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Abstract

The interest rate has been falling for centuries. A process of natural selec-
tion that leads to increasing societal patience is key to explaining this decline.
Three observations support this mechanism: patience varies across individu-
als, is inter-generationally persistent, and is positively related to fertility. A
calibrated dynamic, heterogenous-agent model of fertility permits us to isolate
the quantitative contribution of this mechanism. Selection can explain most
of the decline in the interest rate, a fact that is robust to a number of model
extensions. Quantitative implications are consistent with other facts, such as
the steady increase in the investment rate since 1300.
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1 Introduction

Real interest rates have been falling for at least the last eight centuries (Figure 1).

The global real interest rate declined from around 11-12% in the fourteenth century

to just 2–3% today (Schmelzing, 2020). The real return on land in England fell from

around 10% in the thirteenth century to 1-2% today (Clark, 2010).1

Figure 1: Real returns, 1175–2000
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This large, slow and persistent decline suggests that fundamental economic forces

are at play. A standard expression for equilibrium real interest rates comes from the

Euler equation in a neoclassical consumption model which, with log utility, is,

rt = gt − log β. (1)

The real interest rate, rt, is the difference between the growth rate of consumption,

gt and (the log of) the level of patience, β.2 Since growth was close to zero up to

1800 and then increased following the onset of the industrial revolution, equation (1)

points towards rising levels of patience as the driver of declining real interest rates. We

would not normally think of a preference parameter as varying over time at the level

of an individual. We may, however, think of time-varying changes in societal levels of

patience driven by changing demographics. As Blanchard (1985) showed, rising life

1We elaborate on these data, their sources and construction in Appendix A. We also report further
data across multiple regions and asset classes. All point to a similar, centuries-long downward trend.

2Of course, a less parsimonious model could incorporate variance in consumption growth, uncer-
tainty of returns, or time-varying risk preferences. As we document in Appendix B, evidence on the
long-run changes in each of these additional factors is unable to explain the observed pattern.
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expectancy can appear as an increase in effective β where agents with finite-horizons

save more. However, as we make explicit, this channel does not explain the long

decline in rates since life expectancy was flat until the 19th century (Wrigley et al.,

1997).3

In this paper, we propose a novel demographic channel that can explain the long

decline in interest rates. We introduce a model of endogenous fertility, in the spirit

of Barro and Becker (1988), where patience levels are heterogenous across agents and

calibrated to experimental micro-level evidence on the modern variation in levels of

patience.4 Since children are a form of saving in this model, and since patient agents

tend to save more than impatient agents, the model implies that patient agents will

have more children. If those children in turn inherit part of their parent’s higher pa-

tience levels, then societal patience will increase over time as a result of evolutionary

pressures that naturally select the most patient agents. We find that the contribu-

tion of selection – the difference between the implications of our heterogeneous-agent

model and a model of one dynasty – can explain much of the fall in the interest rate.

This conclusion is robust to a number of extensions to the baseline set-up, includ-

ing calibration to the historical path of population, incomes and life expectancy, and

to incorporating a Blanchard (1985)-type mechanism. Without a fully-specified and

calibrated model, we would be unable to assess the quantitative importance of each

of the channels.

Understanding the factors driving the real rate of interest over time is crucial for

long-term inter-temporal decisions that are associated with savings and investment

choices or future paths of innovation, as well as for the long-run sustainability of

public debt. Optimal policies to address very long-term, inter-generational optimiza-

tion problems, such as those associated with irreversible planetary climate change or

social-security funding, often hinge almost entirely on the rate at which the future is

discounted (see Weitzman, 2001; Arrow et al., 2013; and, Millner, 2019).

Related literature First, we contribute to the literature on the the role of se-

lection in economics. Galor and Moav (2002) propose a theory in which there is

3An additional mechanism could be a relationship between consumption and time preference
(Epstein and Hynes, 1983); again, the timing of the increase in consumption would not help explain
falling rates before around 1850.

4Specifically, the calibration of the distribution of patience in our model is based on the individual-
level data in the Global Preference Survey (GPS) described in Falk et al. (2018). We leave the detail
to section 3.2.

2



an evolutionary advantage to traits that are complementary to the escape from the

Malthusian trap. Following the demographic transition, higher incomes improve child

quality (greater human capital) instead of child quantity. While we capture a switch

in the aggregate time-series correlation between fertility and income, we find that

explicitly modelling human capital and the demographic transition is not necessary

to explain the decline in real rates. Closely related is Galor and Özak (2016), which

presents a dynamic model in which higher patience leads to better economic outcomes

and, consequently, greater reproductive success. Geographical variation in returns to

agricultural investment mean that the returns to patience also varies, an implication

that Galor and Özak find is consistent with empirical evidence. Our contribution is

to understand the relatively more recent dynamics in a way that complements the

very long-run comparative analysis in Galor and Özak.

We also relate to literature on evolutionarily stable preferences (Becker, 1976,

Rogers, 1994, and Robson and Szentes, 2008). Since we calibrate a dynamic model

that incorporates the shifting distribution of types, we are able to show just how long

it can take for such stable preferences to be realized. The closest to our set-up is

Hansson and Stuart (1990), in which the population growth of a dynasty is assumed

monotonically increasing in per-capita consumption. In our model, population growth

is a function of preferences and of the environment. The long-run in our model is the

result of a slow process of selection that leads to the most patient dynasty dominating,

a result which also echoes the Ramsey (1928) conjecture.5

Second, we connect to the economic history literature on the intergenerational

transmission of wealth. Clark and Hamilton (2006) shows that families around the

beginning of the seventeenth century with more wealth tended to have more surviving

children. Records going back to the mid-thirteenth century suggest a similar pattern.

