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Abstract

In endogenous growth models based on the invention of new varieties of goods,
an innovation process is assumed to be deterministic. This note will show that this
assumption can in fact be derived from a stochastic innovation process in many
industries.
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1 Introduction

In the endogenous growth literatrue, technological innovations created through profit-
seeing research activities are modelled in two forms: (i) expanding the variety of innovative
goods (see Grossman and Helpman (1991, ch.3), Jones (1995), and Romer (1990)), and
(ii) improving their quality (see Aghion and Howitt (1992) and Grossman and Helpman
(1991, ch. 4), Segerstrom, Anant and Dinopoulos (1990)). They represent different types
or trajectories of technological progress, e.g. the creation of microprocessors, and the
improvement of their performance.

Endogenous growth models based on expanding variety in the form of creating imper-

fectly substitutable goods typically assume the following R&D technology:

In (1), 7 (t) is the number of newly created varieties (i.e. technological innovations) during
an infinitesimal time interval dt, [ (¢) is the number of research workers, and the knowledge
stock is equated to n (£)? which is the number of existing varieties at time ¢, raised to the
power of ¢. Equation (1) implies that technological breakthroughs follow a deterministic
process where innovation (n > 0) is 100% guaranteed once [ workers are employed.!

In marked contrast, “quality-ladder” models based on quality innovation assume that
innovation follows a stochastic process in which some research projects succeed but most
fail. Indeed, Aghion and Howitt (1992, p.326) stressed this plausible assumption in com-

parison with the models of expanding variety, by noting that the latter “involve no un-

k ®
More precisely, the “innovation production function” of a firm k is n* (t) = % where [¥ (t) is
the number of workers and 7¥ (¢) is innovations achieved by this firm. (1) is obtained by summing over

k,ie n(t)=> 7" (t) and [ (t) = >, 1" (t).



certainty.” In the literature, therefore, there is a dichotomy in the nature of technological
progress: quality innovation is stochastic, but variety innovation is deterministic. How-
ever, this dominant modelling approach is at odds with the fact that virtually all re-
search activities are characterized by a high degree of uncertainty. Costs of a given R&D
project, the length of time required, whether results can be commercially meaningful, etc
are typically uncertain and difficult to predict. The literature failed so far to justify the
dichotomous modelling assumptions regarding the degree of uncertainty:.

Motivated by this observation, this note will demonstrate that R&D technology (1)
can in fact be derived from a stochastic process of variety invention taking place in a
large number of industries. This result enables us to interpret variety innovation in the
models of expanding variety as being generated in a stochastic environment as is the case
in the quality-ladders models. This removes a dichotomy in modelling approach towards

the uncertain nature of technical progress.

2 Stochastic Variety Innovation

To present our argument, we use the standard R&D-based growth model of Grossman
and Helpman (1991, Ch.3) (hereafter G&H), maintaining the same notation (the time
argument is suppressed where it is obvious) and the same assumptions unless otherwise
stated.

G&H assume that the instantaneous utility of a representative consumer is u = log D

where D is a Dixit-Stiglitz type consumption index:

n 1/
p=|[ :z:(j)adj} . 1>a>0 (2)
0
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where z (j) denotes consumption of a variety good j. Technological advance is represented
by an increase in n, e.g. the introduction of computers, cars, airplanes, TVs, videos into
the economy.

We modify the consumption index (2) as

L n(d) 1/
D= /)E:xjﬁfdi . (3)
(s
The integral in (2) is replaced with the summation in (3) with 7 = 0,1,2..n(7) still
denoting varieties.’In addition, we have added the integral with i € (0,1) denoting the
individual manufacturing industries, in which R&D will be conducted. Thus, x; (i) is
consumption of variety j in industry .

A difference between these two specifications is that innovation is occurring in a single
industry in (2), whereas (3) captures the observation that innovation takes place in many
industries in the economy. Moreover, since R&D is assumed to be stochastic in (3), the
number of varieties n (i) differs for each ¢, depending upon uncertain outcome of R&D
activity.

