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Abstract

The interest rate has been falling for centuries. The key to explaining this
decline is increasing societal patience, driven by a process of natural selection.
Three observations support this mechanism: patience varies across individuals,
is inter-generationally persistent, and is positively related to fertility. To estab-
lish the importance of this channel, we introduce a dynamic, heterogeneous-
agent model of fertility. The structure of our model enables us to use modern,
micro-level data to calibrate the historical distribution of patience. Our quan-
titative results match the centuries-long fall in the interest rate, highlighting
the crucial role of selection in this historical, and ongoing, trend.
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1 Introduction

Real interest rates have been falling for at least the last eight centuries (Figure 1).

The global real interest rate declined from around 12% in the fourteenth century to

just over 1% today (Schmelzing, 2020). The real return on land in England fell from

around 10% in the thirteenth century to 1-2% today (Clark, 2010).1

Figure 1: Real returns, 1175–2000
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This large, slow and persistent decline suggests that fundamental economic forces

are at play. The standard expression for equilibrium real interest rates comes from

the Euler equation in a neoclassical consumption model, here with log utility for

simplicity,

rt = gt − log β. (1)

The real interest rate, rt, is the difference between the growth rate of per capita

consumption, gt and (the log of) the level of patience, β.2 Since income per capita

growth was close to zero up to 1800 and then increased following the onset of the

industrial revolution (The Maddison Project, 2013), equation (1) points towards rising

levels of patience as the driver of declining real interest rates.

We would not normally think of a preference parameter as varying over time at

the level of an individual. However, this parameter could also reflect time-varying

1We elaborate on these data, their sources and construction in Appendix A. We also report further
data across multiple regions and asset classes. All point to a similar, centuries-long downward trend.

2Of course, a less parsimonious model could incorporate variance in consumption growth, uncer-
tainty of returns, or time-varying risk preferences. As we document in Appendix B, evidence on the
long-run changes in each of these additional factors is unable to explain the observed pattern.
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changes in societal levels of patience driven by changing demographics. Blanchard

(1985), for example, shows that a declining probability of death can appear as an

increase in effective β, thus contributing to a falling interest rate. Although the

historical evidence does not support this particular channel as being a driver of the

centuries-long decline in interest rates,3 it does highlight that a changing population

composition could have an important impact on societal levels of patience.

In this paper, we propose a novel demographic channel that, we find, can explain

the decline in interest rates. In particular, we introduce a model of endogenous fertil-

ity, in the spirit of Barro and Becker (1988), where patience levels are heterogeneous

across agents. In this model, societal patience increases over time as a result of evolu-

tionary pressures that naturally select the most patient agents. Our calibrated model

explains most of the decline in the real rate.

We develop our findings in three steps. First, we motivate the model by drawing

together the following empirical facts: patience varies across individuals; more patient

individuals have more children; and, patience is at least partially inter-generationally

persistent. Together, these facts imply that patience levels should increase over time

as more patient households come to form an increasing proportion of the popula-

tion. Our mechanism is thus theoretically plausible. Second, we construct a fertility

model à la Barro and Becker (1988) that captures these empirical facts. Levels of

patience are assumed to be heterogenous across households, but are transmitted inter-

generationally. Since children are a form of saving in this model, and since patient

agents tend to save more than impatient agents, the model implies that patient agents

will have more children. We then calibrate this model to experimental micro-level

evidence on the modern distribution of patience, and use the structure of the model

to find the initial (historical) distribution. Finally, we show that our calibrated model

captures the timing and magnitude of the decline in real rates over eight centuries,

despite this not being a target of the calibration. Our mechanism is thus also quanti-

tatively plausible. The calibrated model is also consistent with the magnitude of the

historical relationship between wealth at death (in bequests) and number of surviv-

ing children, lending further credence to our fertility mechanism. Crucially, without

a fully-specified and calibrated model, we would be unable to arrive at the conclusion

3Life expectancy was flat until the 19th century (and even falling in England and Wales between
1550 and 1750). Only after 1750 did a ‘mortality revolution’ take place that resulted in a rapid
increase in life expectancy (Wrigley et al., 1997) and potentially contributed to falling rates.
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that our mechanism is quantitatively important and to measure its role in driving

the declining interest rate. Indeed, a key contribution of our model is a quantitative

theory of the evolution of the population distribution of patience.

Understanding the level and path of the real rate of interest over time is crucial

for long-term inter-temporal decisions that are associated with long term savings

and investment choices or future paths of innovation, as well as for the long-run

sustainability of public debt. Furthermore, optimal policies to address very long-term,

inter-generational optimization problems, such as those associated with irreversible

planetary climate change or social-security funding, often hinge almost entirely on

the rate at which the future is discounted (see Weitzman, 2001; Arrow et al., 2013;

and, Millner, 2019). Small changes in assumptions can give rise to vastly different

policy recommendations and potentially result in devastatingly different outcomes in

the distant future. Having a clear understanding of the factors driving the path of

societal patience can help us construct optimal policies today to cope with these types

of problems and to provide better solutions for tomorrow.

Related literature Our paper is related to a number of different strands of the

literature. First, we contribute to the role of evolution and selection in economics.

Galor and Moav (2002) propose a theory in which natural selection entails an evo-

lutionary advantage to human traits that are complementary to the escape from the

Malthusian trap. In the Malthusian era, higher income leads endogenously to higher

fertility. Following an endogenous demographic transition, higher incomes improve

child quality (greater human capital) instead of child quantity. In our paper, fertility

decisions depend on inherited traits that determine time preference. We find that hu-

man capital is not critical to explaining the decline in real rates over a period before

and after sustained high growth emerges.4

In a related paper, Galor and Özak (2016) present a model in which higher pa-

tience leads to better economic outcomes and, consequently, greater reproductive

success. Geographical variation in returns to agricultural investment mean that the

returns to patience also varies. Since patience is partly inherited, and since bet-

ter economic outcomes lead to more children, locations that offer greater returns to

patience observe an increasing share of long-term orientated individuals over time.

4Further on the connection between fertility, human capital and development see also Becker et
al. (1990) and Tamura (2006).
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Galor and Özak present empirical evidence which shows that cross-sectional variation

in measures of long-term orientation can be explained by historical differences in crop

yields. Outcomes that benefit from patience, such as technological adoption, are also

connected with agricultural productivity. While Galor and Özak can thus explain a

portion of the level differences in patience around the world, our contribution is to

understand the dynamics of the evolution of patience in a quantitative model that

can match the data over time.

We also relate to the further literature on the biological (evolutionary) basis of

stable preferences (for example, see Becker, 1976, Rogers, 1994, Robson and Szentes,

2008, and Robson et al., 2012). In this literature, choices are determined wholly by

inherited traits, whilst preferences that survive in the long-run are defined as evolu-

tionarily stable. Given that we build a calibrated, dynamic model that incorporates

the shifting distribution of types, we are able to show just how long – millenia – it

can take for such a steady state to arrive. The closest to our set-up is Hansson and

Stuart (1990), in which the fitness of a dynasty (its population growth) is assumed

to be monotonically increasing in the per-capita consumption of the dynasty. The

steady-state is thus one dominated by dynasties that maximise per capita consump-

tion growth. In our model, the population growth rate of a dynasty is a function of

the fundamental preferences and of the environment. Agents behave optimally for

given discount rates and societal preferences change over time because dynasties have

different levels of fitness. The long-run in our model is the result of a slow process

of selection that leads to the most patient dynasty dominating, a result which also

echoes the Ramsey (1928) conjecture.5

Second, we connect to the economic history literature on the intergenerational

transmission of wealth. Clark and Hamilton (2006) shows that families at the turn of

the seventeenth century with more wealth tended to have more children. Moreover,

records on royal tenants in England (whose wealth would have been greater than

average), suggest that a positive relationship between wealth and fertility goes back

at least to the mid-thirteenth century. For Clark (2007a), variation in the number of

children per household comes purely from the Malthusian relationship between income

and fertility. Since innate patience is more deep-rooted than wealth, and since the

5Ramsey (op. cit., p. 559) conjectured that, in an economy populated by two groups each with
different levels of patience, “...equilibrium would be attained by a division of society into two classes,
the thrifty enjoying bliss and the improvident at the subsistence level.” See also Becker (1980) and
Mitra and Sorger (2013).
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accumulation of wealth is a direct consequence of higher patience, we view patience as

the fundamental driver of differences in both dynastic wealth and household fertility.

The same evolutionary pressures yield a society that is wealthier, more literate and

more patient, but the mechanism is ‘survival of the patient’ rather than ‘survival of

the wealthiest’.

Third, our model draws a connection between family-level decisions and their

macroeconomic consequences. As such, we relate to the growing literature on fam-

ily macroeconomics (see Doepke and Tertilt, 2016 or Doepke et al., 2019 for recent

surveys). While our treatment of the complexities of family decision-making is sim-

plified, our study suggests another way in which changes over time in the nature of

fertility decisions can manifest themselves in significant changes to macroeconomic

variables.

Fourth, our work connects to recent research on whether the decline in global real

interest rates in the past few decades is a result of long-run trends or cyclical shifts

(see, for example, the chapters in Teulings and Baldwin, eds, 2014). Del Negro et

al. (2018) study the determinants of the interest rate using a VAR analysis of data

since 1870 for advanced countries. Del Negro et al. isolate the role of growing risk

and declining growth rates in explaining the decline of the last ten years, but limited

role for a stochastic discount factor. As we will show, the evolution of society toward

the more patient generates a decline in the interest rate that slows over time and

is thus hard to discern even in data since 1870. Carvalho et al. (2021) consider the

demographic channel over 1990 to 2014, finding a quantitatively significant role for

growing life expectancy in explaining declining rates.

Structure In section 2 we briefly introduce empirical evidence on the distribution

and transmission of levels of patience. In section 3 we develop a Barro-Becker model

of fertility with heterogeneous dynasties that differ according to their discount factor,

while section 4 presents the solution to the model. Section 5 calibrates the model to

existing modern data on the distribution of patience and section 6 presents quantita-

tive results, comparing various characteristics of the model to the historical record.

We also present a validation exercise, showing that relationship between wealth and

fertility is similar to that in the data. Section 7 considers two extensions. First, we

consider a number of shocks to the population and capital (such as might arise in a

pandemic, war or a revolution). Second, we explore the impact of the mutation of a
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small portion of a dynasty to a higher or lower level of patience. Finally, section 8

offers some concluding remarks.

2 Evidence on patience

We suggested above that a dynamic model of societal preferences may explain the

decline in the interest rate if three conditions are met: patience is heterogeneous;

preferences are inter-generationally persistent; and, patience is related to fertility.

We offer a brief discussion of the empirical evidence that each of these conditions are

met.

First, modern empirical studies find that there is indeed significant heterogeneity

of patience. Andersen et al. (2008) use experimental evidence from a representative

sample of Danes to elicit time and risk preferences. Alan and Browning (2010) use

structural estimation on data in the longitudinal PSID survey. Both studies find

similar levels of heterogeneity in discount factors across individuals, whether or not

estimating discount factors jointly with risk attitude. More recently, Falk et al. (2018)

establish the substantial extent to which preferences vary both across the globe and

within countries.

Second, the strong intergenerational transmission of preferences, either by genet-

ics, imitation or by socialization, has been identified in a number of studies. Brenøe

and Epper (2018) find substantial transmission of patience across generations of Dan-

ish families. Chowdhury et al. (2018) find the same based on experimental evidence

in Bangladesh. Other elements of preferences are also persistent intergenerationally:

Dohmen et al. (2011) show a strong connection between generations of a family of

attitudes to risk and trust.6

Third, since altruism toward children make them appear as a ‘normal good’, the

equilibrium of standard models of fertility such as Barro and Becker (1988) implies

that higher levels of patience will drive higher demand for future consumption includ-

ing via the consumption of future children. To our knowledge, this connection has

not been investigated empirically. In Appendix A, we use German Socio-Economic

Panel (SOEP) data to show that there is a robust, positive relationship between in-

dividual patience levels and the quantity of offspring. The SOEP is a longitudinal

6See also Barth et al. (2020) and Fagereng et al. (2021) on the mechanisms that can drive the
intergenerational transmission of wealth.
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dataset which collects information by interview from around 30,000 unique individu-

als in nearly 11,000 households (see Wagner et al., 2007). Among the data collected

is household net income, marital status and age. In 2008 and 2013, the interviews

included a question asking for ‘general personal patience’ on a scale of 0-10 (where

0 is very impatient and 10 is very patient). The 2008 measure has been validated

using experimental methods (Vischer et al., 2013). We find a statistically strong pos-

itive correlation between the self-reported patience of an individual and the number

of children they have. This holds when we control for a large number of additional

variables, including age, net income, gender and household status.

