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Abstract

This paper explores formal statistical procedures that allow us to quantify low-frequency

comovement amongst a range of paleoclimate times series. Our first contribution is method-

ological: we extend the long-run covariability approach of Müller and Watson (2018) to higher

dimensional settings by means of a first-pass partialling out of exogenous sources of variation.

Our second contribution is empirical: we provide new estimates for the long-run relationship

between temperatures and CO2, concluding that in the long-run a 100 ppm increase in CO2

levels would raise temperatures around 1◦C. Finally, we illustrate how joint modelling of

this set of paleoclimate time series can be carried out by factor analysis and how long-term

projections about temperature increases and ice-sheet retreat can be constructed.

Keywords: Paleoclimate data; Glaciar cycles; Equilibrium climate sensitivity; Low frequency

analysis.
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1 Introduction

The analysis of paleoclimate data has played an important role in informing the debate around

the causes of climate change. While Milankovitch cycles provide a useful baseline to understand

the long term drivers of Earth’s climate, the complex dynamics of glacial/interglacial cycles, with

persistent and non-negligible deviations from ‘Milankovitch-induced’ equilibria, present challenges

for the study of the long-run features of climate data. Indeed, understanding the long-run rela-

tionship between temperatures and CO2 levels is crucial for climate sensitivity simulations and

to better understand the effects of anthropogenically emitted CO2 (see Knutti, Rugenstein and

Hegerl, 2017, for example).

A strand of the literature has focused on the application of cointegrated vector autoregressions,

making use of inherent error-correction mechanisms to model long-run relationships between

climate and orbital geometry - for example, see Kaufmann and Juselius (2013) and Kaufmann

and Pretis (2020, 2021), which find support for a long-run equilibrium driven by solar insolation,

but disturbed by interactions among components of the climate system. However, evidence for the

presence of stochastic trends in the relevant time series is mixed at best. Many studies generate

results that are consistent with the presence of a stochastic trend (Gordon, 1991, Woodward

and Gray, 1993, Woodward and Gray, 1995, Gordon et al., 1996, Kärner, 1996). Conversely,

many other studies generate results that are consistent with the presence of a deterministic trend

with possibly highly persistent noise (Bloomfield, 1992, Bloomfield and Nychka, 1992, Baillie and

Chung, 2002, Fomby and Vogelsang, 2002). The results in Davidson, Stephenson and Turasie

(2016), for example, do not support the hypothesis of integrated behaviour.

While the role of orbital variation in driving ice ages is well established, considerable attention

has been devoted to the interplay of temperatures, ice volume and atmospheric concentrations of

CO2. The treatment of the latter and, in particular, whether it should be treated as a forcing

variable or an endogenous response, has been subject of some debate. See Lea (2004) and Jaccard

et al. (2016), for example, who suggest that orbital forcing drive variations in temperatures,

which in turn affect ice volume and how much trapped CO2 is released into the atmosphere. In

turn, Davidson et al. (2016) find that CO2 and other greenhouse gases are Granger-caused by

temperatures.

Consequently, Castle and Hendry (2020) model these variables as a jointly endogenous system,

with orbital forcing variables deemed to be strongly exogenous. They find evidence of an endoge-

nous response of CO2 to orbital forcing, as well as support for a ’weak’ form of the Milankovitch

hypothesis, in that to account for all aspects of glacial cycles one needs to also consider nonlinear

interactions between the different orbital components.

In an interesting by-product of their estimations, and given that the path of orbital variables

can be obtained well into the future, Castle and Hendry (2020) look at the long-run implications

of anthropogenically determined levels of CO2. Indeed, using the solved long-run coefficient of
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CO2, they simulate the impact on temperatures of increasing atmospheric levels of CO2: for

instance, an increase of 105 ppm (as seen since 1958) from 280 ppm raises temperatures by 6.9

◦C, ceteris paribus.

Thus, and unlike the works of Kaufmann and co-authors, as well as Davidson et al. (2016),

Castle and Hendry (2020) or Proietti and Maddanu (2021), whose focus is on the cyclical proper-

ties of the paleoclimate data, in our study we reconsider the long-run comovement between tem-

peratures and CO2 by employing recently developed methods (Müller and Watson, 2018, 2021,

MW henceforth) that highlight low-frequency covariability of time series. Indeed, we suggest that

variation in the usual paleoclimate time series is dominated by glaciation cycles and therefore

contain only limited information about the very long-run relation between temperatures and CO2.

Using the procedures of MW allows us to isolate a small number of low-frequency trigonometric

weighted averages, which are then used to conduct inference about the long-run (co)variability

of temperatures and CO2. Moreover, in order to attenuate ‘curse-of-dimensionality’ issues, we

extend the MW techniques by allowing for a group of effects to be ‘partialled out’. This allow

us to hone in on the long-run relationship between temperatures and CO2 while controlling for

orbital forcing.

This approach is quite novel and distinctive in this literature and there are several advan-

tages in using these low-frequency techniques. First, they allow us to focus on time spans that

go beyond cyclical dynamics and thus obtain better estimates of long-run coefficients that are

uncontaminated by short or medium run variations. Second, the methodology is flexible in that

we can conduct inference on bivariate or multivariate low-frequency features of several climate

variables. Third, these methods are fairly robust to the persistence patterns of paleoclimate data,

permitting combinations of non-stationary, near-nonstationary or stationary series, thus circum-

venting the need to (pre) test for unit roots and cointegration. Indeed, the data transformations

are approximately Gaussian and therefore standard inference tools and confidence intervals can

be employed. Finally, the construction of long horizon forecasts is relatively straightforward, thus

allowing us to complement the scenario analysis in Castle and Hendry (2020).

Put simply, the method consists in obtaining low-frequency weighted averages of the data by

using trigonometric projections that ensure approximate Gaussianity of the transformed series.

Inference is then based on a (relatively) small number q of low-frequency averages, whereby

correlation or regression coefficients (and respective standard errors) can be computed in the

usual way. The choice of q determines the cyclicality that the researcher wishes to study. In

our case, we are agnostic about the choice of q and suggest selecting q such that covariability is

maximized. As it turns out, in our case q ranges from 16 to 20, which indicates spans of data

between 80,000 to 100,000 years.