The demand function for the differentiated product (associated with (3)) is

. ps (i) ™=
ZTj (Z) = (i’ o . (4)
J fol Zjio) D; (Z’) T—a i

where p; (7) is the price of z; (7) and consumption expenditure is normalized. Notice that
the demand function (4) has the price elasticity of —1/(1 — «). Thus, given that one unit
of differentiated products is produced with one worker, the monopoly price of variety

products, the demand for each variety good and its associated profit are

w 1 . l—«

p@)=p=2, z@)=r=2 w@)=T=— (5)

2The summation starts from 0, i.e. goods zq (i) are assumed to be available at ¢t = 0. This is a technical
assumption required to sharpen the main result below.
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respectively, where w is wage and

n:/oln(i)di (6)

is the total number of varieties in the economy. Note that the consumption index (2) also
gives rise to equations (5).> Note that the first and third equations in (5) are equivalent
to equations (3.10) and (3.11) of G&H (p.50).

v (i) denotes the present value of future profit flows which a local monopoly firm will

earn. It is determined by the following “no-arbitrage” condition

(i) +0 (i) = pv (i) (7)

where p denotes consumers’ rate of time preference that is equal to the rate of interest.
To achieve v (i) , entrepreneurs invest in R&D.

Any research firm k that uses [* (i) of workers in industry i will succeed in generat-
ing a new variety product with a Poisson arrival rate of I* (i) n?/a where a > 0. This
assumption emphasizes uncertainty inherent in research activities, as in quality-ladders
models. Note also that the knowledge stock is equated to n (¢)? rather than n (3,¢)® , im-
plying that knowledge spillovers occur across industries. Firm k chooses I¥ (i) to maximize

v (i) I¥ (i) n® /adt — wi* (i) dt during a time interval dt. Free entry leads to
— > v (i) =, with equality whenever ¥ > 0. (8)

In symmetric equilibrium which is indeed achieved, the industry-wide arrival rate of

a new variety is

In®
— where | =1 (i) = zk: OF (9)

a

3Note that consumption expenditure is normalized to one, following G&H.
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Given (9), we now calculate the total number of varieties n (t) = [Jn(i,t)di. Since
innovation occurs with an arrival rate of (9), the probability of each industry experiencing

exactly s innovations at time ¢ is given by the Poisson density

2 (t)° e )

m (10)

t1(r)n (1) dr
Wherez(t):/o w.

Moreover, there is a continuum of industries, in each of which n (i) rises by one. Thus, the
law of large numbers implies that n (t) is equivalent to the average number of innovations

across industries, i.e.*

n(t) = Y ———r0
() Y

s=0

=z (t). (11)
Differentiating (11) with respect to t yields
n(t) = —————. (12)

This is identical to (1) despite the fact that variety innovation is now governed by a
stochastic process. The critical requirement here is that stochastic innovation is occurring
in a large number of industries.
Now, assuming ¢ = 1, (12) implies that the total research workers is given by an/n,
so that full-employment of workers requires
an 1

R 1
s (13)

where L is the total number of workers. This condition is identical to equation (3.23) of
G&H (p.59). Using equations (5), (7), (8) and (13), one can easily verify that

%Eg:(l—a)g—ap (14)

4This calculation uses the fact that j = 0 at time ¢ = 0, as assumed above.
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in steady state. (14) is identical to equation (3.28) of G&H (p.61).
For 1 > ¢, long-run growth is not sustained, given no population. Once we introduce
a growth rate of population, denoted by A, one can easily establish that n/n = A/ (1 — ¢)

in the long run. For details, see Jones (1995).

3 Concluding Remarks

This note has demonstrated that the deterministic technology of variety innovation as-
sumed in growth models can be derived from a more general form of stochastic innovation

in many industries. Our approach can be easily generalized to any growth models based

on R&D technology (1).
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