The above facts imply that parents that are highly patient will have more children

than the average, and that the offspring of those highly patient parents will be more

patient than the average of their generation. This suggests that over time a greater

proportion of the population becomes more patient leading to higher societal levels

of patience and to falling interest rates. In the next section, we build a quantitative

model that captures these three facts and enables us to measure the importance of

this selection mechanism in accounting for the observed decline of the real interest

rate.

3 Baseline model

Consider an economy with aggregate population Nt at time t. The population consists

of a finite number of dynasties, indexed by i = 1, . . . , I. A dynasty i consists of N i
t

equally-sized households. Households within a dynasty are identical, but dynasties

differ in their discount factors, βi.7 Without loss of generality, the sequence {βi}Ii=1

is strictly increasing in i, so dynasty I has the highest discount factor, βI . Each

period every household is endowed with a unit of labor that it inelastically provides

in exchange for a wage, wt, as well as a stock of non-reproducible capital (or land),

ki
t, that it inherited from its parent and that it rents out in exchange for a rental

rate, rt. Each household of type i solves the following utility maximization problem

7Since households within a dynasty are identical, and since we obtain solutions to the model
in terms of dynasty-aggregates, we omit a household index. As we explain below, household-level
quantities are lower-case, so, e.g., cit is the time t consumption of an individual household in dynasty
i; dynasty-aggregates are upper case, so Ci

t is the sum of consumption by households in dynasty i
at time t.
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in each period t:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βiU i

t+1(k
i
t+1) (2)

s.t.

cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t

ni
t+1 = π + ni

c,t

ki
t+1 =

ki
t + xi

t

ni
t+1

.

As in Barro and Becker (1988, 1989), households derive utility from their own con-

sumption, cit, from the size of the household at beginning of the next period, ni
t+1

(since households are altruistic), and from the next generation’s average continuation

utility, U i
t+1(k

i
t+1). This particular choice of utility function follows Tamura (1996),

Lucas (2002) and Bar and Leukhina (2010). Parents face a trade-off when it comes to

children. They enjoy bigger families, but at the same time they derive welfare from

children who are wealthier. Given their income from supplying labor, wt, and renting

out capital, rtkt, households choose the quantity of their consumption, cit, the number

of children to have, ni
c,t, and the quantity of capital to accumulate, xi

t. For simplicity,

we assume that the cost of a child is the same as the cost of a unit of consumption.8

The price of purchasing capital stock is given by pt. We also assume that the exoge-

nous survival probability for existing households, π, is age independent and constant

across dynasties. The survival probability of children is 1 (this can readily be general-

ized). Together, these imply that the expected number of people in a household at the

end of the period (and the beginning of the subsequent period) will be ni
t+1 = π+ni

c,t.

We assume that parents care about their children equally and endow them each with

the same share of accumulated capital. Thus, parents face a quantity-quality tradeoff

with respect to the number of children à la Barro and Becker (1988, 1989). Finally,

we also assume that the child of an adult in dynasty i perfectly inherits the discount

factor βi (we relax this assumption in section 7.2). This transmission can be thought

of as coming from genetics, imitation or socialization and, given the lack of clear

identification of mechanisms in the empirical literature described above, is left as a

8This has no impact on our key findings regarding interest rates, but naturally does affect steady
state populations in an obvious way; counterfactuals are available from the authors.
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reduced form assumption.

Time Zero Households and Dynastic Planners Since households care about

the outcomes of their future children, we can simplify the above problem and, by

iterative substitution, re-write the individual household problem in the framework of

a time zero household of each type as follows:

max
{cit,ni

c,t,x
i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(cit) + (1− α) log(ni

t+1)
)

(3)

s.t.

cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t

ni
t+1 = π + ni

c,t

ki
t+1 =

ki
t + xi

t

ni
t+1

.

The above reflects the choice of an individual time zero adult household. Since house-

holds within a dynasty are identical, and since there are N i
0 identical members of each

dynasty i at time zero, we can re-write the time zero household problem as the prob-

lem facing a single dynastic planner for each type. At time t, there are N i
t identical

members of the dynasty of type i. Next period, the dynasty will be comprised of

the number of children produced by each household, ni
c,t (all of which are assumed

to survive), and the expected number of surviving adults. The number of people in

dynasty i at time t+1 will thus be given by N i
t+1 = (π+ni

c,t)N
i
t = ni

t+1N
i
t . Dynasty-

aggregate values are Ci
t ≡ citN

i
t , N

i
c,t ≡ ni

c,tN
i
t , K

i
t ≡ ki

tN
i
t , X

i
t ≡ X i

tN
i
t and so we

re-write the time-zero household problem for the dynastic planner of each type as:

max
{Ci

t ,N
i
c,t,X

i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(4)

s.t.

Ci
t +N i

c,t + ptX
i
t ≤ wtN

i
t + rtK

i
t

N i
t+1 = πN i

t +N i
c,t

Ki
t+1 = Ki

t +X i
t .
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Just as in Lucas (2002), to ensure strict concavity of the objective we need to

assume that 1−α−βi > 0. Notice that the discount factor appears both as the term

used for discounting the future, but also as a preference weight for children. This

reflects the fact that current children are effectively a consumption good in this model.

In particular, the more patient agents place less weight on current children as they

are partially viewed as current consumption goods rather than entirely investment

goods for the future.

Firms The representative firm hires workers (Nt) and capital (Kt) to produce final

output (Yt). The profit maximization problem of the firm is given by:

max
{Kt,Nt}

Yt − wtNt − rtKt, (5)

where Yt = DKν
t N

1−ν
t is a standard Cobb-Douglas production function, D is the

exogenous level of technology and 0 < ν < 1 is the output elasticity of capital. In

our setup, we think of capital as a fixed, non-reproducible and scarce quantity akin

to land.

Market Clearing Finally, the market clearing conditions are standard and given

by:
I∑

i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt = K̄,

Ct +Nc,t = DKν
t N

1−ν
t . (6)

One point to emphasize once more is that we assume there exists a fixed quantity of

capital, K̄. This is an important way of introducing scarcity into the model. Since

natural selection works through adjustments in how agents respond to scarcity, this

will be a crucial part of our mechanism.

Competitive Equilibrium A competitive equilibrium, for given parameter values

and initial conditions {N1
0 , . . . , N

I
0 , K

1
0 , . . . K

I
0}, consists of allocations

{Ci
t , N

i
c,t, N

i
t+1, K

i
t+1, X

i
t}∞t=0 for each dynasty i = 1, . . . , I and prices {wt, rt, pt}∞t=0

such that firms’ and dynasties’ maximization problems are solved, and all markets

clear.

10



4 Solution

To solve the model, we derive the first order conditions of firms and the dynastic

planner (see Appendix C). For given parameter values, initial dynasty populations

{N1
0 , . . . N

I
0 } and stocks of capital {K1

0 , . . . K
I
0}, the competitive equilibrium of the

problem, for each dynasty i = 1, . . . , I, is characterized by consumer first-order con-

ditions with respect to choice of children and consumption as:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

, (7)

Ci
t+1

Ci
t

= βipt+1 + rt+1

pt
, (8)

with consumer budget constraints for each dynasty i:

Ci
t +N i

t+1 + ptK
i
t+1 ≤ (wt + π)N i

t + (rt + pt)K
i
t . (9)

The firm first-order conditions are:

wt = (1− ν)DKν
t N

−ν
t , (10)

rt = νDKν−1
t N1−ν

t . (11)

The market clearing conditions are:

I∑
i=0

N i
t = Nt, (12)

I∑
i=0

Ki
t = Kt = K̄. (13)

Finally, there are two transversality conditions per dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, (14)

lim
t→∞

(βi)tu′(Ci
t)N

i
t+1 = 0, (15)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.
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From the above we obtain the following two Euler equations that describe the

evolution of dynasty consumption and dynasty population:

Ci
t+1

Ci
t

= βiRt+1, t ≥ 0, (16)

N i
t+1

N i
t

= βiR̃t+1, t ≥ 1, (17)

where in the above Rt+1 ≡
(

pt+1+rt+1

pt

)
is the gross real interest rate on capital whilst

R̃t+1 ≡ Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π)
is the shadow gross real interest rate on dynasty population.

These two interest rates differ since children are both a consumption good and an

investment good, whereas capital is only an investment good.

Given the above Euler equations, and since the interest rates are common across

dynasties, we can write the following expressions relating the relative evolution of

consumption and population for any two dynasties {i, j} which is true for all t ≥ 0

for the first expression and for t ≥ 1 for the second expression:

Ci
t+1

Ci
t

=
βi

βj

Cj
t+1

Cj
t

, and,
N i

t+1

N i
t

=
βi

βj

N j
t+1

N j
t

. (18)

Using repeated substitution, together with market clearing conditions, we can obtain

the shares of consumption and population of each dynasty relative to economy-wide

aggregate consumption and population, respectively, as a function of the initial dis-

tribution of dynasty-specific consumption and population:

Ci
t

Ct

=
(βi)tCi

0∑I
j=1(β

j)tCj
0

, and,
N i

t+1

Nt+1

=
(βi)tN i

1∑I
j=1(β

j)tN j
1

, (19)

for t ≥ 0. Note that given the initial distributions, the evolution of a particular

dynasty’s population and consumption shares depends only on that dynasty’s patience

relative to the patience of other dynasties. In particular, recalling that dynasty I is

that with the highest patience, the above expressions imply that as t → ∞, so
NI

t+1

Nt+1
→ 1 and

CI
t+1

Ct+1
→ 1 whilst, for all i < I,

N i
t+1

Nt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. This means

that the consumption and population of the most patient type will dominate the

economy over time (consistent with the Ramsey (1928) conjecture). As t → ∞ the

model collapses to standard homogeneous agent model with discount factor βI and a
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standard Barro-Becker steady state. Consequently, if we derive the steady state values

(see Appendix C.1), the model can be solved with a reverse-shooting algorithm.

Aggregation It is convenient to solve the model in two stages: first, by deriving

aggregate variables and, second, by calculating prices and dynasty-specific variables.

We start by re-writing the first order condition (7) for dynasty I in terms of

aggregate population only. To do this, we use equations (19) and the derivations

shown in Appendix C to relate dynasty- and aggregate-level variables via weighted

averages of time zero dynasty-level consumption:

Ci
t =

(βi)tCi
0∑I

j=1(β
j)tCj

0

Ct, and, N i
t+1 =

(βi)t(1− α− βi)Ci
0∑I

j=1(β
j)t(1− α− βj)Cj

0

Nt+1. (20)

Substituting (6), (10) and (20) into (7), all evaluated with i = I, gives us a first

order condition in terms of aggregate population, {Nt}∞t=0, and initial consumption

distributions, {Ci
0}Ii=1, only. Assuming that the model converges to its steady state

after T periods, we use a reverse-shooting algorithm to solve for {Nt}Tt=0, as a function

of {Ci
0}Ii=1. Given this, we can then use (20), market clearing condition (6) and the

firm first order condition (10) to solve for {Ci
t , N

i
t+1, Ct, wt}Tt=0 as functions of {Ci

0}Ii=1.

Next, given the above solutions, we use household I first order condition (8) and

the firm first order condition (11) to derive the solutions for {pt}∞t=0 and {rt}∞t=0 as

functions of {Ci
0}Ii=1. Given the above and the assumption that the model converges

to steady-state after T periods,9 we can use the dynasty specific budget constraints

to derive sequences of each dynasty’s capital stock, {Ki
t}Tt=1, as functions of {Ci

0}Ii=1:

Ki
t =

Ci
t +N i

t+1 + ptK
i
t+1 − (wt + π)N i

t

(rt + pt)
. (21)

Finally, since we know the distribution of period zero capital across dynasties, then

(21) evaluated at t = 0, can be used to infer the dynasty distribution of initial

consumption:

Ci
0 = (r0 + p0)K

i
0 −N i

1 − p0K
i
1 + (w0 + π)N i

0. (22)

We can thus solve the problem for any initial distribution of capital and population.

9So that KI
T+1 = K̄ and Ki

T+1 = 0 for all i ̸= I.
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5 Calibration

The key aims of the calibration are to replicate the increase in world population

between the years 1300 and 2000, to fit the distribution of patience types using

contemporaneous experimental data, and, to match the remaining technological and

preference parameters to reproduce various key moments in the data.

