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Abstract

In this paper we propose a novel empirical extension of the standard market
microstructure order flow model. The main idea is that heterogeneity of beliefs in
the foreign exchange market can cause model instability and such instability has
not been fully accounted for in the existing empirical literature. We investigate
this issue using two different data sets and focusing on out- of-sample forecasts.
Forecasting power is measured using standard statistical tests and, additionally,
using an alternative approach based on measuring the economic value of forecasts
after building a portfolio of assets. We find there is a substantial economic value on
conditioning on the proposed models.
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1 Introduction

There is something of a consensus in the exchange rate literature that macro based
models of the exchange rate fail to outperform a simple random walk model in an
out-of- sample forecasting context (see, for example, Meese and Rogoff, 2002). Given
this, many researchers have turned to a market microstructure approach to provide
alternative insights into the forecasting behaviour of exchange rates. For example,
Evans and Lyons (2002b), Evans and Lyons (2005b) and Sager and Taylor (2008) use
such an approach and provide mixed evidence that microstructure models (i.e. order
flow models) can do better than a simple random walk in out of sample forecasts.
The main conclusion of Evans and Lyons (2002b) is that order flow is a significant
determinant of exchange rates and can be also used to forecast exchange rates out of
sample. However, Sager and Taylor (2008) finds little empirical evidence supporting
these conclusions after employing interdealer and commercially available order flow
data.

A related but slightly different strand of the market microstructure literature
investigates the issue of whether the strength of the relationship between order flow
and exchange rates is dependent upon prevailing market conditions or the announce-
ment of macroeconomic news. For example, Love and Payne (2003) examines the
role of order flow in the transmission of news regarding published macro fundamen-
tals and finds that information that is contemporaneously released to all market
participants is partially impounded into prices via the microstructure order flow.
However, this is clearly at odds with rational expectations. Bacchetta and Wincoop
(2006) and Rime et al. (2010) argue that macroeconomic information impacts on
exchange rates both directly, as in a standard macro model, but also indirectly via
order flow. Thus, order flow can be viewed as a random variable which maps disperse
information in the market in to price discovery. In particular, since the order flow of
the FX market consists of different participants, displaying significant heterogeneity
in terms of risk-return expectations and informational asymmetries, the customer
order flow represents the primary source of private information that is assumed to
represent future innovations in fundamental exchange rate determinants.

The above microstructure models provide some useful insights into the foreign
exchange market, but there are still several unanswered questions. For example,
the success of microstructure models in out of sample forecasts has primarily been
achieved when the information is publicly and simultaneously released to all market
participants contemporaneously. However, since the information of the state of
the economy available at a given point may takes some time before it affects the
exchange rate, it is probably preferable to consider a lagged order flow model as
in Sager and Taylor (2008). Additionally, since different market participants trade
using private as well as public information, expectations about the new equilibrium
exchange rate are formed based on a combination of macroeconomic fundamentals
and market microstructure variables.

In this paper we try to shed some light on some of the issues raised above. Firstly,
we propose various extensions to the existing order flow model which should accom-
modate model instability. That is, if order flow does reflect heterogeneous beliefs
about the current and future state of the economy, and if currency markets do not
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discover order flow in real time but only through a gradual learning process, the
heterogeneity in the market can cause model instability. This important point has
been largely neglected in the literature. For example, Rime et al. (2010) employs a
Probit model and shows that order flow may be linked to macroeconomic fundamen-
tals both via a direct link, as in classical exchange rate theory, and via order flow,
as in the microstructure approach to the foreign exchange market. We attempt to
capture this effect using time-varying parameter (TVP), structural change (STR)
and smooth transition (STAR) models. This is also in line with Gradojevic and
Yang (2006).

Also, and as pointed out by Sarno and Valente (2009), parameter instability
caused by instabilities in macro fundamentals, and agents’ heterogeneity, or swings
in expectations about future values of the exchange rate, make it difficult to select a
predictive model. We show that our model specifications can address this issue. In
particular, our study suggests the inclusion of microstructure variables and nonlinear
models produces out-of-sample forecasts which are superior to those from a random
walk model.

Finally, we evaluate our out of sample forecasts using statistical tests, such as
the root mean squared forecast error (hereafter RMSFE), and the Diebold-Mariano
(hereafter DM) tests, as well as mean-variance analysis as a standard measure of
portfolio performance, as in Fleming et al. (2001), Han (2006), Della Corte et al.
(2009) and Rime et al. (2010).