For Clark (2007a), variation in reproductive success arises from the Malthusian rela-

tionship between wealth and survival. Since innate patience is more deep-rooted than

wealth, we view patience as the fundamental driver of differences in both dynastic

wealth and household survival.

Third, we relate to the growing literature on family macroeconomics (see Doepke

et al., 2019 for a recent survey). Doepke and Zilibotti (2008) in particular focuses

5Ramsey (op. cit., p. 559) conjectured that, in an economy populated by two groups each with
different levels of patience, “...equilibrium would be attained by a division of society into two classes,
the thrifty enjoying bliss and the improvident at the subsistence level.” See also Becker (1980).
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on the intergenerational evolution of patience across and within social classes as it

relates to parental decisions to invest in different characteristics of their children.

Since this mechanism operates at a shorter time horizon (no more than two to three

generations), such a channel is complementary to one driven by selection that operates

over much longer periods.

Fourth, our work connects to research on the drivers of the more recent decline in

global real rates (see, for example, the chapters in Teulings and Baldwin, eds, 2014).

Del Negro et al. (2018) isolate the role of growing risk and declining growth rates

in explaining the decline of the last ten years. Carvalho et al. (2021) consider the

demographic channel over 1990 to 2014, finding a significant role for life expectancy.

Structure In section 2 we introduce the evidence on the distribution and transmis-

sion of preferences. In section 3 we develop a Barro-Becker model of fertility with

heterogenous dynasties that differ according to their discount factor. We calibrate

the model and compare its quantitative implications to the historical record. Sec-

tion 4 extends the baseline model to incorporate endogenous capital accumulation,

a calibration of child costs, life expectancy and productivity to match the historical

path of population and income per capita, and a Blanchard (1985)-type mechanism

with a form of imperfect altruism in which life expectancy affects savings. Section

5 quantifies the contribution of selection to the decline in interest rates in each of

these models, and compares other implications of the model to historical data such

as the investment rate. Section 6 discusses the implications of imperfect transmission

or mutation of preferences. Finally, section 7 offers some concluding remarks.

2 Heterogeneity, transmission and fertility

Two facts motivate our departure from a standard model of endogenous fertility:

first, patience varies across individuals and, second, patience is inter-generationally

persistent. Andersen et al. (2008) elicit time and risk preferences in a representative

sample of Danes, while Alan and Browning (2010) use structural estimation and the

PSID. Both find similar heterogeneity in discount factors across individuals. More

recently, Falk et al. (2018) establish the substantial extent to which preferences vary

both between and within countries across the globe. Intergenerational transmission

of preferences, either by genetics, imitation or by socialization, has been identified

4



Figure 2: Patience and birth rates

i) European countries ii) All countries

Note: Panel i) reports the relationship beween country-level average patience in Falk et al.
(2018) and fertility rates (birth per woman) from WDI (2016). Panel ii) reports the same,
where we adjust the number of children by a proxy for the cost of children.

in studies on Danish and Bangladeshi families (respectively, Brenøe and Epper, 2018

and Chowdhury et al., 2022). Dohmen et al. (2011) has shown that other elements

of preferences are also persistent intergenerationally.

A third fact is implicit in standard models of fertility such as Barro and Becker

(1988): where children are a ‘normal good’, higher levels of patience will drive higher

demand for future consumption, including through consumption by future children.

This is supported by the evidence in Chowdhury et al. (2022, Table 6) which finds that

the number of children in the household is positively relative to the father’s patience.

The direct connection has not been investigated substantially beyond this, however.

In Appendix A.2, we use the German Socio-Economic Panel (SOEP) data and find

a robust, positive relationship between self-reported individual patience levels and

the number of children. This holds when we control for a large number of additional

variables, including age, net income, gender and household status.

We can also consider the cross-country relationship between patience and birth

rates.6 Figure 2 reports the country-level average patience documented in the Falk et

al. (2018) Global Preferences Survey (GPS) along with the fertility rate (births per

woman; WDI, 2016) in the year 2013. Since the cost of children varies considerably

across countries, we present in panel i) the relationship between the birth rate and

patience across European countries, where child costs may be relatively more similar.

6The relationship holds when we account for survival to adulthood.
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Panel ii) adjusts the birth rate by a proxy for the cost of children,7 the price level

of services in each country relative to the global average (Kuralbayeva and Stefanski,

2013). In both cases, the total investment in children is increasing in the country-level

average patience.

The above evidence together implies that parents that are more patient will have

more children than the average, and that the offspring of those highly patient parents

will be more patient than the average of their generation. This suggests that over

time a greater proportion of the population becomes more patient leading to higher

societal levels of patience.

3 A heterogenous-agent Barro Becker model

In this section we present a baseline model which introduces heterogenous agents

into a Barro-Becker fertility framework and allows us to quantify the role of selection

in explaining the interest rate. Section 4 extends this model to match the path of

population, income per capita, life expectancy, capital accumulation and a form of

imperfect altruism and shows that our baseline results continue to hold.

Baseline set-up Consider an economy with aggregate population Nt at time t

that consists of a finite number of dynasties, indexed by i = 1, . . . , I. Each dynasty i,

which consists of N i
t identical households, differs from other dynasties in its discount

factor, βi.8 Without loss of generality, the sequence {βi}Ii=1 is strictly increasing in

i, so dynasty I has the highest discount factor, βI . Each period every household is

endowed with a unit of labor that it inelastically provides in exchange for a wage, wt,

as well as a stock of non-reproducible capital (or land), ki
t, that it inherited from its

parent and that it rents out in exchange for a rental rate, rt. Each household of type

i solves the following utility maximization problem in each period t:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βiU i

t+1(k
i
t+1) (2)

7On measurement issues and available data see Deaton and Muellbauer (1986) and Donni (2015).
8Since households within a dynasty are identical, and since we obtain solutions to the model

in terms of dynasty-aggregates, we omit a household index. As we explain below, household-level
quantities are lower-case, so, e.g., cit is the time t consumption of an individual household in dynasty
i; dynasty-aggregates are upper case, so Ci

t is the sum of consumption by households in dynasty i
at time t.
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s.t. cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t, ni

t+1 = π + ni
c,t, ki

t+1 =
ki
t + xi

t

ni
t+1

.