Thus, we start by obtaining measures of long-run covariability between temperatures and

levels of CO2, with our results suggesting that correlation is indeed strong and quite significant,
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with a 90% confidence interval of [0.90, 0.98], while the long-run regression coefficient is estimated

at around 0.09. Given that the exclusively bivariate focus is likely to lead to overestimation, we

then develop an extension of the MW approach that allows us to control for measures capturing

orbital forcing, i.e., a selection of control variables is ’partialled out’ prior to the application

of low-frequency projections. The resulting confidence intervals for the regression coefficient of

temperatures on CO2 range between 0.048 and 0.106, and therefore not too dissimilar to the

results of Castle and Hendry (2020).

We also pursue the alternative approach of summarizing relevant exogenous information by

extracting a common factor driving orbital forcing and CO2 levels, with these results confirming

our previous findings. Finally, emulating Castle and Hendry (2020), we present long-term fore-

casts for temperatures and ice-volume that can be constructed from low-frequency (multivariate)

factor models, conditioning on (anthropogenically determined) current levels of CO2 concentra-

tions, which are far higher than those typical during previous glaciar cycles. Our results suggest

a steady increase in temperatures, coupled with a substantial decline in ice volumes well below

historical minima, pointing towards an ice-free planet under current CO2 levels.

The paper is organised as follows. Section 2 provides a brief description of the data and the

low-frequency inference procedures used throughout the paper, presenting baseline results for

the simple bivariate relationship between temperatures and CO2 levels. Section 3 develops the

extension to the MW setup by considering additional controls, which can either be ‘partialled

out’ or encapsulated into a common factor extracted via principal component analysis. Section

4 discusses multivariate low-frequency analysis and forecasting of paleoclimate time series, while

section 5 concludes.

2 Low-frequency inference: the bivariate case

2.1 Data and basic method

We focus on three paleoclimate time series: ice cores reconstructions of temperatures, CO2 at-

mospheric levels and ice volume. The first two series are sourced from the European Project for

Ice Core in Antarctica (EPICA) (Jouzel et al., 2007; Loulergue et al., 2008; Lüthi et al., 2008),

with CO2 measured in ppm (parts per million, where 1 ppm= 7.8 gigatonnes of CO2, while the

ice volume series is from Lisiecki and Raymo (2005). In addition, and following Kaufmann and

Juselius (2013), we consider standard ice-age orbital drivers, namely Eccentricity (Ec), Obliquity

(Ob) and Precession (Pr).

The period comprises 800,000 years (800 kyr), with all observations adjusted to the common

EDC3 time scale and linearly interpolated for missing observations. The total sample size in 1000

year intervals is thus T = 801 with the last 100 observations (i.e., 100,000 years, ending 1000

years before the present) used to evaluate the predictive ability of our models (see Kaufmann
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and Juselius 2013, Davidson et al. 2016 or Castle and Hendry 2020 for further details on the

construction of the data, as well as Miller, 2019 for the consequences of interpolation on subsequent

statistical analysis).

(a) Temperature (b) CO2

Figure 1: Temperatures and CO2 concentration levels

The most striking feature of the paleoclimate series is their cyclicality, i.e. significant recurring

comovements, such that temperature and CO2 levels stay below their mean for long periods during

glaciations, with the opposite pattern for ice volume (see Figure 1). As extensively discussed

in Davidson et al. (2016) this behaviour makes it difficult to reconcile with the cointegration

approach used to study long-run relationships and followed in much of the literature. When we

strip away the cycles, how can we quantify with precision the relationship between temperatures

and CO2? Given its importance for accurate climate sensitivity projections, our focus is on

inference about the long-run relationship between temperature and gases concentrations, so in

order to abstract from ‘cyclical noise’, we propose using the low-frequency ‘filtering’ procedures

of MW.

Indeed, low-frequency variation can be extracted by using relatively small number q of weighted

averages, where the weights are deterministic (and known) low-frequency trigonometric series.

Consider the simplest case of a single time series xt observed over t = 1, ..., T , letting Ψj(s) =
√
2cos(jsπ), so that Ψj(t/T ) has period 2T/j, with Ψ(s) = (Ψ1(s),Ψ2(s), ...,Ψq(s))

′ a ℜq valued

function, with Ψ(T ) = (Ψ((1 − 1/2)/T ),Ψ((2 − 1/2)/T ), ...,Ψ((T − 1/2)/T ))′ a T × q matrix

obtained by evaluating the function at s = (t − 1/2)/T for t = 1, ..., T . Then, we can obtain

low-frequency projections by obtaining the fitted values from running OLS regressions of xt on

Ψ(T ), such that x̂t = x̄ + Ψ((t − 1/2)/T )′XT , where x̄ and XT are OLS coefficients, the latter

having the simple form XT = T−1
∑T

t=1Ψ((t−1/2)/T )′xt, such that the jth regression coefficient

Xjt is the j
th cosine transform of (x1, x2, ..., xT )

′.

Müller and Watson (2018) and we in section 3 show that this can be extended to a multivariate
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Table 1: Long-Run Covariation Measures for CO2 and Temperature

q LR correlation (ρ) LR regression coefficient (β) LR regression st. error (σ)

10 0.865 [0.450, 0.960] 0.068 [0.025, 0.090] 0.395 [0.279, 0.809]

11 0.828 [0.500, 0.947] 0.068 [0.026, 0.093] 0.447 [0.313, 0.811]

12 0.841 [0.450, 0.952] 0.069 [0.028, 0.094] 0.447 [0.317, 0.864]

13 0.841 [0.450, 0.947] 0.072 [0.028, 0.096] 0.464 [0.332, 0.866]

14 0.865 [0.550, 0.953] 0.077 [0.040, 0.100] 0.498 [0.364, 0.825]

15 0.877 [0.637, 0.959] 0.082 [0.048, 0.102] 0.516 [0.382, 0.874]

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.533 [0.386, 0.921]

17 0.937 [0.850, 0.974] 0.092 [0.073, 0.104] 0.621 [0.459, 1.013]

18 0.940 [0.850, 0.974] 0.093 [0.072, 0.105] 0.627 [0.455, 1.005]

19 0.943 [0.850, 0.974] 0.094 [0.072, 0.105] 0.628 [0.463, 1.029]

20 0.943 [0.850, 0.974] 0.095 [0.075, 0.106] 0.643 [0.475, 1.033]

21 0.937 [0.850, 0.974] 0.095 [0.074, 0.107] 0.663 [0.496, 1.123]

Notes: x is CO2 and y is temperature; results based on the Posterior Median and a Coverage Probability of 0.90

in square brackets

setting, in a way that long-run correlation or regression coefficients can be obtained in a standard

way based on the q cosine projections. Considering the scarcity of low-frequency information in

the data, it is natural that only a small number of projection coefficients are employed to capture

low-frequency variability, in turn leading to a typical “small-sample” problem. An advantage of

these procedures is that statistical inference is straightforward and is applicable to both weakly

and highly persistent time series, with little requirements regarding error and model assumptions.

