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Abstract

We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for

a continuous time Markov chain to approximate jump-diffusions with affine or non-affine func-

tional specifications. Our approach also accommodates state-dependent jump intensity and jump

distribution, a flexibility that is very hard to achieve with other numerical methods. The Kol-

mogorov–Smirnov test shows that the proposed Markov chain transition density converges to the

one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical

examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou

(2002).
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1. Introduction

The approximation of stochastic processes has become a very important part of mathematical

finance. In this paper, we propose a methodology to approximate general jump-diffusion processes

using a continuous time Markov chain. The idea behind the methodology is to construct a rate

generator (or Q matrix) which derives the evolution of the Markov chain in continuous time such

that the chain is locally consistent with the underlying process (see Kushner and Dupuis, 2001;

Piccioni, 1987).

So far the alternative methods for approximating transition densities are numerically evaluating

partial differential equations as in Lindstrom (2007), Markov chain Monte Carlo simulations as in

Phillips and Yu (2009), Kalogeropoulos et al. (2010) and Stramer et al. (2010), using a discrete

lattice method as in Jensen and Poulsen (2002) or by the likelihood expansion approach as in

Ait-Sahalia (2002), Bakshi et al. (2006), Ait-Sahalia (2008) and Preston and Wood (2011).

With respect to the methods above the Markov chain approximation we propose in this paper

has several advantages. Firstly, it can accommodate different grid settings depending on the re-

quirements of the application; secondly, it reduces the approximation error by using the proposed

adaptive algorithm; thirdly, it is faster than lattice methods, and finally, transition probabilities

and derivatives prices are easy to compute.

This paper is organized as follows. Section 2 provides an overview of the continuous time Markov

chain. Section 3 outlines the concept of local consistency when approximating diffusion processes.

Two examples of an interest rate process (Cox et al., 1985) and a nonlinear drift process illustrate

the efficiency and accuracy of our approximation scheme. Section 4 outlines the approximation for

a jump-diffusion and discusses the setting for the Q rate matrix under such a scenario. Finally

in section 5, option prices using the Markov chain approximation are benchmarked to the Black-

Scholes closed form solution, binomial tree method, Merton’s and Kou’s jump-diffusion models.

Section 6 summarizes the results.

2



2. Overview of Continuous Time Markov Chain

We consider a continuous time Markov chain generated by a transition rate matrix Q. Let Q be a

n × n matrix on a countable set I with non-negative off-diagonal elements and rows that sum to

zero. The Q matrix on I is defined as Q = (qij : ij ∈ I) and all elements qij in Q have the following

conditions:

1. 0 ≤ −qii <∞ for all i

2. qij ≥ 0 for i 6= j

3.
∑
j∈I

qij = 0 for all i. (1)

The transition probability matrix P for a Markov chain is generated by the rate matrix Q though

the Kolmogorov equation

P
′
(t) = P(t)Q. (2)

It can be shown that for a homogeneous continuous time Markov chain there exists a rate generator

matrix Q such that the transition probability

P(t) = etQ =

∞∑
k=0

(tQ)k

k!
, (3)

is the unique solution to the Chapman-Kolmogorov equation.

3. Markov Chain Approximation

Consider a continuous time Markov chain taking values on a finite n-point grid G = {x1, · · · , xn}.

For simplicity we assume an equally spaced chain with grid size 4x. However this is not necessary.

The Markov chain transition probability over time t is defined by

Pi,j(t) ≡ Prob(x(t) = xj |x(0) = xi). (4)

The approximation of diffusion processes using continuous time Markov chains has been investigated

and discussed in the literature, see for example Kushner (1990), Kushner and Dupuis (2001), Rogers

and Yousaf (2002) and Chourdakis (2004). The idea behind this approach is that, a continuous

time Markov chain is constructed by controlling its transition probability structure over time such
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that the sample paths of the resulting Markov chain will approximate the sample paths of the

true diffusion process with specified drift and diffusion parameters. To achieve this goal the so

called local consistency condition needs to be satisfied. The condition implies that the first and

second moments of the continuous time Markov chain should (at least asymptotically) match the

instantaneous drift and diffusion of the true process. More specifically, in a diffusion process with

the following specifications

dX(t) = µ (X(t); θ) dt+ σ (X(t); θ) dW (t), (5)

where µ(·) and σ(·) are the instantaneous drift and diffusion respectively; θ denotes the unknown

parameter set; and W (t) is Brownian motion, the local consistency argument states that it is

sufficient for the Markov chain to capture the instantaneous drift and volatility of X(t) if the

following two conditions are satisfied:

E(4x;x(0) = xi) = µ(·)dt+ ◦(4x)

Var(4x;x(0) = xi) = σ2(·)dt+ ◦(4x). (6)

Piccioni (1987) provides an approximation formula for the rate matrix Q with elements given by:

qi,i−1 =
1

24 x2
σ2 (xi) +

1

4x
µ−(xi)

qi,i = − 1

4x2
σ2 (xi)−

1

4x
|µ(xi)|

qi,i+1 =
1

24 x2
σ2 (xi) +

1

4x
µ+(xi)

qi,j = 0 ∀j 6= i, i− 1, i+ 1, (7)

where µ± = max{±µ, 0}.

This approximation scheme guarantees a well defined transition probability matrix P but yields

an approximation error 4x |µ(xi)| in matching the second moment. To see this, consider a CIR

process

dX(t) = α(β −X(t))dt+ σ
√
X(t)dW (t), (8)
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where α, β and σ are the speed of mean reversion, long-term mean level and volatility respectively.

Consider the following parameter values α = 0.5, β = 0.06 and σ = 0.05 , We construct Markov

chains based on 19-, 37-, 91- and 181-point grids, equidistantly spanning the interval [1%, 10%].

Figure 1 presents true drift: α(β −X) and diffusion: σ
√
X, as well as Markov chain drift: E(4x)

and diffusion:
√

Var(4x) together. The Markov chain method yields a perfect fit to the true drift

but not for the diffusion. This may be due to the mean-reverting property of the CIR process. This

example shows that the Piccioni’s scheme fails to produce a good approximation for these kind of

processes and furthermore it also shows that the robustness of Piccioni’s approximation scheme

heavily depends on the length 4x.

We propose a simple adaptive algorithm along with a general formula for the rate elements. Our

approach can accommodate different grid settings for different applications. Let 4xd and 4xu
represent the down and up movements from current state xi. That is xi,i−1 = xi − 4xd and

xi,i+1 = xi +4xu. The general formula for the rate elements is then given by,

qi,i−1 =
1

24 xd
µ−(xi) +

σ2(xi)− (4xd × µ−(xi) +4xu × µ+(xi))

4xd(4xd +4xu)

qi,i = −qi,i−1 − qi,i+1

qi,i+1 =
1

24 xu
µ+(xi) +

σ2(xi)− (4xd × µ−(xi) +4xu × µ+(xi))

4xu(4xd +4xu)

qi,j = 0 ∀j 6= i, i− 1, i+ 1. (9)

As a result, our formula satisfies the local consistency condition and furthermore non-negative

transition probabilities are also guaranteed by imposing the additional constraint

sup
xi

(
(4xd × µ−(xi) +4xu × µ+(xi))

σ2(xi)
) ≤ 1. (10)

A feature of the adaptive algorithm is that it adjusts the grid size steps 4xd and 4xu. The idea

behind our algorithm is that when the constraint above is violated it automatically adjusts the grid

spacing 4x∗i . To show an application of our approximation scheme, we start with a 19-point grid

to approximate the CIR process. Figure 2a shows the results. Although the initial grid spacing

is not very large as a result of the 19-point grid, our algorithm automatically adjusts the distance

between states. Finally a 31-point grid is resolved to satisfy local consistency and achieve a perfect

fit to the true drift and diffusion. We also test our methodology with a nonlinear drift process
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having the following specification

dX(t) = (a0 + a1X(t) + a2X(t)2 + a3X(t)−1)dt+ (b0 + b1X(t) + b2X(t)b3)dW, (11)

with a0 = −0.027, a1 = 0.709, a2 = −5.27, a3 = 0.00056, b0 = 0, b1 = 0, b2 = 0.734, b3 = 1.311.

These parameters are taken from Takamizawa (2008). Figure 2b shows the results. With an only

73-point grid our adaptive model yields an excellent approximations. It is worth mentioning that

more than 700 grid points would have been required to achieve similar results under the Piccioni’s

scheme. Further, an appealing feature is that the end result is a grid that is denser where required

and coarser elsewhere on the grid.