As in Barro and Becker (1988, 1989), households derive utility from their own con-

sumption, cit, from the size of the household at the beginning of the next period,

ni
t+1, and from the next period average continuation utility, U i

t+1(k
i
t+1). Parents face

a trade-off when it comes to children: They enjoy bigger families, but at the same

time they derive welfare from children who are wealthier. Given their income from

supplying labor, wt, and renting out capital, rtkt, households choose the quantity of

their consumption, cit, the number of children to have, ni
c,t, and the quantity of capital

to accumulate, xi
t. The price of purchasing capital stock is given by pt. For simplicity,

we assume that the cost of a child is the same as the cost of a unit of consumption and

that the exogenous survival probability for existing households, π, are age indepen-

dent and constant across dynasties and time.9 The survival probability of children is

1 (this too can readily be generalized). Together, these assumptions imply that the

expected number of people in a household at the end of the period (and the beginning

of the subsequent period) will be ni
t+1 = π+ni

c,t. We assume that parents care about

their children equally and endow them each with the same share of accumulated cap-

ital (which may be negative10). Thus, parents face a quantity-quality tradeoff with

respect to the number of children à la Barro and Becker (1988, 1989). Finally, we

also assume that the child of an adult in dynasty i perfectly inherits the discount

factor βi (we discuss relaxing this assumption in section 6). This transmission can be

thought of as coming from genetics, imitation or socialization and, given the lack of

clear identification of mechanisms in the empirical literature described above, is left

as a reduced form assumption.

Discussion Two aspects of the above model merit further discussion. First, as in

Barro and Becker (1988, 1989), we assume in (2) a form of altruism. Part of altruism is

that parents enjoy larger families; another part is that parents care about the average

utility of children in future periods. This particular choice of utility function follows

Tamura (1996), Lucas (2002) and Bar and Leukhina (2010). In our model, however,

parents survive into the future with some probability, alongside their children. As

such, our discounting parameter not only captures the utility of children realized

9These assumptions have no impact on our key findings and we loosen them in section 4.
10Schoonbroodt and Tertilt (2014) shows how the possibility to endow negative bequests can

matter for efficiency in models of endogenous fertility.
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at different points in the future but also captures the future utility of the parent.

The implicit altruistic assumption we make is that, in terms of time discounting, the

future utility of children is treated the same as the future utility of parents. That

is, in each period a parent applies the same time discount factor to their own and

their children’s future utility, but the altruism implicit in equal-treatment of own and

descendant utility is itself unrelated to β.11 Given this assumption, and the fact that

parents live for multiple periods, the β captures time preference rather than altruism.

We refer to this form of altruism as ‘perfect’ since parents take account of all future

periods, i.e., they care about their descendants even after the parent dies. In order to

consider the sensitivity of our results to this assumption, we relax it in section 4 and

allow for a form of ‘imperfect’ altruism in which parents care about their children,

but only while they themselves are alive. This introduces a different effective weight

on a parent’s own future utility compared to the entire future of their descendant’s

utility.12 This also permits us to consider a Blanchard (1985) mechanism which may

be important in explaining a decline in interest rates that arises out of increasing

life expectancy observed after 1850. In the quantitative analysis, the contribution of

selection to explaining the decline in the interest rate remains similar in both cases.

Second, an assumption implicit in models of endogenous fertility is that parents

can always choose the number of children. Whether deliberate birth control existed

in the period before the demographic transition is a topic of recent debate.13 For

Clark and Hamilton (2006) and Clark (2007a), differences in survival rates across

groups, rather than fertility rates, led to changes in the composition of the population.

Either interpretation is consistent with our model. In the current set-up, we make

the assumption that all children survive to adulthood and so the endogenous choice

of the number of ‘children’ in our model is really a choice of the number of adults in

the dynasty in the next period. We can thus otherwise think of this as a choice to

allocate the resources in raising a child to adulthood. The mechanism in our model

holds whether the variation arises from endogenous birth rates, or whether it arises via

11The time-zero household problem in the appendix, equation (75), makes this clear.
12Again, this is distinct from the time preference parameter, as the time-zero household problem

shows. Changes to ω and πt do not affect the time discount.
13See Cinnirella et al. (2017), Clark and Cummins (2019) and Cinnirella et al. (2019). Clark et

al. (2020) found that parity dependent fertility control did not exist within marriage; de la Croix
et al. (2019) incorporate additional margins, such as the propensity to marry, the child mortality
rate and the rate of childlessness within marriage, and find that the net reproduction rate can vary
considerably across social groups, suggesting some fertility control.
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endogenous survival to adulthood through different parental investment decisions.14

Time-zero dynastic planners Since households care about the outcomes of their

future children, we can simplify the above problem and, by iterative substitution, re-

write the individual household problem in the framework of a time zero household of

each type (see Appendix C.2). Furthermore, since there are N i
0 identical households

in each dynasty i at time zero, we can also re-write the time zero household problem

from the perspective of a single dynastic planner for each type. At time t, there are

N i
t identical members of the dynasty of type i. Next period, the dynasty will be

comprised of the number of children produced by each household, ni
c,t (all of whom

are assumed to survive and become household heads in their own turn), and the

expected number of surviving adults. The number of households in dynasty i at time

t + 1 will thus be given by N i
t+1 = (π + ni

c,t)N
i
t = ni

t+1N
i
t . Dynasty-aggregate values

are Ci
t ≡ citN

i
t , N

i
c,t ≡ ni

c,tN
i
t , K

i
t ≡ ki

tN
i
t , X

i
t ≡ xi

tN
i
t and so we re-write the time-zero

household problem for the dynastic planner of each type as:

max
{Ci

t ,N
i
c,t,X

i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(3)

s.t. Ci
t +N i

c,t + ptX
i
t ≤ wtN

i
t + rtK

i
t

N i
t+1 = πN i

t +N i
c,t

Ki
t+1 = Ki

t +X i
t .