2.2 Bivariate Long-Run Covariability

We start by examining the long-run covariability of temperatures and CO2 emissions by com-

puting low-frequency correlation and bivariate regression coefficients. From visual inspection of

both series, we will assume that our time span of interest is smaller than 150 (150,000 years) and

greater than 75 (75,000 years) datapoints. This then corresponds to a range of about q = 10 to

q = 21 cosine transforms, respectively. The maximum span is by default 1,596,000 years. Thus,

we take an agnostic view as to what the ’long run’ is by not imposing a specific value for q, not

least because, beyond Milankovitch cyclicality, there is no consensus in climate science on what

this should be. Hence, we present results obtained for q = 10, ..., 21 in Table 1.

From Table 1, we observe that there is strong evidence that CO2 and temperature are highly

correlated over the long run. Indeed, the in-sample long-run correlation of the two series is positive

and very large - always above 0.83, achieving a maximum of 0.95 with q = 16 and remaining high
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thereafter, with the confidence intervals noticeably narrowing for q > 15.1 The estimated long-run

regression coefficient is, as expected, positive, thus confirming that an increase in CO2 emissions

is associated with an estimated ◦C increase in temperatures in the long-run. Note, however, that

the slope coefficient is very sensitive to the choice of q, monotonically increasing from 0.068 for

q = 10 to 0.095 with q = 21.

Given this, we define a criterion that allows us to select the most reasonable long-run measures:

pick q such that the estimated long-run correlation is the largest and the range for the 90%

confidence set is the narrowest. For the pair (CO2, Temperature) it corresponds to q = 16 (in

bold, Table 1), implying a periodicity smaller than 99.75 (i.e. of about 100,000 years). Also,

note that for q < 16, the 90% confidence sets for the correlation and the regression coefficient are

substantially wider, therefore suggesting that this strategy is a sensible one.

Thus, when q = 16, the correlation equals 0.945 with a corresponding 90% confidence set of

[0.900, 0.980], while the regression coefficient is 0.090, with a standard error 0.533. This value is

somewhat large, especially when compared to the ones found in the literature as, for example, by

Castle and Hendry (2020), who estimated an impact of only 0.060◦C. The lower bound of the

90% confidence set [0.069, 0.100] is close to the by Castle and Hendry (2020) estimate, but does

not include it.

For the sake of completeness, we also computed the long-run measures for the bivariate rela-

tionships of ice volume with temperatures or CO2 emissions (see Table A1 in the Appendix). As

in the previous case, q < 16 delivers wide confidence sets for the pair {Ice, Temperature}. The in-

sample long-term correlation for q = 16 equals −0.871 with a confidence set of [−0.946,−0.638]

(similar results are obtained for q > 16) and an estimated long-run regression coefficient of

−4.991. For {Ice, CO2} the correlation is also large (−0.918 with an interval of [−0.945,−0.800])

and the regression coefficient is −55.619, highlighting the long run association between higher

CO2 emissions and reduced ice volumes.

3 Long-Run Covariability under Multivariate Partialling Out

The value of 0.090 and corresponding 90% confidence set of [0.069, 0.100] for the long-term in-

sample regression coefficient of temperature on CO2 discussed above are probably overestimated.

The most likely explanation is that the standard bivariate Müller and Watson (2018) approach is

not taking into account the effect of exogenous variables on temperatures, namely orbital forcing

and non-linear functions thereof. Therefore, in order to be able to assess the long-run covariability

between temperature and CO2 emissions without omitting orbital forcing, we extend the Müller

1To put it in perspective, it is worth mentioning that in their empirical applications with macro variables, Müller

and Watson (2018) found for fixed q only a few number of pairs of series with such a large degree of covariability.

Despite the differences in terms of the observed data, it seems that climate data has a more significant long-term

covariability compared to macro economic data.
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andWatson (2018) approach so that these effects are partialled out. We do so because of the ‘small

sample’ problem induced by using only a small number of trigonometric projections. To avoid

compounding this problem by adding additional regressors, and given that in our application we

can safely treat orbital forcing as exogenous, we suggest this approach as a straightforward way

of addressing this issue. Moreover, as a complementary alternative, we also consider long-run

covariability measures between temperature and a common factor capturing the main dynamics

of all (or part of) the other variables in the model, i.e. CO2, ice volume and orbital variables. .

3.1 Long-Run Projections After Partialling Out

In this Section, we derive the main results for the long-run projections and covariability measures

after partialling out the effects of other control variables, thus providing an extension of the

original work by Müller and Watson (2017, 2018, 2021) (the Appendix contains further details).

The data generating process is given by Assumption 1.

Assumption 1: Let zt = (y′t, x
′
t)
′ denote a (2 + k)-dimensional vector of time series with

yt = (y1t, y2t)
′ and assume that zt follows a multivariate I(0) model zt = µ+ ut, such that

1√
T

⌊rT ⌋∑
t=1

ut =⇒ Ω1/2W (r) , r ∈ [0, 1] , (1)

where Ω =


σ21 σ12 Ω1x

σ21 σ22 Ω2x

Ωx1 Ωx2 Ωxx

 is the (2+k)×(2+k) long-run covariance matrix of ut andW (r)

is a (2 + k)× 1 multivariate standard Wiener process.2 Here, µ =
(
µ′y, µ

′
x

)′
, ut = (u1t, u2t, u

′
xt)

′ ,

and W (r) =
(
W1 (r) ,W2 (r) ,Wx (r)

′)′ .
We link y2t with xt through the model y2t = θ′xt + vt and define

v̂t = y2t − θ̂′xt = y2t −

( T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1
xt (2)

which is also an I(0) process. For the cosine-weighted averages, define Ψj (s) =
√
2 cos (jsπ),

s ∈ [0, 1] , denote the function with period 2/j, let Ψ (s) = (Ψ1 (s) , ...,Ψq (s))
′ be a vector q × 1

of the functions Ψj (s) from periods 2 through 2/q, and denote ΨT as the T × q matrix with

tth row given by Ψ ((t− 1/2) /T )′, so the jth column of ΨT has period 2T/j. Consequently,

ŷ1t = Y ′
1TΨ((t− 1/2) /T ) and ṽt = V̂ ′

TΨ((t− 1/2) /T ) where Y ′
1T and V̂T are the projection

(linear regression) coefficients, namely,

V̂T = T−1
T∑
t=1

Ψ((t− 1/2) /T ) v̂t (3)

2As in Müller and Watson (2017, 2018, 2021), we could consider other different data generating processes with

similar results.
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(cosine-weighted averages of the residuals).