The remainder of this paper is organized as follows. In the next section, we
provide a brief literature review. Section 3 describes the link between order flow
and exchange rates and statistical evaluation methods. The forecasting setup and
the investor’s asset allocation problem are described in Section 4, and the results
on the statistical and economic evaluation of the forecasting models that condition
on order flow are reported in Section 5. The final section concludes the paper and
recommends further research.

2 A brief review of exchange rate predictability
issues from a microstructure perspective.

Microstructure models view order flow as a random variable which maps hetero-
geneous disperse information into price discovery. Thus, relative to macro based
exchange rate models, order flow in the microstructural approach represents the
missing link between exchange rates changes and changes in economic conditions.
Consider the following (contemporaneous) order flow model,

ASt = BlA(Zt — /l;k) + BQXt + & (1)

Using the above model, Evans and Lyons (2002b) report significant explanatory
power when the mark—dollar and the yen—dollar exchange rates are considered. The
empirical analysis of Evans and Lyons (2002a) is extended to an additional seven
exchange rates and they report explanatory power ranging from 0.00% to 68%. They
also report a high out of sample power of the order flow model when compared to a
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simple random walk model. Killeen et al. (2006) also reports significant explanatory
power of the order flow model which is consistent with the results of Evans and Lyons
(2002b).

Payne and Vitale (2003) points out that the model above is not very relevant
in practice as it assumes perfect foresight. Indeed, using central bank order flow
for the Swiss franc—dollar rate over the sample period 1986-95, they show that
although inter-dealer order flow has a significant contemporaneous correlation with
exchange rate returns, its predictive power is minimal. Recently Sager and Taylor
(2008) investigates this issue further in a large empirical study. They argue that
the announcement of public information is impounded in prices with a delay. Thus,
they suggest the following modification of the above model which they call the
“publication lag” model:

Asy = B1A(i—y —i{_1) + BoXe—1 + &y, (2)

After undertaking a large empirical analysis, they show that the (lagged) order
flow model has very little (in sample) explanatory power and cannot outperform
a simple random walk model in forecasting exchange rates at different horizons.
Additionally, they show widespread evidence of a Granger-causal relationship that
runs from exchange rate returns to customer order flow. This result is consistent with
the empirical evidence of Engel and West (2005), which have found some support for
the link between fundamentals and exchange rate in the other direction: exchange
rates can help forecast the fundamentals.

More recently, Cerrato et al. (2009) uses weekly customer order flow for nine
of the most liquid currencies and investigates the in-sample and out-of-sample fore-
casting power of the order low models. While empirical results using aggregate data
are in line with Sager and Taylor (2008)!, using disaggregate data seems to increase
the in-sample and out-of-sample forecasting power of the order flow model.

A number of researchers (Evans and Lyons (2005a), Evans and Lyons (2008),
and Love and Payne (2008)) have provided empirical evidence that macro news
triggers trading that reveals dispersed information, which in turn affects currency
prices, and a number of papers have sought to clarify the relationship between the
release of economic news and order flow. For example, the hypothesis suggested
by Rime et al. (2010) is that the heterogenous interpretation of macroeconomic
news may lead market makers to make inferences differently and that the order
flow incorporates this information gradually. Based on this observation, Rime et al.
(2010) proposes the following direct (3) and indirect (4) specifications:

N
Asy=a;+ Y B,NEWS,, +u, (3)
n=1
and
N
Asp = + Z B ,NEWS, ; + 7 AX; + uy, (4)
n=1

!However, the in-sample results, using the contemporaneous order flow model, strongly support
such a model. In effect, with weekly data, the laiged model might be too restrictive.



Both of the above models show evidence that exchange rate fluctuations are linked
to macroeconomic fundamentals via the direct link, as in traditional exchange rate
theory, and via order flow, as in the microstructure approach to the foreign exchange
rate. The equation (3) implies that the heterogeneous interpretation of market infor-
mation directly affects the asset price if the order flow fully contains macroeconomic
news as implied by typical microstructure models. However, as shown in Love and
Payne (2008), order flows partly reflect a heterogeneous interpretation of macroeco-
nomic news and (4) specifies the effects between news and order flows. This mod-
eling approach can provide some explanation for the link between macroeconomic
fundamentals and exchange rates examined in Bacchetta and Wincoop (2006) and
Evans and Lyons (2008). Note that the finding of significant explanatory power for
macroeconomic news on the exchange rate does not automatically imply that order
flow information is redundant. (e.g. Rime et al. (2010)). The addition of order
flow significantly increases the explanatory power of the model. Rime et al. (2010)
demonstrates that macroeconomic news can explain exchange rates changes to the
same extent that they explain order flow.