Following Lucas (2002), to ensure strict concavity of the objective we need to

assume that 1−α−βi > 0. Notice that the discount factor appears both as the term

used for discounting the future, but also as a preference weight for children. This

reflects the fact that current children are both an investment and a consumption

good in this model. In particular, the more patient agents place less weight on

current children as they are partially viewed as current consumption goods rather

than entirely investment goods for the future.

14We could separately consider these in a model where child mortality existed, and where the
‘fertility’ choice is partly the number of births and partly an investment in raising children to
adulthood.
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Firms The representative firm hires workers (Nt) and capital (Kt) to produce final

output (Yt). The profit maximization problem of the firm is given by:

max
{Kt,Nt}

Yt − wtNt − rtKt, (4)

where Yt = DKν
t N

1−ν
t is a standard Cobb-Douglas production function, D is the

exogenous level of technology and 0 < ν < 1 is the output elasticity of capital.

Market clearing Finally, the market clearing conditions are given by:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt = K̄,

Ct +Nc,t = DKν
t N

1−ν
t . (5)

We introduce endogenous capital formation in section 4.

3.1 Solution

We define a standard competitive equilibrium of the above in Appendix C.1. For

given parameter values, initial dynasty populations {N1
0 , . . . N

I
0 } and stocks of capi-

tal {K1
0 , . . . K

I
0}, the competitive equilibrium of the problem is characterized by the

following household first-order conditions with respect to choice of children and con-

sumption for each dynasty i = 1, . . . , I:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

, (6)

Ci
t+1

Ci
t

= βipt+1 + rt+1

pt
, (7)

as well as household budget constraints, firm first order conditions, market clearing

conditions and standard transversality conditions all derived in Appendix C.2. From

the household first-order conditions, we obtain the following two Euler equations that

describe the evolution of dynasty consumption and population:

Ci
t+1

Ci
t

= βiRt+1, t ≥ 0,
N i

t+1

N i
t

= βiR̃t+1, t ≥ 1, (8)
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where Rt+1 ≡
(

pt+1+rt+1

pt

)
is the gross real interest rate on capital and R̃t+1 ≡

Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π)
is the shadow gross real interest rate on dynasty population.15

Since the interest rates are common across dynasties, we can obtain expressions

relating the relative evolution of total consumption and population for any two dy-

nasties. Using repeated substitution, together with market clearing conditions, we

can obtain the shares of consumption and population of each dynasty relative to

economy-wide aggregate consumption and population, respectively, as a function of

the initial distribution of dynasty-specific consumption and population:

Ci
t

Ct

=
(βi)tCi

0∑I
j=1(β

j)tCj
0

, and,
N i

t+1

Nt+1

=
(βi)tN i

1∑I
j=1(β

j)tN j
1

, (9)

for t ≥ 0. Note that given the initial distributions, the evolution of a particular

dynasty’s population and consumption shares depends only on that dynasty’s patience

relative to the patience of other dynasties. In particular, recalling that dynasty I is

most patient, the above expressions imply that as t → ∞, so
NI

t+1

Nt+1
→ 1 and

CI
t+1

Ct+1
→ 1

whilst, for all i < I,
N i

t+1

Nt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. This means that the total consumption

and population of the most patient dynasty will dominate the economy over time

(consistent with the Ramsey (1928) conjecture). As t → ∞ the model collapses to

standard homogenous agent model with discount factor βI and a standard Barro-

Becker steady state. Consequently, if we derive the steady state, the model can be

solved with a variation of the reverse-shooting algorithm.16

3.2 Calibration

The key aim of the calibration is to replicate the increase in world population from

1300 to 2000 and to fit the variance of patience types using modern experimental

data. Section 4 extends the calibration to match the exact paths of global population

and income per capita. Model parameters and their calibrated values are summarized

in Table 1 and discussed in more detail in Appendix C.4.

One period in the model is 25 calendar years and period zero in the model cor-

responds to the year 1300 in the data. We normalize the level of technology so that

15These two interest rates differ since children are both a consumption and an investment good,
whereas capital is only an investment good.

16For details of this derivation and specifics of the algorithm see Appendices C.2 and C.3.
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Table 1: Model parameters
Parameter(s) Value Target/Description/Source
D 1 Normalization
N0 0.370 Aggregate population, 1300, The Maddi-

son Project (2013)
K̄ 11.722 Aggregate population, 2000, The Maddi-

son Project (2013)
ν 0.190 Land share, Caselli (2005)
π 0.667 Adult life expectancy of 75
I 10000 Number of types

{βi}Ii=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

α 0.427 Consumption share (see Appendix)
β̄ 0.573 Max. (generational) discount factor
{γ28, δ28} {32.089,53.531} Standard deviation of discount factors

(Andersen et al., 2008; Falk et al., 2018)
and long run rate of return (see Appendix){

N i
0

N0

}I

i=1
See text Andersen et al. (2008) & Falk et al. (2018){

Ki
0

K0

}I

i=1
See text Consistency (see text)

D = 1. The initial level of population is set to be N0 = 0.370 corresponding to a

world population of 0.37 billion in 1300 and the aggregate land supply, K̄ = 11.722,

is chosen so that the model reproduces a global population of 6.08 billion at period

28 (the year 2000) in the model (The Maddison Project, 2013). The land elasticity

of the production function is set to ν = 0.190 to match the share of land in value

added found by Caselli (2005). We assume that all children survive into adulthood

(25 years) and set π = 0.67 to yield an expected lifetime of 75 years.