Lemma 1: Under Assumption 1, the average covariance matrix of the long-run projections

(ŷ1t, ṽt) , which also measures the covariability of the corresponding cosine transforms, is given

by:

ΩT →
q∑

j=1

 σ21 σ1V

σ1V σ2V

 , (4)

as T → ∞, where

σ1V = σ12 −Q′
2xQ

−1
xxΩ

′
1xΩ1xQ

−1
xxQ2x. (5)

σ2V = σ22 +Q′
2xQ

−1
xxΩxxQ

−1
xxQ2x − 2Q′

2xQ
−1
xxΩ

′
2xΩ2xQ

−1
xxQ2x (6)

such that

1

T

T∑
t=1

y2tx
′
t → Q′

2x = E
(
y2tx

′
t

)
;
1

T

T∑
t=1

xtx
′
t → Qxx = E

(
xtx

′
t

)
, (7)

as T → ∞.

From Lemma 1 we obtain the low-frequency measures between y1t and v̂t. The low-frequency

covariance is defined as the population covariance between the low-frequency trend values (ŷ1t, ṽt)

averaged over the length of the sample

T−1
T∑
t=1

E (ŷ1tṽt) → qσ1V . (8)

On the other hand, the low-frequency correlation between y1t and v̂t is

ρT =
tr
[
E
(
Y1jT V̂jT

)]
√
tr
[
E
(
Y 2
1T

)]
tr
[
E
(
V̂ 2
jT

)] → σ1V
σ1σV

. (9)

The long-run linear regression parameter in the regression of ŷ1t on ṽt (best linear prediction of

the long-run projection ŷ1t by the long-run projection ṽt) is

βT = argmin
b
E

[
T−1

T∑
t=1

(ŷ1t − bṽt)
2

]
(10)

=
tr
[
E
(
Y1jT V̂jT

)]
tr
[
E
(
V̂ 2
jT

)] → σ1V
σ2V

(11)

and the average variance of the prediction error is

σ2y1|v̂,T = tr
[
E
(
Y 2
1T

)]
−
tr
[
E
(
Y1jT V̂jT

)]2
tr
[
E
(
V̂ 2
jT

)] (12)

→ q

(
σ21 −

σ21V
σ2V

)
(13)

These are the parameters we estimate in our empirical analysis, which measure the population

linear dependence of the long-run variation of (y1t, v̂t) .
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3.1.1 Empirical Results

In this subsection, we apply the partialling out approach in long-run covariability methods to

the paleoclimate data analysed above. The variable of interest is temperature (our y1t term) and

how it depends on CO2 emissions (the y2t variable) in the long-run, after extracting the effects of

other determinants (xt vector). The choice for xt is not clear-cut, therefore we follow the existing

literature and try different options to check the robustness and sensitivity of the results to the

choice made.

As in Castle and Hendry (2020), we assume that CO2 depends, at most, on lagged temper-

atures and ice volume and the current and lagged non-linear impacts of the exogenous orbital

variables, i.e., the largest set for xt is

xt = (Tempt−1, Icet−1, Ot, Ot−1), where (14)

O = (Ec,Ob, Pr,EcOb,EcPr, PrOb,Ec2, Ob2, P r2). (15)

For comparison, we also consider smaller sets by dropping those variables that were not found

statistically significant in explaining CO2 levels in previous studies. Interestingly enough, we did

not find important differences in the OLS residuals v̂t compared to the observed CO2 emissions

(see Figure 1) under the regression model CO2t=θ
′xt + vt. In Figure 2, we have v̂1t for xt = Ot

(left panel) and v̂2t for xt =
(
Ec,Ob,EcOb,EcPr,Ob2

)
t
(right panel).

In Table 2, we present the long-run covariability measures for temperatures and (distinct) CO2

residuals v̂t for the ‘optimal’ q, in the sense that the correlation is the largest and the range for

the confidence set is the narrowest.3 The results differ depending on whether lagged temperatures

and ice volume as determinants for CO2 emissions are included or not. If included, we only find

a significant long-run relationship between temperatures and partialled out CO2 for a confidence

set of 67%. Even in that case, the long-run correlation is not large (0.317) and the long-run

regression coefficient equals 0.108. Once we include only the exogenous orbital variables, the

results become very consistent. The long-run correlation is large (around 0.8) and the long-run

regression coefficient is about 0.076 with a 90% confidence set of [0.048, 0.103].

3Results for other values of q produce qualitatively and quantitatively similar results, and are available upon

request.
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Table 2: Long-Run Covariation Measures for vt and Temperature

q LR correlation (ρ) LR regression coefficient (β) LR regression st. error (σ)

xt = (Tempt−1, Icet−1, Ot, Ot−1)

16 0.317 [-0.129, 0.539] 0.108 [-0.014, 0.254] 1.680 [1.265, 2.440]

0.317 (0.131, 0.443) 0.108 (0.036, 0.188) 1.680 (1.413, 2.065)

xt = (Ot, Ot−1)

16 0.744 [0.502, 0.917] 0.077 [0.048, 0.105] 1.009 [0.762, 1.479]

xt = Ot

16 0.744 [0.511, 0.917] 0.078 [0.048, 0.106 ] 1.012 [0.847, 1.245]

xt =
(
Ec,Ob,EcOb,EcPr,Ob2

)
t

16 0.804 [0.564, 0.918] 0.076 [0.048, 0.103] 0.980 [0.733, 1.425]

xt = (Ect, Ect−1, Obt−1, EcObt−1, Ob
2
t )

16 0.798 [0.512, 0.917] 0.075 [0.046, 0.102] 1.002 [0.752, 1.463]

Notes: Results based on the Posterior Median and a Coverage Probability of 0.90 in square brackets or 0.67 in

parentheses

(a) v̂1t (b) v̂2t

Figure 2: Residuals v̂1t and Residuals v̂2t

The main takeaways are that 1) regardless of whether or not orbital effects are partialled out,

the long-run correlation between temperatures and CO2 emissions is very large (above 0.7); 2)

with respect to the long-run impact of CO2 emissions on temperature levels, we obtain larger point

estimates than those reported in Castle and Hendry (2020), which can be rather interpreted as a

lower bound. Castle and Hendry (2020) obtain a solved long-run coefficient of 0.066◦C increase in

temperatures for a 1 ppm increase in the CO2 emissions, whereas our long-run estimated impact

ranges from about 0.070◦C to 0.100◦C, depending on the exact specification.
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3.2 Using Common Factors as Controls

An alternative to partialling out using the OLS residuals is to control for exogenous forcing

by extracting common factors using principal components analysis. For comparability, we only

study common factors extracted from the data for which there is evidence that it determines the

temperature levels. Thus, following Castle and Hendry (2020), we assume that temperatures in

period t are explained by the set of variables xt = (Tempt−1, CO2t, Ect, EcObt, EcObt−1, EcPrt)

and formulate a factor model in which low-frequency measures of Tempt are related with the

main common factor of xt,, denoted as f̂t. In Table 3, we present the results for f̂t extracted from

xt, also considering different subsets of its elements, using q = 16 as before (results are similar

for any q > 15).