Model parameters and their calibrated values are summarized in Table 1. We take

one period in the model to be 25 years (a generation) and we assume that period zero

in the model corresponds to the year 1300 in the data. We normalize the level of

technology so that D = 1. The initial level of population is set to be N0 = 0.370

corresponding to a world population of 0.37 billion in 1300 and the aggregate land

supply, K̄ = 11.780, is chosen so that the model reproduces a global population of

6.08 billion at period 28 (the year 2000) in the model (The Maddison Project, 2013).

The land elasticity of the production function is set to ν = 0.190 to match the share

of land in value added found by Caselli (2005). We assume that all children survive

into adulthood (25 years) and set π = 0.67 to yield an expected lifetime of 75 years.10

We specify the number of dynasties to be I = 2000. This is largely a computa-

tional choice which makes little difference to our results for a large enough number

of dynasties.11 We assign a discount factor to each dynasty i ∈ I. Recall that we

order dynasties such that the sequence {βi}Ii=1 is strictly increasing in i. Given our

requirement that 1−α−βi > 0, each discount factor is bounded by 0 < βi < β̄, where

β̄ ≡ 1−α. We divide this interval (0, β̄) into I equally-sized sub-intervals and locate

each type’s patience level at the central point of every sub-interval, so that, for each

i, βi = β̄ (2i−1)
2I

. To pin down the sequence of βi’s, we need to find values for α and

β̄. We can solve for these two unknowns by noting first that the share of expenditure

on consumption relative to aggregate income in the steady-state, scss ≡ Css/Yss, is a

function of α, βI , and other calibrated parameters:

scss ≡
α
(
1− βI(1− ν(1− π))

)
(1− π(1− α)) (1− βI)

. (23)

10This is higher than historical evidence would suggest, but since survival probability is exogenous,
and since it has a consequence principally for the steady state of the model, targeting modern rather
than historical life expectancy makes more sense.

11If too few dynasties are chosen, the resulting transitions are non-smooth. Since we view our
model as largely approximating a near-continuous distribution of types in the data, we select a large
number of types in the calibration.
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Table 1: Model parameters
Parameter(s) Value Target/Description/Source
D 1 Normalization
N0 0.370 Aggregate population, 1300, The Mad-

dison Project (2013)
K̄ 11.780 Aggregate population, 2000, The Mad-

dison Project (2013)
ν 0.190 Land share, Caselli (2005)
π 0.667 Adult life expectancy of 75
I 2000 Number of types

{βi}Ii=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

α 0.428 Consumption share (see text)
β̄ 0.572 Maximum (generational) discount fac-

tor
{γ28, δ28} {36,60} Standard deviation of discount factors

(Andersen et al., 2008; Falk et al., 2018)
and long run rate of return (see text){

N i
0

N0

}I

i=1
See text Andersen et al. (2008) and Falk et al.

(2018){
Ki

0

K̄

}I

i=1
See text Consistency (see text)

Note also that the highest discount factor in our grid, βI , is related to the upper

bound of the discount factors, β̄, by the expression βI = β̄
(
2I−1
2I

)
where β̄ ≡ 1 − α.

With scss = 0.75 chosen to match to the average global steady-state income share post-

2000,12 we can thus solve the above equations simultaneously to obtain: α = 0.428

and β̄ = 0.572.

Finally, we need the initial distribution across dynasties of capital, {Ki
0}

I
i=1, and

population, {N i
0}

I
i=1. This data is not readily available for the year 1300. Instead,

our calibration strategy will rely, first, on an assumption that the model was in

equilibrium prior to our initial period, and, second, on using the model to obtain the

relative initial population of each dynasty from contemporaneous data.

Capital distribution The initial distribution of capital across dynasties deter-

mines the population distribution of those dynasties in subsequent periods. To obtain

the initial capital distribution, we assume that the growth of each dynasty’s popula-

12See Appendix A for details.
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tion is consistent with solutions of the model in the period prior to the initial period.

That is, we assume that outcomes in the period before t = 0 are on the equilibrium

saddlepath just as much as they are in periods from t = 0 on. This simply means that

we are ignoring potential shocks, such as wars, famines or pandemics, that may cause

population growth from t = 0 to deviate from the saddlepath that continues from

period t = 1. The initial distribution of capital is thus chosen such that population

growth rates are solutions of the model from period t = 0. In practice, this means

assuming that equation (17) also holds for t = 0 which in turn implies that the second

expression in (18) also holds at t = 0:

N i
1

N j
1

=
βi

βj

N i
0

N j
0

. (24)

There are three steps to see why the above consistency assumption is necessary to

pin down the distribution of initial capital stock across dynasties. First, in Appendix

C we establish a relationship between the population of each dynasty (relative to

the most patient dynasty) in the first period and the consumption of each dynasty

(relative to the most patient dynasty) in period zero:

Ci
0

CI
0

=
N i

1

N I
1

(
1− α− βI

1− α− βi

)
. (25)

Second, the consistency assumption (24) along with (25) amounts to fixing the initial

distribution of consumption (relative to the most patient dynasty) according to the

following:
Ci

0

CI
0

=
βi

βI

(
1− α− βI

1− α− βi

)
N i

0

N I
0

. (26)

That is, given the consistency assumption, the initial population distribution tells us

what initial consumption distribution should be. Finally, we can use dynastic budget

constraints (22) to determine what this initial distribution of consumption implies

about the initial distribution of capital, {Ki
0}Ii=1.

Population distribution Since we do not have data on the population distribu-

tion of patience in the year 1300 (t = 0 in the model), we choose our period-zero

distribution of types so that the model replicates evidence (which we describe below)

on the distribution of types in the year 2000 (t = 28 in the model). Equation (19)

gives the population share of each dynasty over time as a function of the t = 1 pop-

16



ulation share and each dynasty’s level of patience. Using this and (24), we have the

t = 0 population share of each dynasty i relative to dynasty I:

N i
0

N I
0

=
N i

t

N I
t

(
βi

βI

)t

, (27)

With evidence on the distribution of patience at some later date t, we could thus

calibrate the initial distribution of the population across levels of patience. One

problem with this approach is that modern data will capture only a censored portion

of the full initial distribution of preference types: even the most populous dynasties

of the year 1300 could be completely indiscernible in data for the year 2000.13 To

address this issue, we assume that the distribution of generational discount factors

in the population follows a scaled beta distribution defined on (0, β̄) with cumulative

distribution function, F (·) given by:

F (β; t) =
B
(
β/β̄, γt, δt

)
B(γt, δt)

. (28)

In the above, B(γt, δt) and B
(
β/β̄, γt, δt

)
are the complete and incomplete beta func-

tions, respectively, and γt, δt > 1 are two potentially time-varying shape parameters

that determine the mean and dispersion of the distribution.

There are a number of reasons for choosing this distribution. First, it is a dis-

tribution that can be defined on any positive sub-interval, and thus is useful for

considering discount factors which are naturally bounded. Second, it is a flexible dis-

tribution that is often used to mimic other distributions, both skewed and centered,

given appropriate bounds. Finally, the the beta distribution is also intimately linked

to the evolution of the population distribution implied by our model, as the following

Theorem shows:

Theorem 1. If I → ∞ and dynastic discount factors are distributed according to

a scaled-beta distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period

t̄, then dynastic discount factors will also be distributed according to a scaled beta

distribution in period t̄+1 on (0, β̄) with shape parameters γt̄+1 = γt̄+1 and δt̄+1 = δt̄.

13For example, consider two dynasties i and j with discount factors βi = 0.05 and βj = 0.5. From
equation (27), the relative size of the two dynasties in the year 2000 (t = 28) and the year 1300

(t = 0) will differ by a factor of
Ni

0/N
j
0

Ni
28/N

j
28

=
(

βi

βj

)28
= 10−28.

17



Proof. See Appendix E.

Theorem 1 establishes that, for a fine enough grid, if discount factors obey a scaled

beta distribution in any one period then they will follow a scaled-beta distribution

in all other periods. If the beta distribution fits the data well in a given year, the

model predicts it will fit the data well in any other year. Furthermore, because the

model pins down the evolution of parameters of the scaled beta distribution, our

choice of year to calibrate the scaled beta distribution (here the year 2000) will be

irrelevant – in principle, the same parameters (adjusted for time) would emerge if

we were to recalibrate the model using data at another point in time. An immediate

implication of the Theorem is that we can derive expressions for the mean and variance

of generational discount factors at any time t:

Et(β) = β̄
γ0 + t

γ0 + t+ δ
and vart(β) = β̄2 (γ0 + t)δ

((γ0 + t) + δ)2(γ0 + t+ δ + 1)
(29)

As t → ∞, the mean beta converges to β̄ and the variance goes to zero: thus the

agent with the highest discount factor comes to entirely dominate the economy.

Note that the two shape parameters of the distribution of generational discount

factors may be obtained if we observe the mean and variance of that distribution. Our

measure of the variance is derived from data on annual discount rates. Our target

for the mean is a function of the prevailing long-run interest rate in the economy. We

thus need expressions for the variance of the annualized generational discount factor

and for the long-run interest rate in terms of the parameters of the distribution of

generational discount factors. The variance of the annualized generational discount

factor, β
1
25 , is given by:

vart(β
1
25 ) = β̄

2
25
Γ(γt + δt)

Γ(γt)2

(
Γ(γt)Γ(

2
25

+ γ)

Γ( 2
25

+ γt + δt)
− Γ(γt + δt)Γ(

1
25

+ γt)
2

Γ( 1
25

+ γt + δt)2

)
, (30)

and an approximate expression (see Appendix E) for the annualized gross interest

rate:

R
1
25
t ≈ 1 +

(
γt − 1 + δt

β̄γt

) 1
25

. (31)

As described in Appendix A, we set var28(β
1
25 ) = 0.0052 to match experimental

evidence from representative individuals in Denmark (Andersen et al., 2008) and the
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Figure 2: Distribution of annualized discount factors in model and data
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Notes: The figure depicts the calibrated scaled beta distribution used in the model
period t = 28 (solid line) against the bandwidth filtered data described in the text
with BW = 0.005 (dashed line).

individual-level data in the Global Preference Survey (GPS) described in Falk et al.

(2018). We set R
1
25
28 − 1 = 0.063 to match the average (annualized) generational rates

of return on global equities.14 Together, these two equations imply the following

shape parameters of the beta distribution: γ28 = 36 and δ28 = 60. As can be seen

in Figure 2, there is a good fit between the annualized distribution of generational

discount factors in the year 2000.

Once parameters γt and δt have been calibrated, we can use the CDF to approxi-

mate, for some I, the proportion of the population assigned to each dynasty i in the

year 2000 (i.e. period t = 28) by:

N i
28

N28

= F

(
βi +

β̄

2I
; 28

)
− F

(
βi − β̄

2I
; 28

)
. (32)

With the above proportions in hand, we can then calculate the t = 0 distribution of

population using equation (27) with t = 28, and proceed to solve the model.

14In Appendix A we show that over the time spans under consideration by dynastic planners – a
basket of global equities was just as safe as bonds or treasuries but offered higher rates of return.
Specifically, the variation in the global rates of return on equities over 25 year periods are either
smaller or statistically indistinguishable from rates of return on government bonds or treasuries.
Since we are focusing on dynasty planners that have a horizon of 25 years or more, we calibrate to
the higher rates of equity return.
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6 Quantitative results

Figure 3 shows the increase in aggregate population over time generated by the model.

Since the model was calibrated to match the levels of global population in the years

1300 and 2000, we match the increase in world population over the period. Since the

level of technology in the model is constant, the increase predicted by the model is

more smooth than observed in the data.

Figure 3: Aggregate population
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Next, we examine the predictions of the model for the distribution of patience

levels in the population. Figure 2 showed the distribution of discount factors across

the population in both the model and the data in the year 2000. A key implication of

our model, is that this distribution changes over time: the mean patience of the pop-

ulation increases, whilst the variance (normalized by the mean) decreases as is shown

in equation (29). Figure 4 panel i) depicts this evolution over time. In our initial

period, 1300, societal patience is low and virtually no-one belongs to the dynasties

with β > 0.2 (an annual discount factor of around 0.94). More patient households

however, will tend to have more children who in turn will have the same higher levels

of patience as their parents. The distribution of the population will thus shift towards

higher levels of patience as relatively more patient households are born. By 1900 the

median dynasty now has a discount factor of around β = 0.2. The consequence of

this, as shown in panel ii) of Figure 4, is that the level of societal patience monotoni-

cally increases over time. The (un-normalized) standard deviation of patience in the

population will first gradually grow over time (as more patient agents have more chil-

dren) and then later it will become more concentrated over time (as the mass of the
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Figure 4: The rise of societal patience
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Notes: Panel i) shows the population distribution of levels of patience (the gen-
erational β) at 600-year intervals starting in the year 1300 and ending in 6100.
The dashed vertical line is at β̄ = 0.572. Panel ii) depicts the societal average
level of generational patience over time. Panel iii) shows the mean-normalized
standard deviation of patience in the population over time.

population reaches the upper limit of patience, β̄). As is shown in panel iii) of Figure

4, the mean-normalized standard deviation of patience decreases monotonically as the

population becomes concentrated in the most patient dynasties, eventually reaching

a mass point at the most patient dynasty. We can also show that the first and second

derivatives of the mean with respect to time are positive and negative respectively.