We specify the number of dynasties to be I = 10, 000.17 We discuss the grid

of βs and the bound on this grid in appendix C.4. Finally, we need the initial

distribution across dynasties of capital, {Ki
0}

I
i=1, and population, {N i

0}
I
i=1. This data

is not readily available for the year 1300. Instead, our calibration strategy will rely,

first, on an assumption that the model was in equilibrium prior to our initial period,

and, second, on using the model to obtain the relative initial population of each

17This is largely a computational choice which makes little difference to our results for a large
enough number of dynasties. If too few dynasties are chosen, the resulting transitions are non-
smooth. Since we view our model as largely approximating a near-continuous distribution of types
in the data, we select a large number of types in the calibration.

12



dynasty from modern data.

Initial capital and population distribution As described in Appendix C.4, the

initial distribution of capital is chosen such that population growth rates are solutions

of the model from period t = 0. In practice, this means assuming that the second

equation in (8) holds for t = 0 which in turn implies that the expression for relative

population growth also holds at t = 0:

N i
1

N j
1

=
βi

βj

N i
0

N j
0

. (10)

Since we do not have data on the population distribution of patience in the year

1300 (t = 0 in the model), we choose our period-zero distribution of types so that the

model replicates evidence (which we describe below) on the variance of types in the

year 2000 (t = 28 in the model). The second expression in (9) gives the population

share of each dynasty over time as a function of the t = 1 population share and each

dynasty’s level of patience. Using this and (10), we have the t = 0 population share

of each dynasty i relative to dynasty I:

N i
0

N I
0

=
N i

t

N I
t

(
βi

βI

)t

, (11)

With evidence on the distribution of patience at some later date t, we could thus

calibrate the initial distribution of the population across levels of patience. One

problem with this approach is that modern data will capture only a censored portion

of the full initial distribution of preference types: even the most populous dynasties

of the year 1300 could be completely indiscernible in data for the year 2000.18 To

address this issue, we assume that the distribution of generational discount factors in

the population follows a scaled beta distribution defined on (0, β̄), with cumulative

distribution function, F (·) given by:

F (β; t) =
B
(
β/β̄, γt, δt

)
B(γt, δt)

. (12)

18For example, consider two dynasties i and j with discount factors βi = 0.05 and βj = 0.5. From
equation (11), the relative size of the two dynasties in the year 2000 (t = 28) and the year 1300

(t = 0) will differ by a factor of
Ni

0/N
j
0

Ni
28/N

j
28

=
(

βi

βj

)28
= 10−28.

13



In the above, B(γt, δt) and B
(
β/β̄, γt, δt

)
are the complete and incomplete beta func-

tions, respectively, and γt, δt > 1 are two potentially time-varying shape parameters

that determine the mean and dispersion of the distribution.

There are a number of reasons for choosing this distribution. First, this distri-

bution can be defined on any positive sub-interval, and thus is useful for considering

discount factors which are naturally bounded. Second, it is a flexible distribution

often used to mimic other distributions, both skewed and centered, given appropriate

bounds. Finally, the beta distribution is also intimately linked to the evolution of the

population distribution implied by our model, as Theorem 1 shows.

Theorem 1. If I → ∞ and dynastic discount factors are distributed according to

a scaled-beta distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period

t̄, then dynastic discount factors will also be distributed according to a scaled beta

distribution in period t̄+1 on (0, β̄) with shape parameters γt̄+1 = γt̄+1 and δt̄+1 = δt̄.

Proof. See Appendix F.

Theorem 1 establishes that if discount factors obey a scaled-beta distribution in

any one period then they will follow a scaled-beta distribution in all other periods.

Since the theorem also pins down the evolution of shape parameters over time, the

choice of year in which to calibrate is irrelevant. An immediate implication of the

Theorem is that we can derive expressions for the mean and variance of generational

discount factors at any time t:

Et(β) = β̄
γ0 + t

γ0 + t+ δ
and vart(β) = β̄2 (γ0 + t)δ

((γ0 + t) + δ)2(γ0 + t+ δ + 1)
(13)

It also follows (see Appendix F.3) that we can approximate the gross interest rate by:

Rt+1 ≈
1

Et(β)
. (14)

Over time, societal patience increases and leads to falling interest rates. As t → ∞,

the mean beta converges from below to β̄ and the variance goes to zero: thus the agent

with the highest discount factor comes to entirely dominate the economy. We set γ28

and δ28 to match global variance of discount factors using experimental data from

representative individuals in Denmark (Andersen et al., 2008) and individual-level

data from the Global Preference Survey (GPS) (Falk et al., 2018) as well as average

14



generational rates of return on global equities. Appendix C.4 provides further details.

Appendix D.3 demonstrates robustness to alternative calibrations of the extended

models that we introduce in section 4.

3.3 Quantitative results

Figure 3 shows the growth of population and its changing composition over time.

Panel i) shows that the baseline model matches the increase in the level of world

population over the period, but not the path (which we target in section 4). Next,

we examine the predictions of the model for the distribution of patience levels in

the population in panels ii) and iii). In 1300, societal patience is low and virtually

no-one belongs to the dynasties with β > 0.2 (an annual discount factor of around

0.94). More patient households however, will tend to have more children who in

turn will have the same higher levels of patience as their parents. The distribution

of the population will thus shift towards higher levels of patience as relatively more

patient households are born. By 1900, the median dynasty will have a discount

factor of around β = 0.2. Panel iii) shows that the consequence of this process is the

monotonic increase in the level of societal patience over time. Panel iv), also shows

that the mean-normalized standard deviation of patience decreases monotonically

as the population becomes concentrated in the most patient dynasties, eventually

reaching a mass point at the most patient dynasty.