Table 3: Long-Run Covariation Measures for f̂t and Temperature

q LR correlation (ρ) LR regression coefficient (β) LR regression st. error (σ)

xt = (Tempt−1, CO2t, Ect, EcObt, EcObt−1, EcPrt)

PTV = 97.688; λ̂ = (0.102, 0.994, 0.000, 0.003, 0.003, 0.027)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.099] 0.528 [0.383, 0.912]

xt = (CO2t, Ect, EcObt, EcPrt)

PTV = 97.914; λ̂ = (0.999, 0.000, 0.003, 0.027)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.532 [0.386, 0.920]

xt = (CO2t−1, CO2t, Icet−1, Icet)

PTV = 98.712; λ̂ = (0.706, 0.708,−0.010,−0.010)

16 0.943 [0.900, 0.974] 0.063 [0.048, 0.071] 0.558 [0.404, 0.962]

xt = (CO2t, Icet)

PTV = 99.999; λ̂ = (0.999,−0.015)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.533 [0.387, 0.922]

Notes: Results based on the Posterior Median and a Coverage Probability of 0.90 in square brackets. PTV is the

percentage of the total variance explained by the principal component. λ̂ is the principal component coefficients

(loadings)

First, we note that the percentage of the variance (PTV) explained by the principal component

is almost 100%, even for the largest of sets xt. On the other hand, analysing the corresponding

factor loadings (displayed in λ̂), the loading associated with CO2t is essentially one, while the

other loadings are quite small and close to zero. These two results together mean that the principal

component f̂t captures the dynamic features of CO2t levels after extracting the information from

the remaining variables. Thus, in essence, we accomplish the goal of obtaining low-frequency

estimates of the relationship between temperatures and CO2 levels in a much similar way to the

partialling out procedure expounded above.

Thus, considering the results so far, our estimates point to (Antarctic) temperature long
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run increases between 6◦C and 10◦C. These are in the neighbourhood of, but larger than, the

estimates of Castle and Hendry (2020), as well as those of Kaufmann and Juselius (2013) (see also

Knutti, Rugenstein and Hegerl, 2017). In section 4, we return to this type of scenario analysis

by considering long run forecasts obtained from low-frequency multivariate factor models.

4 Low-Frequency Factor Model and Long-Term Forecasts

In the previous sections, we focused on the long run relationship between temperatures and

CO2 concentration levels - first, a stripped down low-frequency bivariate analysis, followed by

approaches that allow us to control for exogenous forcing. In this section we turn our attention

to modelling the joint dynamics of the whole climate system by employing the low-frequency

factor models developed by Müller and Watson (2021), which, as a useful by-product, allow us to

compute long-range forecasts.4 Indeed, given the very low-frequency nature of our data, as well as

the mixture of endogenous and exogenous variables we study, we deem this forecasting model to

be more appropriate than a standard dynamic factor model. Next we present the main features

of the model and analyse the estimated factor loadings, after which we focus on long-horizon

predictive distributions for the variables of interest, under relevant scenarios for CO2 levels.

4.1 Factor Model Estimation

Following Müller and Watson (2021) and Müller, Stock and Watson (2021), the model for the

observed xt ∈ ℜn is

xt = µ+ λft + et, (16)

where ft denotes the (scalar) unobserved common factor(s), λ = (λ1, ..., λn) contains the factor

loadings, et represents a vector of mutually independent errors that captures the residual vari-

ability in xt, and µ = (µ1, ..., µn) is the intercept. Moreover, ft follows a local-level model, ej,t ,

j = 1, ..., n stationary I(dj) models and {ft, e1,t, ..., en,t} are independent. The local-level model

is the sum of uncorrelated I(0) and I(1) processes with common long-run variance σ2. The scale

of ft and λ are not separately identified and the factor loading λ1 is normalized to unity. The

estimation of the model is carried out by Bayesian methods, assuming the same priors for the

parameters as in Müller and Watson (2021) (see paper for details). Once the posterior distri-

bution is recovered, an additional advantage of this approach is that we can analyse how the

relationships differ across quantiles - we consider the median, the tails at 5% and 95% and two

intermediate quantiles, 17% and 83%.

We consider three models: 1) a simple bivariate one with the main variables xt = (Tempt, CO2t)
′

with n = 2; 2) a model that adds ice volume, i.e. xt = (Tempt, CO2t, Icet)
′, n = 3; and 3) a

4See also Müller and Watson (2016) for a discussion on long-horizon prediction intervals and Müller, Stock and

Watson (2021) for an interesting application about the long-run path of GDP for a list of 113 countries.
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model that also includes exogenous orbital variables, such that xt = (Tempt, CO2t, Icet, Ect, Obt,

EcPrt, Ob
2
t )

′, n = 7.

The results are displayed in Table 4. We can see that CO2 is a strong driver of low-frequency

comovements with temperatures, particularly at the highest quantiles. Interestingly, the salience

of CO2 remains strong even when orbital variables are included. Indeed, as expected and in

accordance with the Milankovich hypothesis, orbital variables capture a significant proportion

of the joint variation, but CO2 levels still have a non-negligible impact for quantiles 83 and 95.

As anticipated, variation in ice volume goes in an opposite direction, while the joint effects of

nonlinear interactions amongst the orbital variables appear to be the most significant contributors

to low-frequency movements in the respective set of variables in xt.