Overall, the empirical literature in this area seems to have produced conflict-
ing results and we believe a key reason for this could lie in the way the models
are estimated. For example, for the news models mentioned above, news is con-
structed using monthly macroeconomic data. However, with high frequency data
that approach is not feasible and so an alternative specification is required, which
can properly capture shifts in expectations. The aim of the present study is to
shed some light on these issues and address some problems that in our view have
been neglected when modelling exchange rates dynamics. In particular, most of the
studies cited above have mainly focused on linear models and a direct relationship
between the exchange rate and order flow. We believe these models are very restric-
tive with high frequency data sets. In this paper we propose a novel structural break
model which we believe clarifies the role of heterogeneous information and relaxes
the linearity assumption.

2.1 Model instability

3 Empirical models and evaluation

The models introduced in the previous section suggest that shifts in expectations
can cause model instability. Very few papers have considered this an important issue
(see for example Rime et al. (2010)). However, as we shall discuss in this section,
the models proposed in this paper have the additional advantage of being able to
accommodate a shift in expectations caused by non-observable fundamentals. We
propose three different models which address this important issue and test them in
out of sample exercises.

3.1 Time-varying parameter model

The first model we consider is a variation of the standard model considered in the
literature. The idea is that if an economic announcement affects order flow, this will
5



cause a change in the parameters governing the exchange rate forecasts. Thus, we
suggest the following time varying parameter model.

In a time-varying parameter model the dynamic for exchange rate returns is
driven by the following regression

Aspip = a+ B, Xt 1+ Epqpe

The parameters of the model are estimated in the usual way, using the first n
observations. The estimates are then updated in each subsequent observation,
Sni1s Spa2---ST. The main difference with the approach used in the literature is
that, this model uses a different recursive filter.? That is, once the tth observa-
tion becomes available, 3, may be obtained from 3, ; without the matrix inversion
implied by OLS (ordinary least squares).

3.2 Smooth transition model

The second specification we use is completely new in the literature. We propose a
non-linear model where the band of inaction caused by low relative risk aversion,
generates slow adjustment to the equilibrium. As shown in Rime et al. (2010)’s
investigation, order flows aggregate changes in market expectations with regard
to macro fundamentals, and the relation between order flows and expectations is
estimated to be significant. We attempt to filter the change in expectations caused
by macro news using our transition function.

We employ the smooth transition function, CM K — ST AR recently suggested
by Cerrato et al. (ming)

Aspip = a4 BS(0) X1 + €44k,

where
S(0) = [1 4 exp{y1(Xs1 — e)Ts = 7o(Xi1 — e2) (1 = L)},

and 0 represents parameter set to be estimated. The function S(6) allows for both
threshold effects and smooth transition movements of X; ;. In the central regime,
when —c < X; 4 < ¢, S(X;_q4,60) = 0. In the limiting outer regimes, when X; 4, < —c
and ¢ < X;_q, S(X;_4,0) = 1. The specification given by S(6) allows the transition
depending on X; ;. Thus, if the news directly affects order flow and expectations
are heterogeneous, the transition depending on the order flow, X; ; should be able
to capture this effect. We use the above model in our forecasting exercises.

2Given the basic setup
yr = X1 + e

The relevant formulae are driven by

By = Bi_1 + (Xt/—1Xt—1)71 xy (ye — XoBy 1) /i

where f; =1+ 1z} (X{_lXt_l)fl xy and Xy = (21, %2, ..., Tt)



3.3 A structural change model

The above models suggest a direct link between macroeconomic news and exchange
rates. In contrast to the direct specification, when order flow is partly reflecting
macroeconomic news and expectations, we suggest an alternative model. This mod-
eling approach is very convenient when using high frequency data or unobservable
fundamentals. The model we consider incorporates structural breaks due to shifts
in expectations by allowing a shift in the mean process

Asipp = o+ aS(0) + BXi—1 + o,
where

S(0) = [1+exp{—](t - clT)Q}] [1—exp{—3(t— ch)Q}] — 1.

The transition function S(f) traverses the interval (—1,1) and the timing of the
transition is determined by c¢;. The speed at which the function moves between —1
and 1 changes with 7. As discussed in Cerrato et al. (2010), this model is able to
capture structural changes taking place in different regimes. If ¢; < co, 0 < S;(6) < 1
when t = 1T, and —1 < S;(0) < 0 when t = ¢T". In the limiting or no structural
change state S;(f) = 0, the model collapses to As; . = a1 + X1 + €44, and is
consistent with the linear model proposed in previous studies. On the contrary, when
the structural changes take place because of omitted economic fundamentals such
as macro news, or a different interpretation of them, the model becomes As; ), =
a; + a3S(+) + X1 + €144 The mean process is determined by the value S;(6).
Thus, this structural change model might be viewed as a reasonable approximation
of model instability caused by omitted variables, when fundamentals have an indirect
link to order flows.