To examine the changing composition of the population over time, we split dy-

nasties into six groups by their level of patience. Figure 4i) shows the relative size

of each group over time. The world starts out being dominated by the least patient

agents, group βa, who in the year 1300 account for around 90% of the total popula-

tion. Over time, since they have fewer children than more patient groups, the share

of these agents falls and the group with the next highest patience level, βb, takes their

place, accounting for more than 90% of the population by 1600. This continues until,

eventually, the entire population is dominated by the most patient group of agents.

This figure emphasizes the findings shown in Figure 3: the mean level of population

patience shifts steadily upwards. The transition from least to most patient is not

instantaneous – each dynasty and group of dynasties has their rise to and their fall

from dominance of the overall population. Panel ii) shows the consumption levels of

each group over time, and makes clear that the waves depicted in panel i) occur along
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Figure 3: The rise of societal patience
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Note: Panel i) shows aggregate population. Panel ii) shows the distribution of levels of
patience (the generational β) at 600-year intervals starting in the year 1300 and ending
in 6100. The dashed vertical line is at β̄. Panel iii) depicts the societal average level of
generational patience over time. Panel iv) shows the mean-normalized standard deviation
of patience in the population over time.

with substantial growth in the aggregate population.

The key to understanding the cyclical outcome for groups lies in Figure 4 iii),

which reports the evolution of capital owned by each group. Since agents are able

to lend and borrow capital in making optimal choices of consumption and children,

the βa-group of dynasties at first begins to borrow from the more patient dynasties

in order to substitute away from children toward the current consumption good.

The extent to which the most impatient dynasties can increase their consumption

depends then on the population size of, and the capital owned by, the relatively more

patient types. The growth of the βb-group thus facilitates the (relative) decline of

the βa-group since there emerges a larger and larger market for their capital. As
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Figure 4: Characteristics of groups and inequality over 1300–2100
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Note: Each panel i)–iii) reports the sum of the model output across all dynasties in the
group of dynasties defined in the legend. Panel iv) reports the Gini coefficient calculated
based on individual wealth.

the βa-group diminishes, so the βb-group emerges as the largest population and the

dominant owner of capital. The eventual emergence of the βc-group then yields to the

βb-group the increasing opportunity to sustain high consumption through sale of their

capital holdings. In panel iv), we summarize the evolution of capital via a measure of

inequality. We can see that inequality, as measured by the Gini coefficient, declines

over time. Since wealth is evenly distributed within a dynasty, as the distribution

across types becomes more concentrated, the overall distribution of wealth becomes

more even.
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Figure 5: Interest rate decline in the baseline model
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Note: Data is the Schmelzing (2020) global real interest rate. The model in panel i) is our
baseline model with heterogenous agents whose distribution of patience is calibrated at the
year 2000. The model in panel ii) is a homogeneous-agent baseline, in which there is one
dynasty calibrated to match the average patience in the year 2000 in the heterogenous agent
model. Data and model are normalized to zero in the year 2000. We report annualized
interest rates.

Selection and the interest rate Finally, we turn to the role played by selection

in generating the decline of the interest rate. To isolate this mechanism we compare

our heterogenous agent model to a corresponding homogenous agent model comprised

of only one dynasty. In the homogenous agent model, we set the discount factor of

the single dynasty to match the mean level of patience in the heterogenous agent

model in 2000. Figure 5 depicts the change in the interest rate predicted by each of

the models.19 The model with heterogenous agents can account for a nine percent-

age point drop in interest rates, while the decline in the homogenous agent model

is less than two percentage points.20 The difference between the heterogenous and

homogenous models arises from our selection mechanism which is critical to explain-

ing the decline in interest rates over the past 700 years. Note that in addition to

19We normalize the interest rate to the year 2000 since we do not target the year 2000 interest
rate in Schmelzing explicitly. Figure 11 in Appendix C.5 reports the non-normalized data.

20The decline in the homogenous agent model occurs due to a (counterfactually) slowing growth
rate that arises because of convergence dynamics. Specifically, as population increases, consumption
grows but it does so at a decreasing rate as the economy approaches its steady state capital-labour
ratio. By equation (1), this slowing growth rate of consumption depresses the real rate, even with a
fixed β.
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matching the decline of the interest rate, our model also captures the slowing rate of

the decline. In section 5 we turn to a quantification of selection in the baseline and

extended models to determine just how robust the role of selection is. Before doing

so, we introduce extensions to the baseline model in order to incorporate a number

of potentially salient features of this period.

4 Model extensions

Section 3 presented a minimal deviation from a standard Barro-Becker fertility model

in order to demonstrate the role that selection can play in driving falling interest rates.

In doing so, we neglected a number of other key changes over the period. In particular,

we now introduce endogenous capital and calibrate the model to fit population growth,

income per capita growth and changing life expectancy. We also allow for a Blanchard

(1985)-type mechanism in which life expectancy impacts savings. In Section 5 we

evaluate the quantitative performance of these models in accounting for the data.