Table 4: Factor Loadings for the Low-Frequency Factor Model

Variables PostMean PostQ0.05 PostQ0.17 PostQ0.50 PostQ0.83 PostQ0.95

xt = (Tempt, CO2t)
′; n = 2

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 9.29 7.98 8.66 9.37 9.96 10.37

xt = (Tempt, CO2t, Icet)
′; n = 3

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 9.30 8.00 8.66 9.37 9.97 10.39

Ice -0.15 -0.19 -0.17 -0.15 -0.12 -0.11

xt = (Tempt, CO2t, Icet, Ect, Obt, EcPrt, Ob
2
t )

′; n = 7

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 1.50 -1.78 -0.40 1.50 3.42 4.79

Ice 1.36 -1.92 -0.56 1.33 3.35 4.71

Ec 1.35 -1.99 -0.66 1.37 3.33 4.65

Ob 0.78 -1.64 -0.62 0.56 2.32 3.76

EcPr 1.68 -1.70 -0.34 1.59 3.63 5.43

Ob2 1.44 -1.85 -0.49 1.43 3.36 4.74

Notes: PostQ stands for ”posterior quantile”

4.2 Long-Horizon Projections

Having documented and quantified the low-frequency relationship between temperatures and CO2

levels, and given the recent developments in the climate debate, it is important to understand how

temperatures can evolve in the long-term for specific scenarios of CO2 emissions. Here, we follow

Castle and Hendry (2020) by conditioning on the relatively stable path of orbital variables and on

a stable level of 385 ppm for CO2 (consistent with current anthropogenically induced levels) to

obtain long-term conditional forecasts for temperatures and ice volume using the low-frequency
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factor models estimated in the previous section. We consider the horizon of 100 observations

(100,000 years, the lowest period associated with the optimal q as explained in Section 2).

In Figures 3 and 4 we have the conditional forecasts for temperatures, while Figure 5 displays

projections for ice volumes. In the case of n = 2, i.e. with xt = (Tempt, CO2t)
′, temperatures are

predicted to remain well above the peak in the sample. This can be expected, as we can see from

Figure 3a that the value of CO2, on which we are conditioning, is also well above historical levels.

Once other variables are included in xt (n = 3 and n = 7), the projections for temperatures are

less extreme, closer to the sample mean, but, crucially, predicted to increase.

(a) CO2 (b) Temperatures

Figure 3: CO2 Levels and Conditional Forecasts of Temperatures (n = 2)

(a) n = 3 (b) n = 7

Figure 4: Conditional Forecasts of Temperatures

Turning to the long term of implications for ice volumes, we confirm the prediction that ice

sheets will tend to reduce for high levels of CO2 (naturally in tandem with the higher temperatures

predicted above). Interestingly, the speed at which ice volumes vanish increases when other

variables are included in the dynamic system (n = 3 and n = 7), with (median) ice volume levels
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attaining values similar (or even below) to sample minima (see Diebold and Rudebusch, 2022 for

a discussion, albeit at shorter horizons).5

(a) n = 3 (b) n = 7

Figure 5: Conditional Forecasts of Ice Volumes

5 Conclusion

This paper explores formal inference procedures that focus on low-frequency comovement amongst

paleoclimate time series. By employing the recently developed methods of Müller and Watson

(2017, 2018, 2021), we attempt to abstract from the strong cyclical features of the data, spurred

mainly by orbital forcings, and focus on relationships over longer periods. This approach in-

volves obtaining weighted averages (constructed by means of trigonometric projections) and then

employing these to conduct inference in a small-sample, yet standard, setting. Given that com-

plete consideration of all drivers of temperatures aggravates the small-sample issue, we extend

the above mentioned framework by allowing for a first round of ‘partialling out’ of exogenous

forcings.

Our results confirm the strong relationship between temperatures and CO2 for a periodicity of

around 100,000 years. The long-run coefficient thus obtained validates, to a large extent, previous

equilibrium climate sensitivity exercises conducted by several authors. If anything, our findings

suggest that the recent simulations of Castle and Hendry (2020) are a lower bound, indicating

that warming due to the increase of CO2 concentration levels can be even more substantial. This

holds even when orbital forcings are taken into account, either by partialling out or by means of

an extracted common factor. Joint modelling of all time series allows us to consider a long-term

scenario exercise, in which we show the extent of acceleration in temperature increases, as well

as ice-sheet recession.

5Note that we do not constrain the quantiles, hence the negative values for Q95.
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In this setup, the choice of q is usually left at the researchers’ discretion. We proposed a ‘data-

driven’ approach, whereby we picked q such that the target long-run correlation is maximized.

An interesting issue to consider is the choice of q when two or more time series display different

cyclicality - it is not clear whether different q’s should be selected for each series, or whether a

common q would be preferable. We leave this for future research.

References

[1] Baillie, R. T. and Chung, S.-K. (2002), Modeling and forecasting from trend-stationary long-

memory models with applications to climatology, International Journal of Forecasting, 18,

215–226.

[2] Bierens, H.J. (1994), Topics in Advanced Econometrics: Estimation, Testing and Specification

of Cross-Section and Time Series Models, Cambridge University Press.

[3] Bloomfield, P. (1992), Trends in Global Temperature, Climatic Change, 21, 1–16.

[4] Bloomfield, P. and Nychka, D. (1992), Climate spectra and detecting climate change Climatic

Change, 21, 275–287.

[5] Castle, J. L. and Hendry, D. F. (2020), Climate Econometrics: An Overview, Foundations

and Trends in Econometrics: Vol. 10, No. 3–4, 145–322.

[6] Davidson, J. E. H., Stephenson, D. B. and Turasie, A. A. (2016), Time series modeling of

paleoclimate data, Environmetrics, 27, 55-65.

[7] Diebold, F.X. and Rudebusch, G.D. (2022), Probability Assessments of an Ice-Free Arctic:

Comparing Statistical and Climate Model Projections, Journal of Econometrics, forthcoming.

[8] Fomby, T. B. and Vogelsang, T. J. (2002), The Application of Size-Robust Trend Statistics

to Global-Warming Temperature Series, Journal of Climate, 15, 117-123.

[9] Gordon, A. H. (1991), Global warming as a manifestation of a random walk, Journal of

Climate, 4 , 589–597.

[10] Gordon, J.D., Boudreau, P.R., Mann, K.H., Ong, J.-E., Silvert, W.L., Smith, S.V., Wat-

tayakorn, G., Wulff, F. and Yanagi, T. (1996), LOICZ Biogeochemical modelling Guidelines.

LOICZ Reports and Studies No. 5.