3.1. Transition Probability

Jensen and Poulsen (2002) show that the likelihood expansion approach outperforms other nu-

merical techniques in terms of speed and accuracy when approximating diffusion processes with

known transition densities. It is interesting to compare Markov chain approximations and likeli-

hood expansion methods in approximating diffusion with unknown transition density as in the case

of nonlinear drift diffusion presented in (11). The likelihood expansion approach transforms the

original diffusion into a new one that is closer to normal and builds on it in order to obtain an

approximation for the transition density.

Following (11), one can transform x into a unit diffusion process y = g(x). Suppose that g(x) =∫ x dy
σ(y(t);θ) is well defined. After using Ito’s lemma, we obtain

yt = y0 +W (t) +

∫ t

0

ds

(
µ(g−1(y))

σ(g−1(y))
− 1

2
σ′(g−1(y); θ)

)
.

The diffusion xt is reducible if and only if there exists a one-to-one of xt into yt. In the case when

yt is not close to normal density, one can standardize the process as zt = (yt − y0)/
√
4 . An

explicit transition density function for zt can be obtained using, for example, Hermite expansions.

After that one can use the Jacobian formula for the inverted change of variables to approximate the

transition density of xt from the transition density of yt and zt. We consider the general likelihood

expansion formula of irreducible process as in Ait-Sahalia (2008), and the Matlab symbolic toolbox

to obtain the density of xt in (11)

Px0,x(4) =
ec0+c14+c−1/4

√
2π4 (b0 + b1x+ b2xb3)

, (12)
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where

c−1 =

(
b1 + b2 b3 x0

b3−1
)
(x− x0)

3

2
(
b0 + b1 x0 + b2 x0

b3
)3 −

(x− x0)
2

2
(
b0 + b1 x0 + b2 x0

b3
)2 −(

11
(
b1 + b2 b3 x0

b3−1
)2 − 4 b2 b3 x0

b3−2 (b3 − 1)
(
b0 + b1 x0 + b2 x0

b3
))

(x− x0)
4

24
(
b0 + b1 x0 + b2 x0

b3
)4

c0 =
(x− x0)

(
2 a0 + 2 a3

x0
+ 2x0 (a1 + a2 x0)−

(
b1 + b2 b3 x0

b3−1
) (

b0 + b1 x0 + b2 x0
b3
))

2
(
b0 + b1 x0 + b2 x0

b3
)2 −

(x− x0)
2

4
(
b0 + b1 x0 + b2 x0

b3
)3
((

4 b1 + 4 b2 b3 x0
b3−1

)
(a0 +

a3

x0
+ x0 (a1 + a2 x0)−

(
b0 + b1 x0 + b2 x0

b3
)

(
2 a1 + 4 a2 x0 −

2 a3

x0
2
+
(
b1 + b2 b3 x0

b3−1
)2)

+ b2 b3 x0
b3−2 (b3 − 1)

(
b0 + b1 x0 + b2 x0

b3
)2)

c1 =
−1

8
(
b0 + b1 x0 + b2 x0

b3
)2
(
4

(
a0 +

a3

x0
+ x0 (a1 + a2 x0)

)2

+
(
b0 + b1 x0 + b2 x0

b3
)2

(
4 a1 + 8 a2 x0 −

4 a3

x0
2
+
(
b1 + b2 b3 x0

b3−1
)2

− 2 b2 b3 x0
b3−2 (b3 − 1)

(
b0 + b1 x0 + b2 x0

b3
))

−

(
8 b1 + 8 b2 b3 x0

b3−1
) (

a0 +
a3

x0
+ x0 (a1 + a2 x0)

) (
b0 + b1 x0 + b2 x0

b3
))

.

As the density of xt is unknown, we use as a benchmark “True” density (eq. (12)) and eval-

uate the “True” cumulative density function (CDF) numerically by using Gaussian quadrature.

Markov chain approximation for the CDF is computed directly from the transition probability ma-

trix generated by the methodology. We consider the same parameters used earlier and set x0 = 4%

and 4 = 1/52 (weekly). Markov chains are constructed with 47, 67, 81 and 101 grid points re-

spectively. Figure 3 shows the results. The Markov chain methodology proposed in this paper

yields good approximations to the “True” density. To further investigate if the difference between

the two densities is significant, the Kolmogorov–Smirnov test is performed. The null hypothe-

sis underlying the test is H0 :PMCA
x = PTrue

x and the Kolmogorov–Smirnov statistic is given by

Dn = sup
x
|CDFMCA

n (x) − CDFTrue(x)|. The results in Table 1 indicate that even with a coarse

Markov chain (41 grid points), the null hypothesis can not be rejected at a 99% confidence level.
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4. Local Consistency to a Jump-Diffusion