Extended household problem First, we make capital endogenous by assuming

that it is reproducible, depreciates at a rate δ > 0 and can be accumulated via

investment of retained output, xt. Second, we assume that firm productivity, Dt,

can vary exogenously over time. Third, we allow child costs to vary according to

an exogenous price qt ≡ D
1

1−ν

t at. In this expression, the productivity term captures

the rising costs of raising children to adulthood, and at is an exogenous shock to

child costs which we calibrate to match the path of population growth.21 Fourth, we

allow the probability of death, πt, (and hence life expectancy) to vary exogenously

over time to match the historical evidence. Finally, we allow for a form of imperfect

altruism in which parents care about their children’s future average utility, but only

while they themselves are alive. Changes in life expectancy then influence the interest

rate if an individual parent’s own finite horizon enters into their decision-making (see

21Since we have assumed that the cost of raising children is paid in terms of the final good, we
need to assume that the goods cost of children grows in proportion to income, much like in Lucas
(2002) and Bar and Leukhina (2010), to ensure the existence of a balanced growth path. As in those
studies, we take changes in qt to be a reduced form means to capture laws that prevent children
working, the introduction of mandatory education, parents spending more time with children, etc.
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Blanchard, 1985). Given the above, each household i’s problem at time t is now:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βi(πt(1− ω) + ω)U i

t+1(k
i
t+1). (15)

s.t. cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t, ni

t+1 = πt + ni
c,t, ki

t+1 =
ki
t(1− δ) + xi

t

ni
t+1

.

In the above ω ∈ [0, 1] is a parameter that captures a particular form of imperfect

altruism that parents may have for their children. If ω = 1, we return to the baseline

preferences of section 3 where parents are perfectly altruistic towards their children.

Setting ω = 0, introduces a form of selfishness in the sense that parents care about

their own future utility and the utility of their descendants, but only so long as

they themselves are alive. In the extreme case that survival probability goes to zero,

agents would care only about present consumption and the number of children that

they have. As such an increase in life expectancy (captured by an increase in the

survival probability, πt) extends the horizon over which parents consider future utility,

meaning that parents care more for the future and save more, potentially depressing

interest rates. The above problem then aggregates up in a standard fashion for

a time zero household and the dynasty planner (see Appendix D for details) with

corresponding capital variables representing dynasty aggregates.

The firm’s problem remains largely unchanged, with the exception of the exoge-

nously varying Dt and the endogenously varying Kt. Market clearing conditions are

also the same, with the exception of the following:

Ct + qtNc,t +Xt = DtK
ν
t N

1−ν
t ,

I∑
i=1

Ki
t = Kt. (16)

Calibration The calibration, which we summarize here, targets global data and is

similar to the baseline (full details are in Appendix D.2). First, productivity Dt is

chosen to match observed output growth rates. Second, the depreciation rate is chosen

to match a standard annual rate of depreciation of 10% so that δ = 1− (1− 0.1)25 =

0.93 and the capital share is set to ν = 0.33 (Gollin, 2002). Third, the initial capital

stock in the year 1300 is assumed to lie on the saddle path; that is we are assuming no

initial jumps in capital stock in 1300.22 Fourth, we set πt exogenously to reproduce

22This is a simplification that quantitatively has very little impact on the result, since capital
adjusts quickly.
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Figure 6: Population and output per worker
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Note: Data is from The Maddison Project (2013). Baseline is the model in section 3.
Growth and Blanchard are the models in section 4 with ω = 1 and ω = 0 respectively. See
text and Appendix D.2 for details of the calibration.

life expectancy in the data. Fifth, while we do not model the demographic transition

explicitly, we capture the path of population by exogenously changing the price of

children, qt, by choosing at to match the observed global population over time. The

above allows the model to reproduce observed output per worker and population

growth in the data.

For all of our quantitative results, we report two forms of this extended model,

one with and one without the Blanchard (1985) mechanism. What we refer to as the

‘Growth’ model, where we set ω = 1, is the baseline model with endogenous capital

accumulation and the calibration to match population, income per capita, and life

expectancy; what we call the ‘Blanchard’ model, where ω = 0, is the Growth model

with the addition of the full Blanchard mechanism.23 As can be see in Figure 6, both

versions of the extended model match the path of global population and income per

capita more satisfactorily than the baseline.

23Since there is no clear way to calibrate ω, we report the two extreme cases.
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Selection The role of selection can be illustrated with the following:

Rt+1 ≈
gNtg

1
1−ν

Dt

Et(β)(ω + (1− ω)πt)
. (17)

This approximation is an analogue to equation (1) and is a generalization of that de-

rived in the baseline model (equation (14)). It illustrates the three key forces driving

changes in the interest rate: 1) the time-varying growth rate of consumption as cap-

tured by population (gNt) and productivity growth (gDt); 2) changes in life expectancy

as captured by changing survival probabilities (πt) in the presence of imperfect altru-

ism (ω < 1); and, 3) selection-driven changing societal patience as captured by the

expected value of the discount factor, Et(β). Without our selection mechanism, in

a model with homogenous agents, Et(β) is simply a constant and the interest rate

is driven by factors 1) and 2) alone. Population and productivity growth increase,

especially after the industrial revolution, and thus cannot help explain falling interest

rates. Life expectancy also increases during the demographic revolution (which occurs

after the industrial revolution) and thus can help explain the decline post 1850 but

not earlier and not to a quantitatively significant degree. However, with our selection

mechanism, Et(β) increases over time and we show that changes in the mean value

of beta driven by selection are large enough to explain a large part of the observed

decline of interest rates, irrespective of the other mechanisms.24

5 Quantitative performance

In this section we consider the performance of each of the models in explaining the

historical decline in the interest rate, as well as the contribution of selection to this

decline which is the main focus of the paper. In order provide further external validity,

we also look at how the quantitative implications of the model fit other facts such as

the implied trend in the savings rate, the relationship between surviving children and

wealth, and the response of the interest rate to economy-wide shocks such as wars

and pandemics.