[11] Jaccard, S. L., Galbraith, E. D., Mart́ınez-Garćıa, A. and Anderson, R. F. (2016), Covariation
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6 Appendix

6.1 Bivariate Long-run Covariability

Table A1 - Long-Run Covariation Measures for Ice-Temperature and Ice-CO2

q LR correlation (ρ) LR regression coefficient (β) LR regression st. error (σ)

Ice and Temperature

16 -0.871 [-0.946, -0.638] -4.991 [-6.190, -3.745] 0.814 [0.608, 1.196]

Ice and CO2

22 -0.918 [-0.945, -0.680] -55.343 [-66.609, -44.553] 9.891 [7.080, 14.917]

Notes: In the first row x is Ice and y is temperature, in the second x is Ice and y is CO2; results based on the

Posterior Median and a Coverage Probability of 0.90 in square brackets

6.2 Proof of Lemma 1

First, we study the properties of the cosine-weighted average of v̂t. In the main text, we defined

Ψj (s) =
√
2 cos (jsπ), s ∈ [0, 1] , from which we have the q× 1 vector Ψ (s) = (Ψ1 (s) , ...,Ψq (s))

′

and the T × q matrix ΨT with tth row given by Ψ ((t− 1/2) /T )′ . The projection of v̂t onto

Ψ ((t− 1/2) /T ) for t = 1, ..., T yields the fitted values

ṽt = V̂ ′
TΨ((t− 1/2) /T ) (17)

where V̂T are the projection coefficients

V̂T =
(
Ψ′

TΨT

)−1
Ψ′

T v̂1:T = T−1
T∑
t=1

Ψ((t− 1/2) /T ) v̂t, (18)

with v̂1:T = (v̂1, v̂2, ..., v̂T )
′ , because T−1Ψ′

TΨT = Iq. Given that Ψ′
T ιT = 0, the process ṽt

corresponds to the projection of v̂t − v̂1:T onto Ψ ((t− 1/2) /T ) , where v̂1:T is the sample mean

of v̂. That is, by including an intercept, Ψ0
T = (ιT ,ΨT ) , we have

V̂ 0
T =

(
Ψ0′

TΨ
0
T

)−1
Ψ0′

T v̂1:T =

 T−1ι′T v̂1:T

T−1ΨT v̂1:T

 =

 v̂1:T

V̂T

 . (19)

Morever,

ṽ0t = V̂ 0′
T Ψ0 ((t− 1/2) /T ) = v̂1:T + ṽt and (20)

ṽ01:T = Ψ0
T V̂

0
T = IT v̂1:T +ΨT V̂T . (21)

In the case of v̂t being the OLS residuals of y2t on xt, with a zero mean v̂t and therefore v̂1:T = 0,

ṽ0t = ṽt and V̂
0
T = V̂T . (22)
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In fact, even if we have v̂0t = η+ v̂t, the η has no effect on V̂ 0
T because, by

∑T
t=1Ψ((t− 1/2) /T ) =

0,

T−1
T∑
t=1

Ψ((t− 1/2) /T ) v̂0t = T−1
T∑
t=1

Ψ((t− 1/2) /T ) v̂t. (23)

Next, we derive the large-sample properties of V̂T (the q cosine transforms of v̂1:T ). For the

jth cosine transform, the scaled V̂jT is

T 1/2V̂jT

= T−1/2
T∑
t=1

Ψj ((t− 1/2) /T ) v̂t

= T−1/2
T∑
t=1

√
2 cos (jπ (t− 1/2) /T ) y2t

−

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

T−1/2
T∑
t=1

√
2 cos (jπ (t− 1/2) /T )xt. (24)

Following Müller and Watson (2017, 2018, 2021), cf Bierens (1994, Lem. 9.6.3, p. 200),

T−1/2
T∑
t=1

√
2 cos (jπ (t− 1/2) /T ) y2t

= T−1/2
T∑
t=1

√
2 cos (jπ (t− 1/2) /T )u2t

=
sin (jπ/(2T ))

jπ/(2T )

[
Ψj (1)GTu2 (1)−

∫ 1

0
ψj (s)GTu2 (s) ds

]
=⇒ Ψj (1)Gu2 (1)−

∫ 1

0
ψj (s)Gu2 (s) ds =

∫ 1

0
Ψj (s) dGu2 (s) , (25)

as T → ∞, where ψj (s) =
∂Ψj(s)

∂s and

GTu2 (s) = T−1/2

⌊sT ⌋∑
t=1

u2t + T−1/2 (sT − ⌊sT ⌋)u2,⌊sT ⌋+1

=⇒ Gu2 (s) = σ2W2 (s) , (26)

as T → ∞. Similarly,

T−1/2
T∑
t=1

√
2 cos (jπ (t− 1/2) /T )xt

=⇒ Ψj (1)Gux (1)−
∫ 1

0
ψj (s)Gux (s) ds =

∫ 1

0
Ψj (s) dGux (s) , (27)

as T → ∞, where Gux (s) = Ω
1/2
xx Wx (s) . Hence,

T 1/2V̂jT =⇒
∫ 1

0
Ψj (s) dGu2 (s)−Q2xQ

−1
xx

∫ 1

0
Ψj (s) dGux (s)

= σ2

∫ 1

0
Ψj (s) dW2 (s)−Q2xQ

−1
xxΩ

1/2
xx

∫ 1

0
Ψj (s)Wx (s) , (28)
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as T → ∞, where

1

T

T∑
t=1

y2tx
′
t → Q′

2x = E
(
y2tx

′
t

)
;

1

T

T∑
t=1

xtx
′
t → Qxx = E

(
xtx

′
t

)
, (29)

as T → ∞, a 1× k vector and a k × k matrix, respectively. This representation holds jointly for

the q elements V̂T , so

T 1/2V̂T =⇒ V =

∫ 1

0
Ψ(s) dGu2 (s)−

∫ 1

0
Ψ(s)Q′

2xQ
−1
xx dGux (s)

= σ2

∫ 1

0
Ψ(s) dW2 (s)−

∫ 1

0
Ψ(s)Q′

2xQ
−1
xxΩ

1/2
xx dWx (s) . (30)

The limiting distribution of T 1/2V̂T is known. Let V = V1 − V2 with

V1 = σ2

∫ 1

0
Ψ(s) dW2 (s) , (31)

V2 =

∫ 1

0
Ψ(s)Q′

2xQ
−1
xxΩ

1/2
xx dWx (s) . (32)

As in Müller and Watson (2017, 2018, 2021), under I(0),

V1 ∼ N (0,Σ1) ,Σ1 = σ22Iq. (33)

For the case of V2, we have

V ar

( T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

T−1/2
T∑
t=1

Ψj ((t− 1/2) /T )xt


= V ar

T−1/2
T∑
t=1

Ψj ((t− 1/2) /T )