3.4 Forecast evaluation

We assess the out of sample forecasts produced by the three models above in different
ways. Firstly, we use the root mean squared forecast error (RMSFE):

RMSFE — M
\/ —

Additionally, we also construct a test statistic for comparing the forecasting perfor-
mance of the models relative to a simple random walk (RW). Given two forecasts,
the RW forecast and the forecast provided by the alternative models (hereafter AM),
the ratio of RMSFE against RW can be used to evaluate the out of sample forecasts.
We also support this test using the Diebold and Mariano (1995) test. This test al-
lows us to compare the forecasting accuracy of two competing models. Defining
dy = g(e1t) — g(e2+) where t = 1,...,n, the Diebold-Mariano test statistic is

4
[var ()]
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n

where d = n~! Z dy and var (d) represents the asymptotic (long-run) variance of

t=1
VTd.

Diebold and Mariano (1995) shows that under the null of equal predictive accu-
racy, DM ~ N(0,1), and we can reject the null of equal predictive accuracy at the
5% level if

|DM| > 1.96.

We use the Diebold-Mariano test to assess the out of sample forecasts of our models
with respect to a simple Random Walk model RWV.

4 Economic value of exchange rate predictability

Most of the previous studies have focused on evaluating the statistical performance
rather than the economic significance of a nonlinear approach. Here we also examine
the latter and specifically examine the economic value of nonlinear models to risk-
averse investors. To measure the economic value of the out of sample forecasts, we
address the issue of whether our three models can be used practically by assessing
the forecasts where a portfolio of assets is rebalanced according to a trading rule at
each time ¢.

4.1 Portfolio weights of a mean-variance framework

In order to measure the economic performance of a portfolio it is standard to use
Sharpe ratios. However, as Marquering and Verbeek (2004) and Han (2006) note,
Sharpe ratios can underestimate the performance of dynamically managed portfo-
lios. This happens because Sharpe ratios are calculated using the average standard
deviation of the realized returns, which overestimates the conditional risk (standard
deviation) faced by an investor at each point in time. Consequently, Sharpe ratios
cannot properly quantify the economic gains of a dynamic strategy.

As an alternative measure of forecasting performance, we use a mean-variance
framework and calculate the performance fee to quantify the economic gain from
using the exchange rate models introduced above with respect to a simple random
walk model. The framework for our analysis is straightforward. We consider an
investor who uses a mean-variance optimization rule to allocate funds across as-
sets. The investor’s objective is to maximize the expected return matching a target
expected volatility.

Allowing for weekly rebalancing, the solution to the investor’s portfolio prob-
lem is a dynamic trading strategy that specifies the optimal asset weights. Im-
plementing this strategy requires estimates of both the conditional expected re-
turns and the conditional covariance matrix. If the conditional expected return
and covariance are constant, the optimal portfolio weights w will be constant over
time. However, when the conditional expected return and covariance are defined
as recursive estimates, investors will rebalance their portfolio weights and change
strategies. Thus, in terms of one-step ahead forecasts, we treat the expected re-
turns as the conditional mean, p, ., = 8Et [ri11 | Fi] and let the variation in the



portfolio weights be driven purely by changes in the conditional covariance matrix,
/
Ztﬂ‘t = E [(rtﬂ — Mt+1\t) (rtﬂ — /Lt+1|t) | Ft} where F; represents the current
information set.
To maximize the conditional expected return, p,., ), subject to a given level of
conditional volatility o7, investors solve the following problem at time ¢,

max {ﬁbp,t+1 = Wty + (1 — wil) Tf}
0\ 2
s.t. (ap) = w; Zt+1|t wy

where (1, ,,, and o, denote the conditional mean and variance of the portfolio return,
rpi+1 Of risky assets. In the present setting, w, is the portfolio weights on the risky
assets, and 7 is the return on the riskless asset. Among the trading strategies such
as the minimum variance and maximum return, the above mean-variance analysis
solves for the weight that maximizes conditional return where the portfolio variance
equal to a fixed target.