In other words, mean patience is increasing, but at a decreasing rate.

The key parameter governing this evolution is the shape parameter of the scaled

beta distribution, γt, which, as we argued in Theorem 1, evolves approximately ac-

21



cording to the first-order difference equation, γt+1 = γt+1. In the population genetics

literature this type of evolution of an organism’s phenotype (or observable trait) over

time, first identified and discussed by Darwin (1859), is known as ‘directional selec-

tion’. This is a form of natural selection in which extreme characteristics of agents

are favored over less-extreme characteristics (in a given environment) and which in

turn causes the relative frequency of the extreme variant of an agent to shift over

time in the direction of that particular agent type. Under this sort of selection the

numbers of the advantageous type of agent increase as a consequence of differences

in survival and reproduction abilities among different types. In our simplified case,

survival probabilities are the same across agents and only reproduction abilities vary.

Another feature of this type of directional-selection, which also holds in our model, is

that the increase in the share of the dominant type is independent of the dominance

of the particular type at any given moment (Molles, 2010). This fact follows directly

from the above first-order difference equation which is independent on the population

share of the dominant type of agent.

To aid our discussion of the changes within the population over time, we split

dynasties into six groups according to their level of patience. This permits us to

examine the characteristics of low, medium and high-patience types over time as

represented by groups of dynasties. Figure 5 panel i) gives the share of each group as

a percentage of the total population over time. There is a clear cyclical pattern over

time in the types of patience that dominate. The world starts out being dominated

by the least patient agents, group βa, who initially account for approximately 90%

of the total population in the year 1300. Over time, since they have fewer children

than more patient groups, the share of these agents falls and the group with the next

highest patience level, βb, takes their place, accounting for more than 90% of all agents

in the years 1600. Later still, the dominance of this group is broken by the rise of

the βc-group which in turn comes to overtake the population over the subsequent 400

years. This wave-like pattern continues into the future until, eventually, the entire

population is dominated by the most patient group of agents. This figure emphasizes

the findings shown in Figure 4, which demonstrates that the mean level of population

patience shifts steadily upwards. The transition from least to most patient is not

instantaneous – each dynasty and group of dynasties has their rise to and their fall

from dominance of the overall population. Panel ii) of Figure 4 shows the consumption

levels of each group over time, and makes clear that the waves depicted in panel i)
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Figure 5: Characteristics of groups and inequality over 1300–2100
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occur along with substantial growth in the aggregate population.

The key to understanding the cyclical outcome for groups lies in Figure 5 panel

iii), which reports the capital owned by each group over time. Since agents are able

to lend and borrow capital in making optimal choices of consumption and children,

the βa-group of dynasties at first begins to borrow from the more patient dynasties

in order to substitute away from children toward the current consumption good.

The extent to which the most impatient dynasties can increase their consumption

depends then on the population size of, and the capital owned by, the relatively more

23



patient types. The growth of the βb-group thus facilitates the (relative) decline of

the βa-group since there emerges a larger and larger market for their capital. As

the βa-group diminishes, so the βb-group emerges as the largest population and the

dominant owner of capital. The eventual emergence of the βc-group then yields to the

βb-group the increasing opportunity to sustain high consumption through sale of their

capital holdings. In panel iv), we summarize the evolution of capital via a measure of

inequality. We can see that inequality, as measured by the Gini coefficient, declines

over time. Since within a dynasty wealth is evenly distributed, as the population

distribution across types becomes more concentrated, so the overall distribution of

wealth becomes more even.

Figure 6: Real interest rate
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Finally, Figure 6 reports the model fit against the interest rate data in Schmelzing

(2020). We observe a significant fall in the implied rate as the level of societal patience

grows. This decline is approximated by equation (31). Note that in addition to

matching the decline, the model also captures the slowing rate of decline in the rate.

We do not capture fluctuations around the long-run trend, as our model does not

include factors such as time-varying growth rates, risk levels or cyclical shocks such

as wars and pandemics. We explore the impact of such shocks to population and

capital in Section 7.1. As we show, an unexpected decline in the population of 30%

can result in a decline in the interest rate of around 1.5 percentage points. From

this perspective, the Black Death (in the mid-fourteenth century) could explain a
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portion of difference between what the model suggests for interest rates in that period

and what is observed in the Schmelzing (2020) data. Most importantly our model,

calibrated to evidence on the distribution of types of patience in the year 2000 (and

other macroeconomic data) successfully captures the main trend in the real rate over

the course of eight centuries.

6.1 Wealth and fertility

An important advantage of using a quantitative model is that its implications can

be compared with further data not targeted by the calibration. This provides an

additional external validation of the mechanisms at work. One such test is of the

implied relationship between wealth and the number of children.

As described above, Clark and Hamilton (2006) uses English probate records over

the period 1585–1638 to show that richer households tended to have more children

than poorer households. The typical will in the Clark and Hamilton data includes the

names of nearly all surviving children of the testator, along with the value of bequests

both of the main property in the estate as well as small items for each child. Using

this data, they show that the number of children surviving at a father’s point of death

is positively related to the total value of the assets bequeathed to those children.15

To compare the results of our model with the bequest data, in Appendix D we

obtain an expression for the expected number of surviving children, and the size of

bequests, at the period of death of the parent. Figure 7 reports our model’s prediction

for the year 1650, normalizing bequest levels by their median size at that point in time.

Qualitatively, both the model and the data predict a non-linear, positive relationship

between the value of bequests and the number of surviving children. Moreover, up

to bequests of five times the median level, the quantitative predictions of the model

are very close to the data. For higher levels of bequests, the model over-predicts by

around one surviving child per testator. While there is much real-world complexity

that is absent in the model, one candidate for the difference between the model and

the data in this part of the wealth distribution is that wealthier men tended to marry

younger, potentially more fertile women, something absent from our model.16

15While the likelihood of writing a will is naturally contingent on having positive assets to be-
queath, Clark and Hamilton documents that wills were made by a cross section of society of all
social classes, including labourers with limited possessions.

16Another potential explanation would be the existence of a positive relationship between child
survival or life expectancy and wealth. Clark (2007a) reports evidence that these do not vary
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Figure 7: Wealth and children
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The mechanism generating the positive relationship between wealth and children

in our model stems from the positive connection between patience and fertility as

well as between patience and wealth. More patient households place a greater value

on future consumption and hence save more, both in terms of physical capital and

in terms of children. While ‘survival of the richest’ does indeed hold empirically, the

driving mechanism for our relationship is the ‘survival of the patient’.

Figure 7 also reports the implication of the model for the same relationship in the

year 2000 – children are still a ‘normal’ good, as in Becker (1960). Richer households

continue to have more children, but just not as many more as in the past. This is

supported by household-level evidence that identifies the relationship using exogenous

variation in income or wealth, such as Black et al. (2013), Lovenheim and Mumford

(2013), Kearney and Wilson (2018) and Bennett et al. (2020).17

significantly by the level of assets at death at this time.
17Cross-sectional and time-series evidence can find a negative correlation; see Galor and Weil

(2000), Manuelli and Seshadri (2009) and Doepke and Tertilt (2016).
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7 Extensions

In this section we consider two types of extension: First, we look at the impact of

unexpected shocks to aggregate population and the land stock. Second, we extend

our baseline set-up to consider a form of mutation, which we model as an expected

change in the discount rate in a portion of the median-type dynasty.

7.1 The consequences of pandemic, war and revolution

Jordà et al. (2020) estimates the medium-run consequences of pandemics and wars on

real rates of return, using the data in Schmelzing (2020). Our first set of extensions

thus considers whether our model is consistent with these results. We can go further

with the model, however, and also compare our results to a recent empirical study on

wealth inequality of the Black Death in Medieval Europe (Alfani and Murphy, 2017).

Pandemic We model a pandemic as an event where a constant fraction of each

dynasty (and hence the population) unexpectedly dies at the start of a period.18

The net capital holdings of the deceased households are re-distributed equally among

remaining members of the dynasty. We suppose that the disease hits in 2025 and

has a death rate of 30%. This size of shock is chosen in order to generate a large,

unexpected pandemic similar in magnitude to the medieval Black Death.

We report results in Figure 8. Panel i) shows aggregate population. Immediately

after the negative shock to population, households choose to have more children as

the returns on children increase relative to those of land. No underlying parameters

of the model change and so the long run steady state level of population is as it was

prior to the pandemic. Only around the year 2800 does the population reach close

to the same level it would have been. The effects of pandemics can, along certain

dimensions, be very long lasting. Panel ii) gives the interest rate. Since capital is

immediately more abundant relative to labour the interest rate drops in the period of

the shock. Subsequently, the interest rate is marginally higher than in the baseline,

driven by a higher population growth rate as the economy returns to its pre-shock

growth path.19 This result for interest rates is consistent with the findings in Jordà

18For computational convenience in this and the subsequent section we reduce the grid of discount
factors from I = 2000 to I = 20 dynasties. For the time period under consideration, the sparser
grid significantly reduces computational time and leaves results quantitatively nearly identical.

19Higher population growth rates result in higher interest rates since they make an investment in
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et al. (2020) who show that the immediate response of the interest rate to a typical

pandemic is a fall of the real rate, with effects lasting up to 40 years after the end of

the pandemic on average. Finally, panel iii), shows that a pandemic acts to reduce

the level of wealth inequality. The scarcity of workers after a pandemic drives up

wages for those who survive. Households that rely more on wages than rental income

to accumulate greater quantities of capital thus reducing wealth inequality. Again,

this is consistent with the work of Alfani and Murphy (2017) who finds a large decline

in economic inequality driven by a similar mechanism in much of Europe during and

after the Black Death.

War Next, we consider a counterfactual that is more akin to a large war, a shock

that results in the permanent destruction of capital (land). We model a war as the

destruction of 30% of each dynasty’s net capital holdings at the start of a period.

This experiment thus sheds light on how a heterogeneous agent economy adjusts to a

sudden decrease in the capital-labor ratio caused by a decrease in the capital stock.

The results in Figure 8 panel i) show that in this case the long-run level of population

does not recover; the long run capital to labour ratio is unchanged and, since there

is no mechanism for capital accumulation in our model, this implies that the long-

run total population must be lower. The results in panels ii)-iii), mirror the results

(with reversed intuition) from a pandemic; we see an immediate spike in interest rates

followed by lower than baseline rates driven by negative population growth, and an

increase in inequality that decays over time due to lower wages. Again, the estimates

in Jordà et al. (2020) for the impact of war on the interest rate are qualitatively

consistent with the predictions of our our model.

Revolution Finally, we consider the effects of a revolution that we model as am

unexpected uniform (re)distribution of capital across agents in the year 2025, à la

Piketty (2014). Figure 8 depicts the consequences for population, interest rates and

the Gini coefficient. By design, in the period of the shock the Gini coefficient falls to

zero. Thereafter, inequality, as measured by the Gini coefficient, is marginally higher.

Since over time capital is transferred from less patient to more patient households, the

return of capital to dynasties that had previously disposed of it shifts the economy

capital today be worth more tomorrow since capital will be relatively more scarce, given the higher
population.
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Figure 8: Pandemic, war and revolution
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Note: Figures depict the long run consequence of a one-off and unanticipated
pandemic (a loss of 30% of the total population), a war (a permanent loss of
30% of the capital stock), and a revolution (an equal redistribution of capital
across agents) in the year 2025 (dashed vertical line). In panel iii) the Revolution
treatment causes the Gini coefficient to drop to zero in 2025, before returning to
above the baseline in 2050, the next (generational) period.

back to an equilibrium similar to that in prior years. The decline in the real interest

rate is also shifted back to that in previous generations, for similar reasons: the

interest rate in the economy is, over the extended transition to the same long run

interest rate (as defined by the upper level of patience), higher than that predicted

in the baseline.