Our methodology can also be extended to a general jump-diffusion process as for example

dX(t) = µ(X(t))dt+ σ(X(t))dW (t) + η(X(t))dP (X(t)), (13)

where dP (X(t)) is the differential Poisson process with state dependent intensity λ(X). The coeffi-

cient η(X) determines state dependent jump size at an event with a generalized probability density

φζ(v). The jump part might be defined by a stochastic integral of the Poisson random measure

P(dt, dq) on the Poisson mark space ζ

η(X(t))dP (t) =

∫
ζ

η(v)P(dt, dv),

where E{P(dt, dv)} = λdtφζ(v)dv. In this case, following Kushner and DiMasi (1978), Medhi

(1994) and Hanson (2007), the local consistent rate matrix elements for the jump part QJump are

given by

qj,i = λ(xi)φ(xi; ζ(xi) ∩ (xj − xi −∆x/2, xj − xi + ∆x/2]), for j 6= 1, i, n

q1,i = λ(xi)φ(xi; ζ(x1) ∩ (−∞, x1 + ∆x/2])

q1,Ns = λ(xi)φ(xi; ζ(x1) ∩ (xNs −∆x/2,∞))

qi,i = −
∑
j 6=i

qj,i. (14)

Since the Brownian motion and Poisson process in the model above are independent, the Markov

chain will be locally consistent to (13), if the rate generator QJD takes the following form

QJD = QDiffusion +QJump, (15)

where QDiffusion is obtained from our adaptive approximation scheme in (9) and Algorithm 1, and

QJump is obtained from (14).

5. MCA Option Pricing Model

In this section we present and discuss a few applications of our methodology to option pricing.

Let S denote the share price and consider the risk neutral probability measure Q. The payoff of
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a derivative written on S with a maturity T is defined by CT (ST ). The no-arbitrage argument

implies that the fair value of a derivative at t is given by

Ct(St) = e−r(T−t)EQ {CT (ST ) | Ft} . (16)

In order to compute option price Ct(St) using our proposed Markov chain approach, we define

the share price grid G and let the initial share price St lie on the i-th element of the grid G =

[x1, . . . , xi = St, . . . , xn], where x1 = Smin and xn = Smax. The payoff of this derivative is defined

by Payoff(T ) = [CT (x1), . . . , CT (xi), . . . , CT (xn)]. The Markov chain approach proposed in this

paper computes the derivative price at t as

CMC
t = e−r(T−t)

∑
j

Pi,j(T − t)× Payoffj(T ). (17)

Using the Ito’s lemma the share price S(t) under risk neutral probability measure Q is given by

dS(t) = S(t) (r + λ(t)(1− E(V ))) + S(t)σdWQ + S(t)d

N(t)∑
j=1

(Vj − 1)

 , (18)

where N(t) is a Poisson process with rate λ(t) and {Vj} is a sequence of independent identically

distributed non-negative random variables. The Poisson process N(t) and Brownian motion W are

assumed to be independent. We consider the following three models

• Black and Scholes (1973)

1. λ(t) = 0

• Merton (1976)

1. λ(t) = λ.

2. V has a log-normal distribution with a mean µJ and variance parameter σJ .

3. E(V ) = exp
{
µJ +

σ2
J

2

}
.

• Kou (2002)

1. λ(t) = λ.

2. Y = ln(V ) has an asymmetric double exponential distribution with the density

fY (y) = pη1e
−η1y1y≥0 + qη2e

−η2y1y<0,
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where p, q ≥ 0 and p+ q = 1, represent the probability of upward and downward jumps.

3. E(V ) = E(eY ) = q η2
η1+1 + p η1

η1−1 , η1 > 1, η2 > 0.

Using (9) the Markov chain method computes theQDiffusion by setting µ(·) = S(t) (r + λ(t)(1− E(V )))

and σ(·) = S(t)σ. For the jump part we consider QJump for d lnS(t) =

(
N(t)∑
j=1

lnVj

)
= η(·)dP . Note

that this monotone transformation has no effect on the values of rate elements. The QJump is then

obtained by (14). It is worth to mention that Merton and Kou let η(.) have a law of normal and

double exponential distribution. The Markov chain method we proposed can accommodate any

arbitrary jump amplitude distribution. The transition probability in (17) is obtained from (3) with

Q = QDiffusion +QJump.