After constructing the covariance matrix of the portfolio, we determine the
weights by maximizing the conditional mean of the portfolio return. The solution
to this problem yields the following risky asset weights,

or 1
Wy = \/_g—t Et+1\t (:ut+1\t - 17"f)

where Cy = (Mt+1|t — 17’f)/2;+11‘t (Mt+1\t —1r¢). The optimal weights will vary
across the models depending on the conditional mean and volatility. That is, the
trading strategy identifies the rebalanced portfolio that optimizes maximum condi-
tional expected return subject to the conditional variance-covariance.

In our analysis, the benchmark against which we compare the model specifica-
tions is a simple RW. In other words, our objective is to evaluate whether there is any
economic value in conditioning on microstructure order flow and non-linear models
and, if so, which of the four specifications including RW has superior forecasting
power.

4.2 Performance measures under quadratic utility

To measure the performance of a trading strategy, using a generalization of West
et al. (1993)’s method, Fleming et al. (2001) suggest comparing the performance
of the dynamic strategies to that of the unconditional mean-variance efficient static
strategy. The latter is based on the relation between mean-variance analysis and
quadratic utility. Using a second-order approximation to the investor’s true utility
function, the investor’s realized utility is defined as

A A
UWia) = Wi — §Wt2+1 = Wiy 141 — §Wt2Rz277t+l’
where W, is the investor’s wealth at t4-1, I, ;41 is the gross portfolio return, equal
to 1+ 1,41 and A represents absolute risk preference.

In our empirical exercise we fix the value of relative risk aversion (RRA) as



§ = AWy

Given the level of initial wealth W), the average realized utility is then

SN 7
defined as
T—1 5
= 2
U () = WO; {Rp,tJrl o 9 (1 + 5) Rp,tﬂ} )

where § is constant. The average realized utility (U) can be used to consistently
estimate the expected utility generated at the given level of initial wealth, Wy, and
value of relative risk aversion (RRA), 6. If the value of RRA is assumed to be
d = {2,6} and the initial wealth is fixed at W, = 1, we can standardize the investor
problem of maximum conditional expected return and assess the economic value of
our FX strategies in the context of asset allocation.

To measure the economic value of our FX strategies, we use the average utility
and compute the performance fee as suggested in Fleming et al. (2001). The selected
pairs of portfolios, RW against alternatives are evaluated by equating the average
utilities. That is, if an investor is indifferent between holding a portfolio where the
optimal weights have been computed using a simple RW and an alternative portfolio
using a more "sophisticated" approach, then the value of ® can be interpreted as
the performance fee that the investor would be willing to pay to switch from the
RW to the alternative model, such as TVP, STAR and STR. The performance fee,
®, is defined as:

T-1 —1
) 2 ) 2
{ pt—i-l )_2(1+5) (Rﬁi\—{-l_@) }: E :{Rﬁzl_z(l_‘_(g) (Rf,zif-l) }’

t=0

where RRt %1 is the gross portfolio return obtained using forecasts from the bench-
mark RW model, and R;f‘t 1 is the gross portfolio return constructed using the
forecasts from the alternative models. Thus, the utility-based criterion measures
how much the investor is willing to pay for conditioning on order flow, as in the
AM strategy, for the purpose of forecasting exchange rate returns. In the context
of this maximum return dynamic strategy, we can compute both the in-sample and
the out-of-sample performance fee, ®.

4.3 Transaction costs

In the literature, transaction costs are generally assumed given and not estimated.
For example, Marquering and Verbeek (2004) consider three levels of transaction
costs, 0.1%, 0.5%, and 1%, representing low, medium, and high costs, respectively.
Our empirical models use dynamic strategies and in this context transaction costs
can play a significant role in determining returns and comparative utility gains where
individuals rebalance their portfolios. Thus, instead of assuming a given cost, we
follow the method introduced by Han (2006), Della Corte et al. (2009) and Rime
et al. (2010), and calculate the break-even transaction costs,

1+ Tt+1
wt =
Rp,tJrl

Y
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which make the investors indifferent between the dynamic and buy-and-hold strate-
gies in terms of utility. In the present setting, the break-even transaction cost, 7,
is the minimum proportional cost that cancels out the utility advantage of a given
strategy.

Using the above mean-variance quadratic-utility framework, we design a global
strategy consisting of an US investor holding a portfolio of 10 currencies: one domes-
tic (United States), and nine foreign currencies. The investor is exposed to currency
risk. We employ each of the 4 models to forecast the one step ahead period of
the exchange rate returns. Thereafter, we dynamically rebalance our portfolio by
computing the new optimal weights for the maximum return strategy conditioned
on the forecasts of each model. In the analysis, the yields of the riskless bonds are
proxied by the LIBOR rates.