One-off redistributive policies mechanically reduce inequality during the gener-
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ation of their implementation. Thereafter, our model predicts that they result in

higher levels of inequality. Furthermore, even though these policies are only ‘one-off’

they nonetheless result in long lasting changes to the economy resulting in higher

interest rates and lower capital to labor ratio for hundreds of years.

7.2 Mutation

Our baseline model showed how natural selection favored more patient dynasties and

drove the observed fall in the interest rate. For simplicity, we abstracted from an

important part of the evolutionary process – mutation. In biology, a mutation is

“an alteration in the genetic material of a cell of a living organism that is more or

less permanent and that can be transmitted to the cell’s (...) descendants” (Griffiths,

2020). Mutation is one of the fundamental forces of evolution since it helps contribute

to the variability of traits within populations. As mutations occur, the process of

natural selection determines which of these will thrive and which will die out by

selecting the most advantageous mutations for the given environment.

In this section, we allow for the possibility that a group of agents exogenously,

unexpectedly and permanently experiences a mutation in its discount factor from

one period to the next. Our experiment can also be interpreted without reference

to genetics. Mutations can be thought of as changes in the discount factor brought

about by parental or peer influence through education or parental investment (i.e.,

different forms of imitation and socialization). They could also be interpreted as

immigration, invasion or colonization, where a small number of outsiders arrive with

different discount factors that differ from those of the existing population.20 Thus,

whilst primarily motivated by genetic mutation, this section can also be interpreted

as examining the effects of a new variant of dynasty no-matter its source.

Setup We model a mutation as an unanticipated, one-off and permanent shock

to an agent’s discount factor. Instead of attempting to match the rate at which

mutations occur in nature (something which would be difficult to calibrate) we instead

consider the consequences of different types of one-off mutations. Each mutation

20In this case, the comparison is not exact, as migration would additionally increase the size
of the population while in our mutations the population remains fixed. Since only a very small
number of agents are assumed to mutate, the results are quantitatively and qualitatively almost
indistinguishable from a migration story.
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counterfactual involves an unexpected but permanent change in discount factor for 1%

of agents belonging to the dynasty with that period’s median discount factor. These

mutants then form a new dynasty, retaining their net capital per capita from the

previous period.21 These types of mutations can be divided into two categories based

on the impact they have on an agent’s ‘fitness’ or reproductive success: deleterious

and advantageous mutations.

Deleterious Mutations First, agents from the median dynasty can mutate to

lower levels of patience. In the biological literature these types of mutations are known

as ‘deleterious’ since the mutants have lower fitness than before: agents mutating to

a lower level of patience will have fewer children over their lifetime than agents from

that same dynasty who did not mutate. The aggregate effects of these deleterious

mutations are short-lived and quantitatively small. Figure 9 reports the effect on

population, inequality and interest rates of three separate mutations of the 2025

median dynasty to three different levels of lower patience. It also shows the proportion

of mutants in the population after the shock. Notice that the mutations – even that

to the lowest patience – have very small effects on population, interest rates and

inequality. Furthermore, selective pressure works against the low-patience mutants.

Agents with lower patience will choose to have fewer children and their share will

quickly diminish in the population: the lower the mutant’s discount factor, the faster

they will disappear.

Advantageous Mutations Second, agents from the 2025 median dynasty can mu-

tate to higher levels of patience. These mutations are knows as ‘advantageous’ in the

biological literature as they increase the fitness of the dynasty: agents mutating to

this higher level of patience will have more children over their lifetime than agents

from the same dynasty who remain un-mutated. Advantageous mutations can have

large and very long-lasting effects. Figure 10 shows the effects on population, interest

rates and inequality of a mutation to successively higher discount factors as well as

21For tractability, we allow mutations only on our grid of discount factors. Thus, after mutation
there will be two dynasties with the same discount factor, but potentially different capital stocks.
The assumption that mutants take their capital with them is quantitatively unimportant – we could
otherwise assume that mutated agents are ‘shunned’ by their dynasties and start life with no capital
or that mutants are favoured children gifted with above average capital stocks. In both extremes
the quantitative results are almost indistinguishable as agents quickly adjust their capital holdings
according to their time preference.
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Figure 9: Deleterious mutations in 2025
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Note: Figures report the simulation output with an unexpected mutation in the
year 2025 (dashed line). Each line is a different mutation counterfactual. A
mutation causes 1% of the dynasty with the median level (β = 0.213) of patience
in 2025 to wake up in 2025 with the level of patience β̌ denoted in the Figure
legend.

the share of mutants in the population. Notice that a mutation to the highest level

of patience pushes the economy forward in the evolutionary process by thousands

of years. Since at the time of the mutation, so few agents are of the most patient

type, a 1% mutation of the median dynasty to the highest-patience dynasty is an

enormous shock. The economy is suddenly inhabited by a relatively large proportion

of the agents of the most patient type. These agents quickly amass all the capital

in the economy and begin to have large numbers of children which thereafter domi-

nate the population. This process would have happened without the mutation, but
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it would have lasted thousands of years more. With mutation the process lasts less

than a thousand years. Thus we shift from today’s economy to one in which the

most patient agents dominate. Population and interest rates approach the long run

steady state. In response to this shock, wealth inequality (as measured by the Gini

coefficient) first spikes to levels of nearly 3.5 then falls to practically zero. This occurs

because the mutated agents very quickly start purchasing capital from all the agents

in the economy. This results in all existing agents getting into debt and substitut-

ing children for consumption. Since the remaining lower-patience dynasties (who are

now in debt) continue to make up a relatively large part of the population, wealth

inequality rises. After about 500 years however, all but the most patient dynasty

have been out-populated. Since by then there is only one type of dynasty, wealth

inequality falls to zero.

Mutations to levels of patience that are higher-than-median but not the highest,

give rise to some especially interesting dynamics. Agents mutated in this manner can

come to dominate the population for some time (see for example Figure 10), where

mutants with discount factor 0.355 practically dominate the population for a thousand

years or so before being overtaken by dynasties with higher betas still. The effects of

these types of mutations look initially like a shift to a new steady state where mutated

agents dominate the population forever and interest rates and Gini coefficients reflect

that mutant dynasty’s domination for many generations. However, since these are

not the most patient agents in the population, their domination is not permanent

and a transition eventually takes place to agents with even higher patience. In the

case of the outcomes this results in multiple oscillation with results first ‘converging’

to an intermediate steady-state-like phase and then only slowly shifting to the true

steady state where the most patient agent dominates.

Timing and environment The above discussion points to the importance of the

pre-existing environment when it comes to the impact of mutation. The exact same

mutation can have vastly different effects on outcomes depending on when it takes

place. What may be a highly advantageous mutation in an environment where the

median dynasty is especially impatient might not be nearly as advantageous, or might

even be deleterious, in an environment where the median dynasty is very patient. To

emphasize this point, Figure 11 shows the effects of the same mutation occurring in

one of three different years. In particular, we consider the same mutation of 1% of
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Figure 10: Advantageous mutations in 2025
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year 2025 (dashed line). Each line is a different mutation counterfactual. A
mutation causes 1% of the dynasty with the median level (β = 0.213) of patience
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legend.

the dynasty with a discount factor of 0.212 (the 2025 median in the baseline) to a

discount factor of 0.327, but change the year in which it takes place to 1800, 2025

and 2200. If the mutation takes place in 1800 then mutants dominate the population

to a far larger extent and for a far longer period of time than if the mutation takes

place in 2025 or 2200. A mutation in 1800 also has a very sizeable economic impact

affecting population, inequality and interest rates for more than a thousand years.

The same mutation by 2200 however has almost no discernible effect. Thus whether

mutations are deleterious or advantageous is not predetermined but depends on the
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Figure 11: Same mutation, different periods
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Note: Figures report the simulation output with the same unexpected mutation
in the year 1800, 2025 and 2200 respectively. Each line is the same mutation
counterfactual that takes place in different years. A mutation causes 1% of the
dynasty with discount factor of β = 0.213 to wake up in either 1800, 2025 or
2200 with the level of patience β̌ = 0.327.

structure of the rest of the population and hence on the environment at the time of

mutation.22

Implications for evolution One final point that emerges from this last exercise

is that mutation in the distant past can give rise to long periods of stability, where

evolution seems to stop only for it to seemingly start up once more many hundreds of

22The only exception being a mutation to the very highest level of patience: this will always
(eventually) dominate the economy irrespective of the environment.
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years later. For example, as Figure 11 panel iv shows, the mutation in 1800 generates

a period where the population is almost entirely composed of one type of agent (the

mutant) between the years 2400 and 3600. This period of time is associated with

practically constant population and interest rates as well as zero inequality. Looking

at this sort of data might lead one to mistakenly infer that the economy is in a steady

state, and that the process of natural selection had concluded. The process however

is only paused. The mutation in 1800 results in the economy ‘leap-frogging’ the

evolutionary process and the selection process once more begins to apply to mutants

as the share of the more patient non-mutants comes to dominate thousands of years

after the initial mutation. Thus, over the course of human history, it may be quite

reasonable to expect very long periods of stability in terms of interest rates and

patience, only to be followed by a ‘gradual then sudden’ change. All one needs for

this to happen is a mutation to a particularly advantageous discount factor in the

past. These mutants then dominate the economy for long enough periods to give rise

to the illusion that evolution has halted.

8 Concluding remarks

We introduced a simple fertility model with heterogeneous preferences, calibrated

to the modern-day distribution in patience, and showed that the process of natural

selection can explain the trend in the interest rate over the last eight centuries. There

are many further implications to consider. First, in our model the population shift

toward more patient types occurs partly via trading in the fixed asset, land. This

suggests a potentially important relationship between the constraints on trade or

borrowing, the evolution in the population and the interest rate. Second, the historical

trends in growth and risk work to increase, not decrease, the real interest rate. With

a more general model and with data for the evolution in risk and growth, we may

conduct an exercise to attribute portions of the trend to different causes. Third, we

have focused on a simple form of the intergenerational transmission of preferences.

More likely than perfect transmission is some form of partial transmission, either

by genetic mutation or environmental adaptation or imitation. Moreover, we studied

heterogeneous patience levels as the only time-varying element of societal preferences.

The evidence on the heterogeneity of risk aversion, together with its intergenerational

transmission and affect on fertility, suggests that this could be an additional further
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preference heterogeneity that evolves over time alongside patience. A more general

model could account for the evolution of the distribution across patience and risk

aversion. Fourth, we have focused our model on its implications for the interest

rate but our time period encompasses the onset of the industrial revolution. The

role for the evolution of societal preferences in explaining potentially endogenous

technological progress is left for future work.

We noted in the introduction that understanding social discount rates is critical in

formulating optimal policies to address very long-term, inter-generational problems

such as those that relate to the funding of social security programmes and that ad-

dress climate change. What is clear from our analysis is that such policy should take

into account not only that the social discount rate evolves over time in a predictable

fashion, but that that path is not independent from some policy interventions. Un-

derstanding the short- and long-run relationship between the social discount rate and

policy interventions is an important avenue for future research.
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A Data Appendix

A.1 Detail on interest rate data

Schmelzing (2020) considers a number of measures of real interest rates over time,

which vary by the asset class and region. In this section we describe these measures

and supplement them with country-specific real rates of return on land based on the

work of Clark (1988). The findings all point to a centuries-long downward trend in

real interest rates – regardless of the measure used and regardless of the region under

examination.23

Safe or risk-free rate The main measure introduced by Schmelzing (2020), and

the real rate used in our paper in our Figure 1(i), is the ‘risk-free’ measure. Schmelzing

describes this as the real interest rate for the historical ‘safe asset provider’. The series

is constructed by splicing together yields of long-term, marketable, sovereign-bond

debt issued by the countries that were considered to be the safest and most reliable

in a given period of time. The series runs from 1311 to 2018, using data from Italy,

Spain, Holland, UK, Germany and the US. Importantly each of the types of debt was

traded on deep secondary markets and the series’ “central feature consists of the fact

that it remained default-free over its 707 year span” (op. cit., p.18). The nominal

rates of return are deflated using country-specific price data from Allen (2001). For

details of the assets used, the countries under consideration, the chosen splice points as

well as the justification of those countries and dates, see Table 2. Whilst arguably the

exact timing of the splice points is somewhat subjective, Schmelzing very carefully

lays out the case for the selected countries and their debt being the safest assets

available in their given time. He also shows that the return on land consistently

coincides with the safest asset.