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

uxt


=

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

Ω̂xx

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

y2tx
′
t

)′

T−1
T∑
t=1

Ψj ((t− 1/2) /T )2(34)

plus an op (1) term, so that jointly

V ar

( T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

T−1/2
T∑
t=1

xtΨ((t− 1/2) /T )


=

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

Ω̂xx

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

y2tx
′
t

)′

T−1Ψ′
TΨT + op (1)

=

(
1

T

T∑
t=1

y2tx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1

Ω̂xx

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

y2tx
′
t

)′

Iq + op (1) (35)

and therefore

V2 ∼ N (0,Σ2) ,Σ2 = Q′
2xQ

−1
xxΩxxQ

−1
xxQ2xIq. (36)
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If uxt and u2t are not independent (Ω2x ̸= 0), the nonzero Cov(V1, V2) follows from

Cov

 T−1/2
∑T

t=1Ψj ((t− 1/2) /T )u2t,

T−1/2
∑T

t=1Ψj ((t− 1/2) /T )
(∑T

t=1 y2tx
′
t

)(∑T
t=1 xtx

′
t

)−1
uxt


= T−1

T∑
t=1

T∑
s=1

Ψj ((t− 1/2) /T )Ψj ((s− 1/2) /T )Cov

u2t,( T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

uxs


=

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

Ω̂′
2xΩ̂2x

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

y2tx
′
t

)′

T−1
T∑
t=1

T∑
s=1

Ψj ((t− 1/2) /T )Ψj ((s− 1/2) /T )(37)

so that jointly

Cov

 T−1/2
∑T

t=1Ψ((t− 1/2) /T )u2t,

T−1/2
∑T

t=1Ψ((t− 1/2) /T )
(∑T

t=1 y2tx
′
t

)(∑T
t=1 xtx

′
t

)−1
uxt


=

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

Ω̂′
2xΩ̂2x

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

y2tx
′
t

)′

Iq. (38)

which converges to

Q′
2xQ

−1
xxΩ

′
2xΩ2xQ

−1
xxQ2xIq. (39)

To sum up, we have multivariate normality for the limiting distribution of T 1/2V̂T with V̂T
a∼

N
(
0, T−1Σ

)
,

V ∼ N (0,Σ) , where (40)

Σ =
(
σ22 +Q′

2xQ
−1
xxΩxxQ

−1
xxQ2x − 2Q′

2xQ
−1
xxΩ

′
2xΩ2xQ

−1
xxQ2x

)
Iq (41)

and

Vj ∼ iidN
(
0, σ2V

)
, where (42)

σ2V = σ22 +Q′
2xQ

−1
xxΩxxQ

−1
xxQ2x − 2Q′

2xQ
−1
xxΩ

′
2xΩ2xQ

−1
xxQ2x (43)

After deriving the limiting properties of the residuals, we now consider the multivariate (bi-

variate) process wt = (y1t, v̂t)
′ under the I(0) model (y1t, v̂t)

′ = (µ1, 0)
′ + (u1t, v̂t)

′. From Müller

and Watson (2017, 2018, 2021) we have

T 1/2Y1jT =⇒ Y1j = σ1

∫ 1

0
Ψj (s) dW1 (s) ∼ N

(
0, σ21

)
. (44)

Hence, T 1/2

 Y1jT

V̂jT

 =⇒

 Y1j

Vj

 , where

 Y1j

Vj

 ∼ N

0,

 σ21 σ1V

σ1V σ2V

 , (45)

jointly bivariate normal, with

σ1V = σ12 −Q′
2xQ

−1
xxΩ

′
1xΩ1xQ

−1
xxQ2x. (46)
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To prove the formula for σ1V , notice that the covariance between T
−1/2

∑T
t=1Ψj ((t− 1/2) /T )u1t

and

T−1/2
T∑
t=1

Ψj ((t− 1/2) /T )u2t

−T−1/2
T∑
t=1

Ψj ((t− 1/2) /T )

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

uxt (47)

equals

T−1Cov


∑T

t=1Ψj ((t− 1/2) /T )u1t,∑T
t=1Ψj ((t− 1/2) /T )

[
u2t −

(∑T
t=1 y2tx

′
t

)(∑T
t=1 xtx

′
t

)−1
uxt

] 
= T−1

T∑
t=1

T∑
s=1

Ψj ((t− 1/2) /T )Ψj ((s− 1/2) /T )Cov

u1t,
u2s −( T∑

t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

uxs

(48)

where the covariance term is

Cov (u1t, u2s)− Cov

u1t,( T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

uxs


= σ12 −

(
T∑
t=1

y2tx
′
t

)(
T∑
t=1

xtx
′
t

)−1

Ω̂′
1xΩ̂1x

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

y2tx
′
t

)′

. (49)

Finally, as in Müller and Watson (2017, 2018, 2021), we derive the LR parameters of interest

in terms of
(
Y ′
1T , V̂

′
T

)′
, the 2q × 1 cosine transforms of wt = (y1t, v̂t)

′ . As was shown these

authors them, because of the orthogonality of the cosine regressors ΨT , there is a tight connection

between the variability and covariability in the long-run projections ŵt = (ŷ1t, ṽt)
′ , where ŷ1t =

Y ′
1TΨ((t− 1/2) /T ) and ṽt = V̂ ′

TΨ((t− 1/2) /T ) , and the cosine transforms
(
Y1jT , V̂jT

)
, i.e.,

T−1
T∑
t=1

ŵtŵ
′
t =

 Y ′
1TY1T Y ′

1T V̂T

V̂ ′
TY1T V̂ ′

T V̂T

 . (50)

Thus, the average covariance matrix of the long-run projections (ŷ1t, ṽt) also measures the covari-

ability of the cosine transforms
(
Y1T , V̂T

)
:

ΩT = T−1
T∑
t=1

E

 ŷ1t

ṽt

 (ŷ1t, ṽt)

 =

q∑
j=1

E

 Y1jT

V̂jT

(Y1jT , V̂jT)
 (51)

=

 tr
[
E
(
Y 2
1T

)]
tr
[
E
(
Y1jT V̂jT

)]
tr
[
E
(
Y1jT V̂jT

)]
tr
[
E
(
V̂ 2
jT

)]


→
q∑

j=1

 σ21 σ1V

σ1V σ2V

 , (52)

as T → ∞, where

σ2V = σ22 +Q′
2xQ

−1
xxΩxxQ

−1
xxQ2x − 2Q′

2xQ
−1
xxΩ

′
2xΩ2xQ

−1
xxQ2x. (53)
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