We report the performance fees for the combinations corresponding to the follow-
ing cases: (1) three sets of target annualized portfolio volatilities o7, = {8%, 10%, 12%};
(2) all pairs of 3 models against RWW; and (3) degrees of RRA § = {2,6}. We report
our estimates of ® and break-even transaction cost 7 as annualized fees expressed
in basis points.

5 Estimation and empirical results

5.1 Data and preliminary test

In this study we use two different datasets. The first data set is the customer order
flow data set used in Cerrato et al. (2009). The data set consists of customer
(weekly frequency) order flows from UBS and covers the period November, 02 2001
- November, 23 2007 for nine of the most liquid currencies. This is the largest
data set ever used in the exchange rate microstructure literature. The data set is
aggregated across currency pairs with customers split into 4 classifications: asset
managers, hedge funds, corporate and private clients. The currencies considered are
the Canadian Dollar (CAD), the Swiss Franc (CHF'), the Euro (EUR), the Australian
Dollar (AUD), the New Zealand Dollar (NZD), the UK Pound (GBP), the Japanese
Yen (JPY), the Norwegian Krone (NOK) and the Swedish Krone (SEK). We use
the three month LIBOR rate collected from Bloomberg to approximate the risk-free
rate.

Since all rates are foreign currency per US dollar, a positive coefficient indicates
dollar buying (foreign currency selling), the rate will increase as the foreign currency
weakens. Conversly, a decline in this rate represents a strengthening of the foreign
currency relative to the US dollar. Descriptive statistics for this data set are reported
in Cerrato et al. (2009). Since exchange rates are found to be I(1), we employ log
differenced rates. We have used this data set to assess the in sample predictive
power of the three models introduced above. Results were not different to what
is already reported in Cerrato et al. (2009) and therefore are not reported in this
study to save space?.

Linearity tests against STAR nonlinearity for the order flow are reported in Table

3These results are available upon request.

11



Linearity test for the STAR model

aggregate disaggregate

AM CO HF PC
EUR/dollar 10.1987 4.022  1.713  4.794T  0.161
JPY /dollar 4.393 2.022  1.002 10.517" 11.476"
GBP /dollar 13.046"  32.893"  6.6987  1.518  3.789
CHF /dollar 10.8851 5.9431 17.234"  5.669"  0.073
AUD/dollar 3.725 9.074" 64.9321  2.875 23.2361
CAD/dollar 3.939  13.249"  1.689  4.7057 54717
NOK/dollar 22.766T 1.818  2.147  0.645 17.980%
SEK /dollar 15.5451 8.687" 13.278"  0.083  3.802
NZD /dollar 36.289" 7.843" 32.099" 18.6011  3.631

Table 1: Linearity test to the aggregate and disaggregate order flows

(1). We use the approach as suggested in Harvey and Leybourne (2007). To imple-
ment this test, we select the AR order in the regression using a general-to-specific
methodology and a 10%-significance level, (4.605), with a maximum permitted AR
order of four and a minimum order of two. We find evidence of nonlinearity for six
aggregate order flows and more than half the disaggregate order flows. Thus, more
than half of the series analyzed exhibit evidence of nonlinearity and this suggests
that nonlinear models may be appropriate.

5.1.1 Evans and Lyons’ data set: out of sample forecasts

The second data set considered in this study is the one used in Evans and Lyons
(2002b). It contains 80 daily observations on inter-dealer order flow for the mark—
dollar and yen—dollar during the period May 1-August 29, 1996. These data were
originally collected from the Reuters D2000-1 inter-dealer service and are defined
as the difference between the number of buyer-initiated and seller-initiated trades.
Thus, in contrast to the data set discussed in the prvious section, this data set
consists of interdealer order flow

We start with the out-of-sample forecasts and compare the forecasts using the
order flow model as in Evans and Lyons (2002b) and thereafter using the method-
ologies for model instability as discussed in the previous sections.

Table (2) shows the empirical results. We use a recursive approach to computing
forecasts and root mean square errors. At the 1 and 2-week horizons, the Evans—
Lyons model, which addresses the publication lag issue, does not outperform the
random walk. Our models show a significant predictive power for weekly exchange
rate returns at any horizon.