Country specific Schmelzing extends the data used in the safe-asset calculations

to generate a 700 year long series for all countries in that exercise as well as a number

of other economically important countries. In particular he constructs rates for Italy,

UK, Holland/NL, Germany, France, United States, Spain and Japan. Data for each

country consists of long-term debt yields. For countries and time periods included

23For expositional ease, all results in the section are presented as 50-year averages of generational
rates of return.
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Table 2: Details of Schmelzing’s Global ‘Safe Rate’.
Justification for:

Period Country Type of Assets Start Date End Date

1311-
1509

Italy

Venetian Prestisi and
Genoese Luoghi. Earliest
marketable long-term
sovereign bond debt.

Earliest inflation data
available from 1311,

(Allen, 2001).

Battle of Agnadello
(1509). Venice lost “in
one day what took them

eight hundred years
exertion to conquer”,
(Machiavelli, 2003)

1510-
1598

Spain

Juros long-term debt
(de-facto sovereign debt:
sold for cash, established
seniority system, traded
in secondary market).
Cont. serviced unlike

short-term debt.

“During the 16th
century no other power
controlled ... armed
forces as powerful or
financial resources as
vast as Habsburg

Spain,”(Parker, 2000).

Philip II’s death in 1598
& Spanish decline: “The
empire on which the sun
never set had become a
target on which the sun
never set”, (Parker,

2000).

1599-
1702

Holland
Long term bond debts

(Renten and obligations)
issued by Dutch province

“Financial capital of the
world,”

(Marjolein T’Hart and
van Zanden, eds, 1997)

Transition of financial
markets from

Amsterdam to London

1703-
1907

UK British consol yields

Britain Europe’s “most
vibrant” economy,
(Broadberry and
Fouquet, 2015)

Germany overtakes UK
in GDP

1908-
1913

Germany
German Imperial 3%

benchmark
Strongest growth

trajectory
World War 1

1914-
1918

UK British consol yields
UK regains GDP

primacy
Cost of War, lower GDP

1919-
1961

US 10-year treasury bonds
US GDP pc permanently

surpasses UK
Great Inflation in US

1962-
1980

Germany
10-year government

bonds

Revaluation of D-mark,
rise of eurodollar market
& low inflation rates.

Paul Volcker’s successful
’war on inflation’

1981-
2018

US 10-year treasury bonds
Largest GDP, low

inflation
-
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in the global ‘safe’ series, the debt instruments remain the same and consist of the

sovereign debt discussed above. For countries and/or periods not covered in the ’safe’

series, observations are arithmetically weighted on the country-level across data points

of long-term consolidated debt (such as debt issued by municipalities or mortgage-like

pledge loans) and sovereign personal loans (like loans to the British Crown or French

Revolutionary war loans to the United States) until marketable, national bond data

becomes available. The nominal rates of return are deflated using country-specific

price data from Allen (2001). As can be seen in the first panels graphs of Figure 12i.,

the real rates of return are declining in each country under consideration.

Global Schmelzing then constructs a global interest rate series by weighting the

country-specific data above using GDP shares derived from The Maddison Project

(2013). The GDP share of the eight countries under consideration are on average

80.1%, and for the past 600 years they have never fallen below 52%. As can be

seen in the last panel (WLD) of Figure 12i., the global real rate of return is steadily

declining over the entire period.

‘Personal’ or ‘Sovereign’ non-marketable loans Schmelzing also examines the

extent to which the non-marketability of loans can account for the decline of interest

rates presented above by examining personal loans to sovereigns (including “pledge

loans” and loans from municipalities to the central authorities). These types of loans

were very common, outside “of the urban financial centers of Northern and Central

Europe in late medieval and early modern times, prior to the consolidation of debt

on the national level, (...) especially in war episodes and in the context of weak

central bureaucracies, (...) until well into the 17th century (...). Such non-marketable

sovereign loans have gone out of fashion over the past two centuries.” (op. cit., p.9).

As Schmelzing notes, “A ‘benchmark’ non-marketable instrument today is represented

by U.S. savings bonds, which are non-transferable, long-term, and redeemable after

12 months.” (p.11) Since there was considerably more scope to distort market prices

of capital in these circumstances, it is interesting to see if the rate of decline in these

types of loans is any larger than in the safe-series or in the global-series. The analysis

focuses on 454 non-marketable sovereign loans but excludes ‘all intra-governmental

loans, loans featuring in-kind payments, forced loans and those which are de facto

expropriations’. The prices are adjusted for inflation using arithmetically weighted
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i. Rates of Return on long-term debt.

ii. Rates of return on personal/non-marketable loans to sovereigns and private debt.

iii. Rates of return on land (Flanders/Netherlands, Italy) and
rent charges (France, Germany).

Figure 12: Country specific real rates of return on long-term debt and land. Dashed line
show regression trends.
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inflation rates from Allen (2001). The results are shown in the first panel of Figure

12ii.; here too we observe falling interest rates. Importantly the rate of decline of

interest rates is very similar to other measures of interest rates.

Private, ‘non-sovereign’ rates Schmelzing also examines non-sovereign (private)

real interest rates. In particular, he constructs a consistent series from the private,

secured mortgage market over last 700 years within “Carolignian Europe” – mostly

Germany, Switzerland, some parts of France and Holland. These debts “all involve

the debtor as a private party who pays the recorded interest rate, which is tied to

the value of a real estate asset itself, or where the collateral involved consists of

a real estate asset. The creditor counterparties involve abbeys, municipalities, or

other private individuals.” (op. cit., p.25). Contract length is often not specified

but is for at least for ‘one life’-time, thus this is certainly long-term private debt.

The instruments involved historically are Leibrenten or Erbleihen which changed into

Pfandbriefe in the 19th century and still exist today. Inflation data once more comes

from Allen (2001). The result is shown in the second panel of Figure 12ii. and also

demonstrates a steady decline over time.

Land Using data for nominal returns to farmland and rent-charges reported in

Clark (1988) as well as inflation data from Schmelzing, we construct real interest

rates on land for various countries. In particular, the first five panels of Figure 12iii.

show the real rates of return on land – arguable the ‘safest asset’ – for 5 countries

(Italy, U.K., Flanders, France and Germany).24 In addition, Schmelzing constructs

a real interest rate on land using similar sources, specifically Ward (1960, cited in

Schmelzing), Featherstone and Baker (1987), and Clark (1988, 2010), for the ‘G-5’

countries (Italy, U.K., Flanders, France, U.S.). We report the GDP-weighted average

in the last panel of Figure 12iii.. The high interest rates in 13th century England that

can be seen shown in Figure 1ii. are echoed across northern Europe with surprisingly

close agreement and the declining pattern of real interest rates on land is a feature

in every country in which long-term data is available.

In addition to data for the last eight centuries, there is also evidence of an even

24The GBR series is constructed using the same nominal interest rate data as in Figure 1. Notice
also that the real rates data for the Netherlands (i.e. NLD) is constructed using nominal interest
rates from Flanders and inflation from Amsterdam - whilst not ideal this is the best we can do due
to a lack of other data.
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longer-run trend from ancient data, as shown in Table A.1.

Period Place Rate (%) Note
3000-1900 BC Sumer 20–25 Rate of interest on silvera

c.2500 BC Mesopotamia ≥20 Smallest fractional unitb

1900–732 BC Babylonia 10–25 Return on loans of silvera

C6th BC Babylonia 16–20 Interest on loansa

C5th-2nd BC Greece ≥10 Smallest fractional unitb

C2nd BC on Rome ≥81
3

Smallest fractional unitb

C1st-3rd AD Egypt 9–12 Land return, interest on loansa

C1st-9th AD India 15-30 Interest on loansa

C10th AD South India 15 Yield on temple endowmentsa

1200 AD England 10 Return on land, rent chargesa

1200–1349 AD Flanders, France,
Germany, Italy

10–11 Return on land, rent chargesa

C15th AD Various Euro-
pean

9.43 Risk-free rental ratec

C16th AD Ottoman Empire 10–20 Interest on loansa

C19th AD Various Euro-
pean

3.43 Risk-free rental ratec

2000 AD England 4–5 Return on land, rent chargesa

2000–17 AD Various Euro-
pean

1.24 Return on land, rent chargesc

Notes: aCalculated or referenced in Clark (2007b). bHudson (2000).
cSchmelzing (2020).

A.2 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal dataset which has, since

1984, collected information by interview on around 30,000 unique individuals in nearly

11,000 households (see Wagner et al., 2007). Among the data collected is household

net income, marital status and age. Of particular use to this paper is a question

asking for ‘general personal patience’ on a scale of 0-10 (where 0 is very impatient

and 10 is very patient). This question was asked in 2008 and 2013. We use SOEP-

Core version 33.1 which includes data up to 2016. Since there is some variability in

self-reported patience of individuals between 2008 and 2013, we use the 2008 measure

of patience since it has been validated using experimental methods (Vischer et al.,
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2013). We then focus on the number of unique children in each household at 2008

plus the number of additional household children up to 2013.

To construct our sample, we merge 2008 and 2013 using the ‘never changing person

ID’. We calculate the total number of children of each household as the number present

at 2008 plus any additional children at 2013. We drop those 41 observations where

patience is not observed in 2008 as well as the resident relatives and non-relatives.

Our sample of 17,452 individuals thus leaves only the head of the household and their

partner. The average number of children in each household is 0.71 (with a standard

deviation of 1.00); the average number in a household that has at least one child is

1.71 (s.d. 0.84). The average patience level is 6.1 (s.d. 2.28).

Equation (17) gives the equilibrium relationship between dynasty population dy-

namics, the dynasty-specific discount rate and the gross real interest rate on children

(which is common across dynasties). Since N i
t+1 = N i

tn
i
t, we can re-write (17) in terms

of the number of children each household has as simple ni
t = βiR̃t+1. Motivated by

this simple relationship, we estimate the following specification,

childreni,2013 = β0 + β1patiencei,2008 +X′
iβ + εi (33)

where childreni,2013 is the unique number of children of person i over the period 2008–

13, patiencei,2008 is the self-reported patience in 2008, and X is a vector of control

variables including age, log of net income, as well as dummy variables for gender and

marital status.

Table 3 column 1 reports our most parsimonious regression specification, where

we restrict the sample to those of child-rearing age (18-40). We can see a statistically

strong positive correlation between the patience of an individual and the number

of children they have. Columns 2 to 4 include observations of all ages. Column

2 includes a control for age, column 3 adds the log of net income and column 4

adds dummy variables for whether an observation is male, head of the household,

married, widowed, divorced or separated. Our preferred specification, in Column 5,

reports results with all controls for only those observations aged 18-40. In each of

these specifications, the coefficient on patience is statistically significant and of the

expected sign. Table 4 reports the results from an alternative approach to age, where

we use dummy variables for age brackets instead of including age as a linear variable.
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Table 3: Patience and Children

(1) (2) (3) (4) (5)
VARIABLES totalChildren totalChildren totalChildren totalChildren totalChildren

HHpatience 0.027** 0.013*** 0.017*** 0.012*** 0.022***
(0.010) (0.004) (0.004) (0.004) (0.009)

HHage -0.024*** -0.021*** -0.030*** 0.017***
(0.001) (0.001) (0.001) (0.005)

lincome 0.414*** 0.274*** 0.175***
(0.016) (0.017) (0.035)

Observations 4,341 17,224 17,222 17,222 4,340
R2 0.004 0.176 0.256 0.336 0.312
Controls no no no yes yes
Ages 18-40 All All All 18-40

*** p<0.01, ** p<0.05, * p<0.1
Note: Robust standard errors in parentheses. Standard errors are clustered at the
household level. Observations are weighted according to SOEP individual person
weights. lincome is the log of household post-government income. Controls are
dummy variables for whether an observation is male, the household head, mar-
ried, widowed, divorced or separated.
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Table 4: Patience and Children: Age bins
(1) (2) (3)

VARIABLES totalChildren totalChildren totalChildren

HHpatience 0.010** 0.016*** 0.014***
(0.004) (0.004) (0.004)

mediumyoung 0.573*** 0.272*** 0.146***
(0.061) (0.062) (0.056)

mediumold 0.884*** 0.471*** 0.199***
(0.057) (0.060) (0.058)

old -0.056 -0.362*** -0.729***
(0.050) (0.052) (0.055)

lincome 0.420*** 0.312***
(0.017) (0.017)

Observations 17,224 17,222 17,222
R2 0.181 0.259 0.317
Controls yes yes yes

*** p<0.01, ** p<0.05, * p<0.1
Note: Robust standard errors in parentheses. Standard errors are clustered at the
household level. Observations are weighted according to SOEP individual person
weights. lincome is the log of household post-government income. mediumyoung
is a dummy equal to 1 if 25 < HHage <= 35; mediumold is a dummy equal
to 1 if 35 < HHage <= 45; and, mediumyoung is a dummy equal to 1 if
45 < HHage. Controls are dummy variables for whether an observation is
male, the household head, married, widowed, divorced or separated.
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A.3 Steady state consumption share

Data on final consumption expenditures in US dollars (NE.CON.TOTL.CD) and

GDP at market prices in US dollars (NY.GDP.MKTP.CD) comes from the World

Development Indicators. To match the scss term in the main body of the text, we

proceed as follows. We first calculate the ratio of global consumption to global GDP

in every year and then calculate the average of world consumption shares for the years

2000-2018 which comes to 75%.

