

Developing Integrated Optical Frequency Convertors and Generators on a Semiconductor Chip

David C. Hutchings, Usman Younis

and Barry M. Holmes

Department of Electronics and Electrical Engineering, University of Glasgow

Sean J. Wagner, Amr S. Helmy

and J. Stewart Aitchison

Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

This project is supported by:

- **EPSRC**
- **NSERC SRO**

EPSRC National Centre for III-V Technologies, Univ. Sheffield EPSRC National Centre: University of Surrey Ion Beam Centre

Bulk intra-cavity Optical Parametric Oscillator

- e.g. pioneered by St. Andrews OPO Group and others
- now a commercial product, e.g. M Squared Lasers

Integrated Optical Parametric Oscillator

Quasi-Phase Matching

The generated wave must remain in phase with the nonlinear polarisation source to build up to a substantive level

$\chi^{(2)}$ in cubic semiconductors

- Common compound semiconductors in photonics have a zinc-blende (cubic) structure 43m
- Introducing heterostructure, e.g. quantum well, breaks translational invariance in one direction
- For a [001] grown heterostructure, *z*-direction is no longer equivalent to *x*, *y* breaking degeneracy: $\chi^{(2)}_{xyz}(\omega, \omega) \neq \chi^{(2)}_{zxy}(\omega, \omega)$

Quantum Well Intermixing

- Create point defects, e.g. by ion implantation
- Migration under Rapid
 Thermal Anneal causes
 diffusion of group III atoms
- Smallest bandgap is increased

 Resonance in optical properties blue-shifted
 -linear for OE integration
 -nonlinear for QPM

Calculated Modulation in Optical Nonlinearity

14:14 monolayer GaAs/AIAs as-grown and after intermixing

Intrinsic GaAs/AIGaAs wafer structure

- \bullet 3.5-4.5 μm period gratings written by e-beam in bi-layer PMMA
- Au grating grown to \sim 2 µm thickness by electroplating

- 4 MeV As²⁺ ion implantation, typical dose 2×10¹³ ions/cm²
- Rapid Thermal Anneal, typically at 775℃ for 60s
- Ridge waveguides, typically 3 µm wide, fabricated by RIE

Pulsed (ps) type-I SHG

Continuous-wave type-I SHG

Applied Physics Letters 94, 151107 (2009).

Pulsed (ps) type-II SHG

- Type-II orientation has short- λ in TE-polarised mode
- corresponds to conventional laser emission

- Continuous-wave, Ti:sapphire λ =791.7 nm as TM pump
- cw, tunable C-band laser, amplified with EDFA as TE signal
- idler (up to 9 nW) generated in L- & U-bands

Difference Frequency Generation (type-II)

CThEE4 - S. Wagner, DFG in DD-QPM Semiconductor Waveguides, CLEO 2010 ¹⁵

MMI Dichroic Coupler Design

MMI Dichroic Coupler Fabrication

"Bar" cross-talk near band-edge 780 nm "Cross" cross-talk near half-band-edge 1550 nm

Optimum coupler length ~220 µm

Lasing in GaAs/AlGaAs superlattice

• 100 nm of GaAs/AlGaAs superlattice grown in centre of waveguide by MOVPE

- within *p-i-n* structure
- as-grown wafer displays
 electro-luminescence at 772 nm
 annealed under same
 conditions for QWI
- Fabry-Perot ridge waveguide lasers fabricated by RIE
- Lasing around 801 nm

A special thanks to John Roberts @Sheffield for perseverance in the development of wafer growth

Improving waveguide fabrication

Masked region

• SEM image of etched waveguide

 key step is removal of Au/Ti layers prior to waveguide fabrication

(previous incomplete removal shown on the right)

o unarlattica lavara viaibla ao concentria ringa

Ion Implantation Au Mask for Integrated DFG

- Developed fabrication techniques for QPM waveguides
- Demonstrated frequency conversion in superlattice semiconductor waveguides
 - Pulsed and cw type-I SHG
 - Pulsed type-II SHG
 - Difference Frequency Generation (WDM channel shift)

Conclusions

- Demonstrated MMI dichroic couplers
- Demonstrated lasing at pump wavelengths
- Individual elements in place for self-pumped optical frequency conversion and generation
 - Self-pumped DFG
 - Self-pumped Parametric Amplication & OPO