5.2 Customer order flow data: out of sample forecasts
5.2.1 Aggregate order flow

We now turn to the UBS customer order flow data and repeat the forecasting exercise
as in the previous section. The out-of-sample predictions are reported in Table
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(3). As in the previous section, the out-of-sample exercise involves two steps: (1)
the initial parameter estimation for the first 267 observations, and (2) sequential
weekly updating of the parameter estimates for the rest of the out-of-sample period.
In other words, the forecasts at any given week are constructed according to a
recursive procedure that is conditional only upon information up to the date of the
forecast. The model is then successively re-estimated as the date on which forecasts
are conditioned moves through the data set. Hence the design of the out-of-sample
exercise is computationally intensive.

At all the horizons, except for GBP, the RMSFE statistics computed using the
TVP, STAR and STR are slightly lower than those associated with the random walk
forecasts. The Diebold-Mariano test statistic shows that only NZD is significant at
the 5% level.

Thus, the empirical results in this section show very little evidence of forecasting
power for the order flow model.

5.2.2 Disaggregate order flow

Evans and Lyons (2005b) argue that the lack of success in generating results gener-
ally supportive of the core hypotheses of the market microstructure literature may be
due to using aggregate customer order flow data. For example, the heterogeneities
in the customer segment of the foreign exchange market imply that different cus-
tomers may react to news in different ways. Sager and Taylor (2008) points out that
knowledge of the types of customers prevalent in the market at any given time, and
of the ways in which they trade and interact with the wider market, should help
understanding of the behavior of an exchange rate at that time.

In this section, following Evans and Lyons (2005b), Sager and Taylor (2008) and
Cerrato et al. (2009), we test whether the predictive performance of the order flow
model can be improved using disaggregate customer data.

The results of asset managers, with the TVP, STAR and STR models are re-
ported in Table (4). All the series that demonstrate nonlinearity produce an RM SFE
ratio which is less than 1. The most striking contrast between the results reported in
Tables (3) and (4) is the additional rejection of AUD and CAD in Diebold-Mariano
test. This is slightly better than the results of estimated aggregate order flows
and can at least partly be explained by multiple structural changes that have been
manipulated to ensure customer heterogeneity.

Table (5) and (6) reports the forecasts from the TVP, STAR and STR models for
corporate clients and hedge funds, respectively. Except for the CHF with the STR
model (see hedge fund), in all cases the RMSFE ratios are less than 1. However,
only for CAD (see hedge funds) can the hypothesis that the RMSFE ratios is less
than one be rejected at the 10% level with the Diebold-Mariano statistic.

Summing up, the empirical evidence from the previous sections shows a weak
empirical evidence that the order flow model can overcome a simple random walk
model in out of sample forecasts.
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5.3 Economic evaluation
5.3.1 Evans and Lyons’ dataset

In this and the following sections we build a portfolio of currencies and measure the
out of sample forecasting performance using the mean variance approach introduced
in the previous sections. We start with the Evans and Lyons data set. Results are
presented in Table (8). Panel A of table (8) contains the out-of-sample annualized
Sharpe Ratios for the nonlinear models. We build an efficient portfolio by investing
in the daily return of two currencies, the German DM and Japanese Yen, and using
the two exchange rates to convert the portfolio return into US dollars. The maximum
return strategies are evaluated at three target portfolio return volatilities, 8%, 10%,
and 12%. For instance, at o = 10% , the out-of-sample Sharpe Ratios are 0.41
for TVP, 1.86 for STAR, and 2.43 for STR. Thus, we can conclude that in terms of
economic value the models perform better than a RW.

Panel B of Table (8) contains the out-of-sample performance fees, ®, and the
break-even transaction costs 72. The fees denote the amount an investor with
quadratic utility and a degree of relative risk aversion equal to 2 and 6 would be
willing to pay for switching from the RW model to an alternative model. The target
portfolio volatilities are set at 8%, 10%, and 12%. 7% is defined as the minimum
proportional cost that cancels out the utility advantage of a strategy. The fees are
expressed in annual basis points. As an example, setting o, = 10% and § = 2
the results indicate the out-of-sample fees for switching from the RW model to the
nonlinear models are 116 bps for TVP, 100 bps for STAR and 91 bps for STR. Both
economic evaluations using the Sharpe Ratio and performance fees confirm that
our TVP, STAR, and STR models consistently outperform a RW in out-of-sample
forecasts.

5.3.2 Aggregate and disaggregate customer order flows

The empirical results for the UBS dataset are reported in Table (9). We calculate
the performance fee and this is reported in the Table (9). We estimate the fees
assuming different degrees of relative risk aversion, specifically § = 2 and § = 6.