A.4 Calibrating the beta distribution

The annualized variance of generational discount factors We proceed in two

steps to calculate a global variance for individual discount rates. A natural source

would be the Global Preference Survey described in Falk et al. (2018). This cannot be

used directly, however, as its data is normalized (each preference variable has a zero

global mean and unit standard deviation). The GPS data is also based on responses

to survey questions that are each focused on distinct preference characteristics. This

is problematic given the evidence in Andersen et al. and other work that the joint-

elicitation of time and risk preferences matters for measures of patience. Andersen et

al. (2008) report the standard error of their estimate for the discount rate, r. Since

β = 1
1+r

in equilibrium, we need to express var
(

1
1+r

)
as a function of the mean E(r)

and variance var(r). We use a first-order Taylor expansion of the second moment of

the transformed variable to find var
(

1
1+r

)
= 1

(1+E(r))4
vart(r). Thus we use the time

preference evidence in Andersen et al. to ‘de-normalize’ the Falk et al. data by fixing

the GPS variation across individuals in Denmark to that found in the experiments.

We then obtain a measure of the global variation across individuals, having taken

account of region-specific fixed effects. We find the mean standard deviation across

countries is 0.005.

The long run interest rate To find data on the long run interest rates we use

the Credit Suisse Global Investment Returns Yearbook (Elroy Dimson and Staunton,

2002). This publication provides cumulative real returns from 1900 to 2015 for eq-

uities, bonds and treasury bills for 23 major economies that cover 98% of the world

equity market in 1900 and 92% at the end of 2015. Furthermore, the yearbook pro-

vides an “all-country world equity index denominated in a common currency, in which
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Table 5: Annual Rates of Return, un-weighted.
Asset N Mean Median Std p90/p10
Equities 2520 0.064 0.056 0.206 0.464
Bonds 2520 0.009 0.006 0.125 0.169
Treasuries 2520 0.016 0.012 0.129 0.248

each of the 23 countries is weighted by its starting-year equity market capitalization.

(It) also compute(s) a similar world bond (and treasury) index, weighted by GDP.”

For each country (c), year (t) and asset class (s), we are given a cumulative real

return, Rs
c,t. We then use this to calculate both the annual rate of return (rsc,t) and

the annualized 25-year generational rate of return (r̄sc,t) as:

rsc,t+1 =

(
Rs

c,t+1

Rs
c,t

)
− 1, (34)

and

r̄sc,t+25 =

(
Rs

c,t+25

Rs
c,t

) 1
25

− 1. (35)

Tables 5 and 6 show summary statistics for both the annualized and generational rates

of return. Notice that as usual returns are highest for equities. For annual data, it is

also true that the variation in returns is much higher in equities than in either bonds or

treasuries. Generational return on equities however (these are the annualized rates of

return from making and holding an investment for 25 years) still offer higher average

rates of return than bonds or treasuries, but are no longer as volatile - the variation

in generational equity returns is either smaller or indistinguishable from variation in

returns on treasuries or bonds. This motivates why we choose to calibrate our model

to average, generational returns on equities - dynastic planners have a long time

horizon and rates of returns of equities over this horizon are higher than of bonds or

treasuries - and their variation is no higher.

The rate of return used in the calibration of the main body of the paper is obtained

as follows. We calculate the (weighted) generational rate of returns of the world

equity index, r̄sW,t, in every year and then find the average of the implied rates of

return between 1975 and 2015 which is equal to annualized 6.3%.
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Table 6: Generational Rates of Return (Annualized), un-weighted.
Asset N Mean Median Std p90/p10
Equities 1930 0.049 0.051 0.038 0.094
Bonds 1930 0.001 0.011 0.043 0.092
Treasuries 1930 0.004 0.010 0.054 0.119
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B Equation (1): derivation and discussion

In the main text we posited an expression for the real interest rate as a function of

growth and the discount rate:

rt = gt − ln β.

In more general terms, the real interest rate on an asset L takes the form,

r̃Lt = γgt −
γ2

2
σ2
t − ln β + γdL,t. (36)

where γ is the relative risk aversion coefficient, σ2 is the variance of consumption

growth, dL,t is related to the covariance between the consumption growth and the

return on asset L. While this is a standard expression, below we present its derivation

for completeness. We also discuss the evidence on these other parameters and the

role they play in driving declining interest rates.

B.1 Derivation

Consider a household that maximizes the present value of a flow utility by choice of

a portfolio of assets comprised of the risky asset, L and risk-free bonds, B,

max
Lt,Bt

Et

∞∑
t=0

βtU (Ct) (37)

subject to,

Lt+1 +Bt+1 = RL
t Lt +Rf

tBt +Wt − Ct (38)

where RL
t and Rf

t are gross returns on risky assets and bonds, respectively, and where

Wt is an income endowment each period. Rf
t is known at period t − 1; only the

probability distribution of RL
t is known at period t− 1.

Optimal portfolio choices satisfy,

Rf
t+1Et

βU ′(Ct+1)

U ′(Ct)
= 1, (39)

EtR
L
t+1

βU ′(Ct+1)

U ′(Ct)
= 1. (40)

To obtain an expression in certainty-equivalent form, we make two assumptions.
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First, we impose CRRA utility of the form,

U(Ct) =
1

1− γ
C1−γ

t , (41)

and so the optimal portfolio satisfies,

Rf
t+1Etβ

(
Ct+1

Ct

)−γ

= 1, (42)

EtR
L
t+1β

(
Ct+1

Ct

)−γ

= 1. (43)

Second, let rLt+1 = lnRL
t+1 and gt+1 = ln(Ct+1)− ln(Ct) and assume that these are

jointly Normally distributed,[
gt+1

rLt+1

]
∼ N

([
ḡt+1

r̄Lt+1

]
,

[
σ2
g,t, σ

2
g,L,t

σ2
g,L,t, σ

2
L,t

])
. (44)

where x̄t is the mean of x, σ2
x,t is the variance of x, and σ2

x,y,t is the covariance of x

and y at time t.

Given these assumptions, we can re-write the first order conditions as,

β exp

{
rft+1 − γḡt+1 +

1

2
vart (−γgt+1)

}
= 1 (45)

β exp

{
r̄Lt+1 − γḡt+1 +

1

2
vart

(
rLt+1 − γgt+1

)}
= 1. (46)

Note that from (45) we have the following expression for the real rate,

rft = γgt −
γ2

2
σ2
g,t − ln β. (47)

where with log utility (γ → 1) and no consumption growth variance (σ2
g,t = 0), we

have the expression for the real rate given above as equation (1).

The two first order conditions together give a relationship between the risk-free

rate and the return on L,

r̄Lt+1 +
1

2
σ2
L,t+1 = rft+1 + γσ2

g,L,t+1 (48)
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Note that r̄Lt+1 = Etr
L
t+1 and, since rLt is Normally distributed, we can write

lnEtR
L
t+1 = r̄Lt+1 +

1
2
σ2
L and so,

lnEt−1R
L
t = rft + γσ2

g,L,t (49)

which, with r̃Lt = lnEt−1R
L
t and dL,t = σ2

g,L,t, is the expression given in equation (36).

B.2 Discussion

As we discussed in the paper, the historical record for per capita growth and life

expectancy are unable to explain the fall in rates over time. Equation (36) suggests

a number of additional potential channels.

Variance of consumption growth If the variance of consumption growth (σ2
g,t)

increased over time, this could explain a fall in real rates. However, shocks to con-

sumption, assets and production have either remained stable or declined over time.

Climate variability has been relatively constant over the last millennium, at least up

until the 20th century (Salinger, 2005). Levels of violence and warfare have system-

atically declined (Pinker, 2012). Moreover, the emergence of sophisticated insurance

markets have improved the resilience of agents to shocks (Bernstein, 1998). Each of

these changes lead to lower, not higher, variance in consumption growth. Broadberry

and Wallis (2017) provides direct evidence of the consequence. Using cross-country

data for the later 19th century, and long-run historical data for a number of Euro-

pean countries, Broadberry and Wallis shows that sustained increases in growth are

the result of fewer episodes of negative growth, rather than more episodes of positive

growth.

Risk aversion Note that the relationship between relative risk aversion (γ) and

the risk-free rate depends, by (36), on the sign of (ḡt − γσ2). Maddison (2013) data

suggests that the country-level average annual variance in per capita incomes since

1800 are at least one order of magnitude less than the average level of annual growth.

So a fall in risk aversion may explain a portion of the decline in rates. In the same

way as the level of patience is not normally time-varying, the deep risk aversion

parameters are usually considered fixed over time. There is evidence that risk aversion

is intergenerationally transmitted, but the direction of the effect on fertility is not
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clear and so there is no clear route in the manner of a Barro-Becker fertility model

of the sort introduced in the paper. However, we can see the required direction of

any potential societal shift: the evidence on risk aversion is that it has, if anything,

emerged and grown over time as an evolutionary adaptation (Robson, 1996; Levy,

2015). This would make the decline in the real interest rate harder to explain.

Declining Risk We might see a decline in interest rates if our data are historical

returns on assets that become steadily closer to being risk-free over time. This would

manifest itself through a decline in dt and hence falling interest rates.25 There are a

number of reasons for thinking this is not the case, however. First, a key contribution

of Schmelzing (2020) is in constructing a dataset of the global risk-w rate by careful

study of financial history, taking into account the shifts in stable global financial

systems. Thus the series is constructed from the rates of returns on sovereign debt

in 14th century Genoa, 18th century UK and 20th century US. Clark (2010), in

contrast, uses data for one country and calculates returns on the safest assets within

a single country. Second, Clark (2010) makes the case for England that the risk of

expropriation of land was very stable in the long run and did not change significantly

over this period. For Clark (p.44), “The medieval land market offered investors a

practically guaranteed ... real rate of return with almost no risk.”

C Model derivations

C.1 Steady State

Denoting steady state values as Nss, etc. we have:

N I
ss = Nss and N i

ss = 0 ∀i < I (50)

KI
ss = Kss = K̄ and Ki

ss = 0 ∀i < I (51)

25Importantly a falling dt is not caused by declining idiosyncratic risk. When we speak of the
declining risk of an asset we are not referring to returns becoming less volatile over time, but rather
returns on the risky asset become less (positively) correlated with consumption growth. Risk that is
uncorrelated with consumption growth rates will generate no premium on returns - and changes in
this type of risk will not result in changes in the interest rate. So, for example, if the probability of
expropriation of an asset declines over time - this would not be reflected in declining interest rates.
Instead, we would need to observe a decline in expropriation probability in ‘bad’ times i.e. when a
negative shock hits consumption growth.
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CI
ss = Css and Ci

ss = 0 ∀i < I. (52)

Using the above with the first order conditions and budget constraints (7)-(9), along

with the firm’s first order conditions (10) and (11), it follows that the steady state is

characterized by:

Nss =

(
D(1− α− βI + αβI(1− ν))

(1− π(1− α))(1− βI)

) 1
ν

K̄ (53)

Css = (DK̄νN−ν
ss + π − 1)Nss (54)

Yss = DK̄νN1−ν
ss (55)

pss = ν
βI

1− βI
DK̄ν−1N1−ν

ss (56)

wss = (1− ν)DK̄νN−ν
ss (57)

rss = νDK̄ν−1N1−ν
ss . (58)

Note that the above steady state is identical to the steady state which would arise in

an economy populated by only one dynasty with discount factor βI .

C.2 Model solution

The following expands on elements of the model solution, as described in Sections

3-4.

Household Problem We can re-write the household consumer maximization prob-

lem (4) by substituting out for N i
c,t and X i

t so that the problem for each dynasty i

becomes:

max
Ci

t ,K
i
t+1,N

i
t+1

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(59)

Ci
t +N i

t+1 + ptK
i
t+1 ≤ (wt + π)N i

t + (rt + pt)K
i
t . (60)

The first order conditions for this problem are given by:

λi
t =

α(βi)t

Ci
t

, (61)
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(1− α− βi)(βi)t

N i
t+1

+ (π + wt+1)λ
i
t+1 = λi

t (62)

ptλ
i
t = (pt+1 + rt+1)λ

i
t+1, (63)

where, λi
t is the Lagrange multiplier on the constraint (60). Now, substituting out for

λi
t in the last two FOCs using the first FOC, we obtain:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

(64)

and
Ci

t+1

Ci
t

= βipt+1 + rt+1

pt
. (65)

The above hold for all t ≥ 0 and for all i. Defining Rt+1 ≡ pt+1+rt+1

pt
we obtain

equation (16) in the main text.