5.1. Numerical Results

• Black-Sholes

Table 2 compares European call option prices using the proposed Markov chain approximation,

Black and Scholes (1973) model and binomial tree of Cox and Ross (1976). The parameters we

have considered are initial spot price S0 = 100, maturity T = 0.5 years, risk-free rate r = 5% and

volatility σ = 25%. We set Smin = 20 and Smax = 200 and consider 13 different strike prices

ranging from 70 to 130. For both, the Markov chain and binomial tree methods, the same number

of scenarios at maturity T are considered. Therefore pricing errors and computational time of

these two methods are comparable. The most evident advantage of the Markov chain over any tree

method is that the tree state space is tied up to the discretization in time (as well as the degrees of

freedom associated with the numerical procedure). Three different applications of 46, 91 and 181

states are considered in this example. The pricing error is measured by the sum of squared errors,

SSE =
∑
i (ModelPricei − BSi)

2
. The results indicate that the Markov chain method outperforms

the binomial tree method in terms of speed and accuracy in all cases. Figure 4 compares rates

of convergence to the benchmark Black-Scholes price with respect to the grid size. The Markov

chain estimator of the option price approaches faster to the benchmark price than binomial tree

estimator.
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• Merton

For this case, we set S0 = 100, T = 1, risk free rate r = 0, and other parameters as given in Andersen

and Andreasen (2000). That is the diffusion volatility σ = 17.65%, the jump intensity λ = 8.9%,

the mean of jump amplitude µJ = −88.98% and the jump amplitude volatility σJ = 45.05%. We

consider a 181-point grid for the Markov chain with Smin = 60 to Smax = 240. Figure 5a shows the

option prices using the Merton’s closed form formula and the ones given by our methodology for

13 different strikes K ranging from 70 to 130. The results shows that the Markov chain method

produces a very good fit for the call option prices from deep out-of-money to deep in-the-money

strikes and relative errors are all less than 0.1%. Figures 5b and 5c show hedge parameter estimation

(delta and gamma) when using our method as well as the Merton’s formula. The Markov chain can

produce accurate values of delta and gamma across all strike prices. The values of vega are also

reported in Figure 5d. Our methodology produces somehow less accurate estimates of vega when

deep in-the-money options are considered. Overall these results are satisfactory.

• Kou

We now consider a further example. The parameters for the jump component are taken from Kou

(2002) and those are η1 = 10, η2 = 5, λ = 1 and p = 0.4. The remaining parameters for the diffusion

part are: r = 5% and σ = 0.16. We price call and put options with S0 = 100 and K = 98, for

maturities up to half a year. The Markov chain uses a 161-point grid with Smin = 20 to Smax = 180.

Figure 6 shows the option prices computed by Kou’s formula and those using the Markov chain

approximation proposed in this paper. In all the cases the relative percentage error are all less than

0.5%.

6. Conclusion

We proposed a general Markov chain approximation formula and an adaptive algorithm for deter-

mining the grid space of a finite state Markov chain in continuous time. Our approach not only

satisfies the local consistency conditions but also guarantees a well defined transition probability

matrix. Our numerical examples (on affine and non-affine cases) show that the adaptive algorithm

proposed in this paper produces an excellent approximation to the underlying process. Additionally

to this, we also show how a generator matrix to the jump part for an arbitrary type of distribution
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can be obtained. We have considered different numerical examples: the Black and Scholes (1973)

model, the log-normal jump-diffusion of Merton (1976) and double exponential jump-diffusion of

Kou (2002). We note that our Markov chain method can capture all the salient features of these

models. Our methodology can easily accommodate state dependent volatility, intensity, and jump

amplitude distribution while the same degree of flexibility is not easily achievable when using tree

methods. The pricing of high-dimensional American options is on the agenda for future research.
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(a) 19-point grid (Piccioni) (b) 37-point grid (Piccioni)

(c) 91-point grid (Piccioni) (d) 181-point grid (Piccioni)

Figure 1: Approximation to the CIR process dX = α(β−X)dt+σ
√
XdW , under Piccioni’s scheme.

Solid line: True drift and diffusion for the CIR model. Dotted line: Approximated drift and diffusion
using Piccioni’s formula. The parameter set is {α, β, σ} = {0.5, 0.06, 0.05}.
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(a) CIR 31 grid points (Adaptive) (b) Nonlinear drift 73 grid points (Adaptive)

Figure 2: The adaptive algorithm as an approximation to the CIR process dX = α(β − X)dt +
σ
√
XdW and the nonlinear drift process dX = (a0 + a1X + a2X

2 + a3X
−1)dt + (b0 + b1X +

b2X
b3)dW , started initially with a 19-point grid and resolved to a 31 and 73-point grid respectively.

