 0 0 βA′12
0 B′

2 0 0 B′1
αH 0 0 (1− α) I 0
0 β (1− α)A′21 0 0 β (1− α)A′11











yt+1
ϕt+1
ut+1
xt+1
ψt+1






(70)

=






A11 0 B1 A12 0
−βQ′12 I −βP2 −βQ22 0
−P ′1 0 −R −P ′2 0
A21 0 B2 A22 0

−β ((1− α)Q11 + αS) αH′ −β (1− α)P1 −β (1− α)Q12 I











yt
ϕt
ut
xt
ψt






Solution to this system (using Schur decomposition, for example, or iteration Riccati equation

as we do in the text) can be written in the form



ut
xt
ψt



 =




Xuy Xuϕ

Xxy Xxϕ

Xψy Xψϕ




[

yt
ϕt

]
,

[
yt+1
ϕt+1

]
=

[
Myy Myϕ

Mϕy Mϕϕ

][
yt
ϕt

]
, (71)

Wt (yt, ϕt) =
1

2

([
yt
ϕt

]′ [
U11 U12
U21 U22

][
yt
ϕt

])

.

Equation (69) yields

[
U11 U12
U21 U22

]
=




I 0

Xxy Xxϕ

Xuy Xuϕ





′ 


Q11 Q12 P1
Q′12 Q22 P2
P ′1 P ′2 R








I 0

Xxy Xxϕ

Xuy Xuϕ



 (72)

+M ′

[
β (1− α)U11 + βαS β (1− α)U12

β (1− α)U21 β (1− α)U22

]
M

A possible iterative scheme is (different order of updates is possible):

1. Guess M,X,U, as part of them we have H = Xxy, S = U11

2. Compute an update of U using (72)
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3. Solve (70) using Schur decomposition (with stability threshold as 1/
√

β (1− α)) to find an

update for X and M .

Once the procedure has converged, we can find the loss using the standard approach. Assume

that the social welfare loss is given by

LS =
1

2
E0

∞∑

t=0

βtg′tQSgt =
1

2
E0

∞∑

t=0

βs−t




yt
xt
ut





′ 


QS11 QS12 PS1
QS′12 QS22 PS2
PS′1 PS′2 RS








yt
xt
ut





=
1

2
trace

(
Q̂SP̂

)

where

Q̂S =




I 0

Xxy Xxϕ

Xuy Xuϕ





′ 


QS11 QS12 PS1
QS′12 QS22 PS2
PS′1 PS′2 RS








I 0

Xxy Xxϕ

Xuy Xuϕ





P̂ = E0

∞∑

t=0

βs−t
[

yt
ϕt

]′ [
yt
ϕt

]

and QS is not necessarily the same as Q in (69) because the policy maker’s objectives are not

necessarily social.24 Matrix P̂ can be found from

vec(P̂) =
(
I − β

(
M̂ ⊗ M̂

))−1
vec

(
β

1− β
V + Z0

)
.

where M̂ = (1− α)M +α

[
Myy 0
0 0

]
, V = E0

([
ξt+1
0

][
ξt+1
0

]′)

and Z0 =

[
y0
ϕ0

][
y0
ϕ0

]′
.
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