Firm Problem From the firm’s problem in (5) we obtain the following first order

conditions for all t ≥ 0:

wt = (1− α)DKα
t N

−α
t (66)

and

rt = αDKα−1
t N1−α

t . (67)

Population Euler Equation To derive equation (17) we proceed as follows. We

re-write FOC (7) as

N i
t+1 =

(1− α− βi)

α
(

Ci
t+1

Ci
t

− πβi − βiwt+1

)Ci
t+1,

and use the Euler Equation, (65), to substitute out for
Ci

t+1

Ci
t

to obtain and expression

for N i
t+1:

N i
t+1 =

(1− α− βi)

αβi (Rt+1 − π − wt+1)
Ci

t+1.
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Bringing the above equation forward one period in time we obtain:

N i
t+2 =

(1− α− βi)

αβi (Rt+2 − π − wt+2)
Ci

t+2.

Taking the ratio of these two equations and substituting for
Ci

t+2

Ci
t+1

from the Euler

equation, (65), we obtain:
N i

t+2

N i
t+1

= βiR̃t+2, (68)

where in the above R̃t+2 ≡ Rt+2
Rt+1−(wt+1+π)
Rt+2−(wt+2+π)

. The above equation holds for all t ≥ 0.

We can also re-write it as:
N i

t+1

N i
t

= βiR̃t+1, (69)

where in the above R̃t+1 ≡ Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π)
, as long as t ≥ 1. This is equation (17)

in the main text.

Initial Population and Consumption To obtain equation (25) in the main text,

we plug in equation (19) into (7).

(1− α− βi)
(βi)tN i

1∑I
j=1(β

j)tNj
1

Nt+1

+ (π + wt+1)
αβi

(βi)t+1Ci
0∑I

j=1(β
j)t+1Cj

0

Ct+1

=
α

(βi)tCi
0∑I

j=1(β
j)tCj

0

Ct

, (70)

Simplifying and re-writing this expression relative to the highest discount factor

among agents results in:

(1− α− βi)
N i

1∑I
j=1(

βj

βI
)tNj

1

Nt+1

+ (π + wt+1)
α

Ci
0

βI
∑I

j=1(
βj

βI
)t+1Cj

0

Ct+1

=
α

Ci
0∑I

j=1(
βj

βI
)tCj

0

Ct

, (71)

Now as t → ∞ the above equation becomes:

(1− α− βi)
N i

1

NI
1
Nss

+ (π + wss)
α

Ci
0

βICI
0
Css

=
α

Ci
0

CI
0
Css

. (72)

Then, substituting from the solutions of the steady state shown in equations (53)-(58)

into the above, for each i < I we can then show that:

Ci
0

CI
0

=
N i

1

N I
1

1− α− βI

1− α− βi
. (73)
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Relating Dynasty to Aggregate Measures To obtain equation (20) in the text,

simply substitute (73) into (19).

D Surviving children and bequests

In Section 6.1 we compare the model to the testamentary data in Clark (2007a). In

order for us to do this, this appendix calculates the expected number of surviving

children and the expected value of bequest to those children at parents’ expected

time of death in the model. For each adult, there is a probability (1 − π) of death

each period. Each child born to that adult more than one period ago has the same

periodic probability of death. We call an agent who becomes a parent in period t

(i.e., that was born in period t− 1), a t-parent. For each t-parent in each dynasty i,

the expected number of children surviving at the point of his death is,

E
[
si(t)

]
≡

∞∑
j=1

p(t, j)si(t, j), (74)

where p(t, j) is the probability of a t-parent dying j periods later and si(t, j) is the

expected number of children of a t-parent that survive to that point of death. For

j ≥ 1, we have,

p(t, j) ≡ πj−1(1− π). (75)

The t-parent had a sequence of children in each period from t to t+ j, each of which

children, after one period, has a probability of survival to t + j. I.e., if a t-parent

survives for two periods (j = 2), he has had ni
c,t children in period t and ni

c,t+1 in

period t+ 1. The children born in t, survive to t+ 2 with probability π; the children

born in period t+ 1 survive to t+ 2 with probability 1. For each j ≥ 1, we have the

expected number of surviving children of a t-parent,

si(t, j) ≡
j−1∑
k=0

πkni
c,t+j−(k+1), (76)

where ni
c,t+j−(k+1) is the number of children born k + 1 periods before t+ j.

Given the above we can calculate the expected number of surviving children of a
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parent born in time t, si(t), at their expected time of death:

E
[
si(t)

]
=

1

1 + π

∞∑
m=0

πmni
c,t+m. (77)

Note that if ni
c,t+m were constant over time, ni

c,t+m = n̄i
c for all m > 0, then the this

equation reduces to

E
[
si(t)

]
=

1

1− π2
n̄i
c. (78)

We can also calculate the total bequests of a t-parent, bi(t), at their expected time

of death (and only at that time):

E
[
bi(t)

]
= (1− π)

∞∑
m=0

πmki
t+m+1n

i
t+m+1. (79)

Total bequests of t-parent at time t+ j (and only at that time), for j ≥ 1:

bi(t, j) ≡ ni
t+jk

i
t+j (80)

E Asymptotic results

E.1 Proof of Theorem 1

In the baseline calibration of the model we assumed a discrete number of types of

agents. In this section, we consider what happens when the number of types of agents

approaches infinity, in order to prove Theorem 1.

Theorem 1. If I → ∞ and dynastic discount factors are distributed according

to a scaled beta distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period

t̄, then dynastic discount factors will also be distributed according to a scaled beta

distribution in period t̄+1 on (0, β̄) with shape parameters γt̄+1 = γt̄+1 and δt̄+1 = δt̄.

Proof. Suppose that there are n dynasties with discount factors, βi, distributed evenly

along a grid so that β(i;n) = 2i−1
2n

for i = 1, · · · , n. Notice that the distance between
any two points is simply: ∆(n) ≡ β(i + 1;n) − β(i;n) = 1

n
. We define the following

function: νt(β(i;n)) ≡ N i
t

Nt , which maps the discount factor of a particular dynasty to

the fraction of the total population of that dynasty i at time t. Notice, that we can

think of this function as a probability mass function of a discrete random variable
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with realization, β(i;n), on the domain {2i−1
2n

|i = 1, · · · , n}. We wish to characterize

the evolution of the asymptotic function, νt(β(i;n))
∆(n)

, over time as n → ∞ - that is as

the number of dynasties or types becomes infinite. The idea here is that although

our model will be solved numerically, and thus, we will always need to construct a

grid and hence choose a finite number of types, we wish to emphasize that the choice

of the size of the grid will be less and less relevant as long as it is relatively large.

Furthermore, later we will wish to calibrate the model at a particular point in time,

and hence it will be useful to show that a form of stability for the distribution function

of types exists over time. This is easier to do in a continuous setting than a discrete

case.

For each agent i, we can re-write equation (17) as:

N i
t+1 = βiR̃t+1N

i
t . (81)

Summing these expressions over all agents, we obtain the following, Nt+1 = βiR̃t+1

∑n
j=1 β

jN j
t ,

which can also be written as:

Nt+1 = βiR̃t+1Nt+1

n∑
j=1

βjνn
t (β

j). (82)

Dividing equation (81) by equation (82) we obtain:

νn
t+1(β

i) =
βiνn

t (β
i)∑n

j=1 β
jνn

t (β
j)
. (83)

This recursive formulation defines the evolution of the probability mass function over

time. We are interested in the properties of this function as n → ∞. To aid us in

this investigation, notice that the cumulative distribution function of βi at time t for

a grid of size n is:

F n
t (β

i) ≡
∑i

j=1 β
jνn

t (β
j)∑n

j=1 β
jνn

t (β
j)
. (84)

This also means that:

νn
t (β

i) = F n
t (β

i+1)− F n
t (β

i) = P n
t (β

i ≤ β ≤ βi+1). (85)
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Given the above, notice that (83) can be re-written as:

νn
t+1(β

i)

∆i(n)
=

βi ν
n
t (β

i)

∆i(n)∑n
j=1 β

jP n
t (β

j ≤ β ≤ βj+1)
. (86)

Taking the limit of both sides of the above as n → ∞ we obtain the following

expression:

ft+1(β) =
βft(β)

Et(β)
, (87)

where ft is the continuous probability density function corresponding to the discrete

mass function νn
t
26 and Et(β) ≡

∫ 1

0
uft(u)du = limn→∞

∑n
j=1 β

jP n
t (β

j ≤ β ≤ βj+1),

is simply the mean of the corresponding continuous random variable. Notice that

the above functional equation describes the evolution of the distribution of the limit

function over time. It is easy to show that a time invariant solution f(β) of the above

does not exist (see appendix). Instead, we are interested in a solution that takes

the following form ft(β) ≡ f(β;θt), where θt is a vector of potentially time varying

parameters of the distribution f . In other words, we are looking for a solution to the

above that remains of a fixed type, with only its parameters changing.

Below, we show that one solution to the above functional equation is the scaled

beta distribution defined on (0, β̄) with cumulative distribution function, F (·) given
in the main body of the text in equation (28). The corresponding probability density

function of this distribution f is given by:

ft(β;θt) ≡ f(β; γt, δt) =
(β̄ − β)δt−1βγt−1

β̄δt+γt−1B(γt, δt)
, (88)

where B(γt, δt) is the beta function. The mean of this distribution is given by:

E(β; γt, δt) = β̄
γt

γt + δt
. (89)

26To see this, notice that limn→∞
νt(β(i;n))

∆(n) = limn→∞
Ft(β(i+1;n))−Ft(β(i;n))

β(i+1;n)−β(i;n) =

limn→∞
Ft(β(i;n)+∆(n))−Ft(β(i;n))

∆(n) = F ′
t (β(i;n))
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Using equations (87)-(89), we can write the pdf of discount factors at time t+ 1 as:

ft+1(β; γt, δt) =
β(β̄ − β)δt−1βγt−1

β̄ γt
γt+δt

β̄δt+γt−1B(γt, δt)
(90)

=
(β̄ − β)δt−1βγt

γt
γt+δt

β̄δt+γtB(γt, δt)

=
(β̄ − β)δt−1βγt

β̄δt+γtB(γt + 1, δt)

= f(β; γt+1, δt+1)

where, γt+1 = 1 + γt and δt+1 = δt ≡ δ. The second equality follows from a beta

function identity that B(1 + x, y) = x
x+y

B(x, y). Thus, one solution to the functional

equation (87) is the beta distribution with parameters given by γt+1 = 1 + γt and

δt ≡ δ.

E.2 Asymptotic expression for the rate of interest

In the model, the mean discount factor influences the interest rate. Recall that

Rt+1 =
Ci

t+1/C
i
t

βi
=

(
κI
t+1(β

i)/∆(I)

κI
t (β

i)/∆(I)

)
Ct+1

Ct

βi
(91)

where κI
t (β

i) ≡ Ci
t/Ct. Note also that we can write:

κI
t (β

i)

∆(I)
=

βi

1−α−βi

νIt (β
i)

∆(I)∑I
j=1

βj

1−α−βj νI
t (β

j)
. (92)

Taking the limit of both sides of the above as I → ∞ we obtain the following expres-

sion:

fct(β) =

β
1−α−β

ft(β)

Et(
β

1−α−β
)
, (93)

where ft and fct are the continuous probability density function corresponding to

the discrete mass functions νI
t and κI

t . Note also that using the relationship derived
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between ft+1(β) and ft(β) in the Appendix we have the following expression:

fct+1(β)

fct(β)
= β

Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) (94)

Taking the limit of both sides of (91) as I → ∞ we obtain:

Rt+1 =
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

)Ct+1

Ct

. (95)

Note that over time the growth rate of aggregate consumption converges to 1. In

particular for high enough t the approximation Ct+1

Ct
≈ 1 holds. Consequently, we

can write the following expression for mean generational gross interest rates for high

enough t:

Rt+1 ≈
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) . (96)

If we assume that the discount factors follow a beta distribution, then for high enough

t we can write the annualized gross interest rate as:

R
1
25
t+1 ≈

(
γt + δt

β̄(1 + γt)

) 1
25

. (97)
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