The resulting non-equidistant grid is denser for low values of X. Parameter set: {α, β, σ} =
{0.5, 0.06, 0.05}, and {a0, a1, a2, a3, b0, b1, b2, b3} = {−0.027, 0.709,−5.27, 0.00056, 0, 0, 0.734, 1.311}
for the two processes respectively.
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(a) 41-point grid (MCA) (b) 67-point grid (MCA)

(c) 81-point grid (MCA) (d) 101-point grid (MCA)

Figure 3: MCA to the nonlinear drift process dX = (a0 + a1X + a2X
2 + a3X

−1)dt+ (b0 + b1X +
b2X

b3)dW . Solid line: True CDF evaluated by likelihood expansion formula in Ait-Sahalia (2008).
Stairstep: CDF generated by MCA.
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(a) T=0.25 year (b) T=0.5 year

(c) T=0.75 year (d) T=1 year

Figure 4: Option price convergence to the benchmark Black-Scholes price as a function of grid size
(and space). MCA (circle), CRR tree (dots) and benchmark Black-Scholes (solid). Parameters:
{S0,K, σ, r} = {100, 100, 0.25, 0.05}
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(a) Call Option Prices (b) Delta

(c) Gamma (d) Vega

Figure 5: MCA approximation to the Merton jump-diffusion. The figures plot MCA estimates
(circle) and Merton closed form solution values (dot).
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(a) Call Prices (b) Call Price Relative Error

(c) Put Prices (d) Put Price Relative Error

Figure 6: MCA approximation to the Kou jump-diffusion. Option prices from the MCA (circle)
and Kou’s closed form solution (dot).
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Algorithm 1 Adaptive Local Consistency Algorithm for Grid Setting

Given an initial grid G = [x1, · · ·xn]
Set a threshold ~ for the minimum of grid size
find x ∈ G violating 10 While x is not empty and 4x ≥ ~ Do
Select xmax
Adjust the grid size around xmax by xmax −4x and xmax +4x
Update new states in G and check constraint
End While

21



Grid Point 41 67 81 101
Kolmogorov–Smirnov statisticDn 0.0675 0.0401 0.0332 0.0265

Critical Value (α = 0.01) 0.2546 0.199 0.1811 0.1622

Table 1: Kolmogorov–Smirnov Test

.

Node: 46 Grid: 46 Node: 91 Grid: 91 Node: 181 Grid: 181

Strike BS Bino MCA Bino MCA Bino MCA

70 31.8082 31.8057 31.8159 31.8079 31.8082 31.8080 31.8081

75 27.0844 27.0747 27.0909 27.0842 27.0871 27.0825 27.0841

80 22.5415 22.5445 22.5302 22.5339 22.5386 22.5433 22.5407

85 18.2885 18.3040 18.2908 18.2945 18.2908 18.2878 18.2870

90 14.4371 14.4627 14.4427 14.4385 14.4285 14.4297 14.4349

95 11.0775 11.1107 11.0678 11.0919 11.0778 11.0723 11.0748

100 8.2600 8.2974 8.2149 8.2405 8.24875 8.2503 8.2571

105 5.9885 6.0230 5.9771 6.0008 5.9883 5.9879 5.9858

110 4.2258 4.2449 4.2272 4.2409 4.2172 4.2326 4.2236

115 2.9065 2.8957 2.9042 2.9103 2.9075 2.9095 2.9048

120 1.9517 1.9192 1.9360 1.9422 1.9477 1.9456 1.9506

125 1.2817 1.2811 1.2858 1.2637 1.2838 1.2835 1.2811

130 0.8247 0.8262 0.8342 0.8102 0.8239 0.8178 0.8244

SSE 0.00623 0.00288 0.00172 0.000319 0.000329 0.00004

CPU Time (Second) 0.00113 0.000504 0.00315 0.000750 0.01076 0.00789

Table 2: European call option prices from Black-Scholes(BS), binomial tree (Bino) and Markov chain
approximation (MCA) are presented together with parameters {S0, T, r, σ} = {100, 0.5, 0.05, 0.25}. Three
different number of share price scenarios, 46, 91 and 181 are considered for the binomial tree and Markov
chain approximation model.
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