The out-of-sample performance fees are displayed in Table (9) and suggest that
there is still high economic value in nonlinear specifications. This is a new and
important result, which is in contrast to the seminal contribution of Meese and
Rogoff (1983). Specifically, at o5 = 10% and § = 2, the performance fees for
switching from RW to an alternative model are 1793 bps for TV P, 1951 bps for
STAR and 1149 bps for STR , when aggregate order flow is used. We can therefore
conclude that there is a substantial economic value out-of-sample against the naive
random walk model and in favor of conditioning on the order flows with nonlinearity.
Thus, there is clear out-of-sample economic value relative to the naive random walk
benchmark.

If transaction costs are sufficiently high, the period-by-period fluctuations in
the dynamic weights of an optimal strategy will render the strategy too costly to
implement relative to the static random walk model. We address this concern by
computing the break-even transaction cost, 7, as the minimum proportional cost
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that cancels out the utility advantage of a given strategy. In comparing a dynamic
strategy with the static random walk strategy, an investor who pays a transaction
cost lower than 7 will prefer the dynamic strategy.

The out-of-sample break-even transaction costs are reported in Table (9). It is
clear from this that for the TV P, STAR and ST R models transaction costs are
reasonably high. They tend to be higher than 50 bps. Marquering and Verbeek
(2004) argue that, at the reasonably high transaction cost of 50 bps, there is still
significant out-of-sample economic value in empirical models that condition on the
microstructure order flows, especially under nonlinear specification. Therefore, given
the values of ®, we conclude that the out-of-sample economic value we have reported
is robust to reasonably high transaction costs.

5.4 Summary of results

Thus, the empirical results presented above can be summarized as follows: (1) the
nonlinear models consistently outperform a random walk model when RMSFEs are
considered; (2) when a portfolio of currencies is considered, after conditioning on the
microstructure order flow models introduced above, there is clear empirical evidence
that these models have a higher economic value than a simple random walk model;
(3) the economic value of the forecasts increases after conditioning on the nonlinear
models.

6 Robustness

In this section we conduct some robustness tests to check that our results are not
driven by a specific model specification. Table (10) presents Sharpe Ratios of the
out-of-sample performance for the aggregate and disaggregate order flow models.
Conditioning on STAR models generally outperforms the benchmark RW under all
scenarios. Overall these empirical results are in line with the ones reported in the
previous section.

The order flow models we have used above did not contain the interest rates
differential. As an additional check, we have also repeated all the empirical appli-
cations as above using the same approaches but using the interest rates differential
as an additional regressor. The empirical results are in line with what is already

reported and therefore not given here to save space?.

7 Conclusion

This paper makes several contributions to the literature on exchange rates forecast-
ing. We focus on the initiating customer trades and extend the order flow model
to account for model instability. In a microstructure context, Gradojevic and Yang
(2006) highlights the necessity of embodying information in a nonlinear way. Our
empirical results show that order flow, which is related to the economic fundamen-
tals, has some forecasting power to forecast exchange rate returns when forecasts

4These empirical results are available upon rﬁguest.



Sharpe Ratios for Out of Sample Forecasts

Aggregate
ar TVP STAR STR
Aggregate 8% 0.9230 1.2809 0.6902
10% 0.7384 1.0248 0.5522
12% 0.6153 0.8540 0.4601
Disaggregate
AM(Asset Manager) 8% 0.7232 0.9621 0.7186
10% 0.5786 0.7696 0.5749
12% 0.4821 0.6414 0.4791
CO(Corporate Client) 8% 0.6272 1.0383 0.7000
10% 0.5018 0.8306 0.5600
12% 0.4181 0.6922 0.4667
HF(Hedge Fund) 8% 0.8504 0.7337 0.4633
10% 0.6803 0.5870 0.3707
12% 0.5669 0.4892 0.3089
PC (Private Client) 8% 0.5201 1.0096 0.6626
10% 0.4161 0.8077 0.5301
12% 0.3467 0.6731 0.4417

Table 10: Sharpe Ratios for the TVP, STAR and STR forecasts with Order Flows

are evaluated using standard statistical methods. As we have discussed, this re-
sult is consistent with the hypothesis that order flow variation can be explained
using macroeconomic news (for example, in our structured break model the effect
of macroeconomic news is captured by a shift in the drift parameter). We use two
statistical criteria to evaluate model forecasts: the RMSFEs and also the Diebold-

Mariano test.

In addition, and more importantly, we assess the economic value of exchange
rate forecasts. We find that the predictive ability of the microstructure order flow
has substantial economic value in a dynamic portfolio allocation context and that
nonlinear models outperform the naive RW model. We believe these are new and

important results which have not been previously documented.
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