24The derivation of which is in Appendix F.3
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5.1 Selection and the decline in the interest rate

The quantitative results for the path of the interest rate in each model (both the

heterogeneous- and homogenous-agent versions of both the Growth and Blanchard

models) are shown in Appendix Figures 14-15. In the ‘Growth’ model we see a

decline in the interest rate of over six percentage points. This is less than in the

baseline because, as can be seen in Figure 14i), the increase in productivity growth

after 1750 generates a counter-factual increase in interest rates. The homogenous-

agent version of this extended model does even worse in explaining the fall in rates,

as Figures 14ii) makes clear. In the absence of selection, the rise in productivity

growth points to an increase in interest rates of more than two percentage points

over this period, which is counter to the data. Finally, the ‘Blanchard’ model goes

some way to mitigate the effect that rising productivity has in causing interest rates

to increase as Figure 15i) shows; overall, the heterogenous-agent Blanchard model

points to an eight percentage point decline. In the homogenous-agent model, rising

life expectancy completely counteracts growing productivity and population, resulting

in the two channels largely cancelling themselves out. Without a selection mechanism,

the homogenous-agent model results in a fall from 1300 to 2000 of only 61 basis points

in the interest rate as can be seen in Figures 15ii). Thus, here too, selection generates

nearly all the change in the interest rate. As is clear, although some (less than half

of one percentage point) of the remaining portion of the decline may be explained

by increasing life expectancy in the Blanchard (1985) extension (mostly in the latter

half of the series), the majority of the decline in the model arises entirely from the

effect of selection.

As in section 3, we measure the contribution of selection as the difference between

interest rates in the heterogenous and homogenous versions of the model. The top

panel of Figure 7 depicts the contribution of selection in each of the models against the

trend in the data. Selection explains a large portion of the total decline in the interest

rate in all three models. The bottom panel in Figure 7 quantifies the role of selection.

We report three potential measures of success: 1) the absolute decline between the

initial and final observation; 2) the average decline (based on a the regression on a

time trend); and, 3) the absolute difference between the maximum and the minimum

interest rates over the period. Selection in the models explains between 97 and 116%

of the decline using the first measure, between 59 and 69% using the second measure

and between 53 and 69% using the third measure.
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Figure 7: Selection and the interest rate
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Note: Data is the Schmelzing (2020) global real interest rate. Baseline is the model in
section 3. Growth and Blanchard are the models in section 4 with ω = 1 and ω = 0
respectively. The data and model outputs are normalized to zero in the year 2000. We
report annualized interest rates. The contribution of selection is the difference between the
heterogenous- and homogenous-agent model results. R1325−R2000 is the difference between
the initial and final observation; Avg. decline is calculated from a regression of the model or
data on a time trend, which is then used to obtain an average decline over the whole period;
max−min is the maximum less the minimum over the whole period. Appendix Table 8
reports the metrics for heterogenous-agent and homogenous-agent models separately.

5.2 Further quantitative implications

In the extensions to the baseline model, we found that selection remained key to

matching the decline in the interest rate. An advantage to using a quantitative

model is that its implications can be compared to additional data not targeted by

the calibration which provides further external validity to the model’s mechanisms.

Below we briefly discuss four such exercises by examining the path of the savings

rate, the relationship between fertility and income and between wealth and surviving

children, and, the response of the interest rate to shocks.
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Saving and investment An implication of steadily rising average patience is that

savings rates should also increase over time.25 Sutch, ed (2006) documents an increase

in the gross private saving rate in the U.S. from around 10% to over 30% over the

period 1834–1909. The savings rate then declines, particularly in the latter half

of the twentieth century.26 In the UK, the household savings rate grew from less

than 5% in the nineteenth century to around 10% in 2000 (Thomas and Dimsdale,

2017). Data prior to the nineteenth century on household savings is scarce, but data

on investment is available for the UK. Figure 8 reports the UK investment rate from

1300 to 2000 (using Broadberry and de Pleijt, 2021 and Thomas and Dimsdale, 2017).

As can be seen, the trend in the investment rate is increasing over the 700 years,

accelerating after 1900. The investment rate in the models with capital accumulation

are also reported. As would be expected, the investment rate increases over time as

societal patience grows. The ‘Growth’ model captures the level and the trend in the

investment rate up to around 1800. Given that nothing in the calibration is intended

to target these objects, we consider the fit to the data to be validation of the role of

increasing societal patience.

Income and fertility The model implication for fertility rates over time is given

in Appendix Figure 16i). This has the same pattern as in the data (see Galor, 2005;

Bar and Leukhina, 2010), in particular, an initial increase in fertility at the onset of

the industrial revolution followed by a rapid decline. Country-level cross-section and

time-series evidence point to the negative correlation between income and fertility

that we see above some level of income (see Appendix Figure 16ii)).27 For Galor and

Moav (2002), key to explaining this change is an endogenous switch in the causal

relationship between the level of income and fertility. In our model, we capture a

negative time-series correlation in our model but it is the result of exogenously varying

the child cost to match the growth rate of population over time. At the individual

level, our model still points to a positive relationship between income or wealth and

fertility. Evidence from household-level data using exogenous wealth shocks supports

25We are grateful to an anonymous referee for prompting us to make this connection between the
model and the data.

26Much of the twentieth century variation in savings rates, at least for the U.S., has been shown
to be the result of government transfers and of changes to consumption propensities which may be
attributed to policy intervention (see, e.g. Gokhale et al., 1996).

27See, for example, Galor and Weil (2000) and Manuelli and Seshadri (2009).
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Figure 8: Investment rate, 1300–2000
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Note: The data for the investment rate is for Broadberry and de Pleijt (2021) over the
period 1300–1825 (which covers England up to 1700 and Great Britain thereafter) and
from Thomas and Dimsdale (2017) for 1875–2000. For 1850 we take the mean of these
two series. Growth and Blanchard are the models in section 4 with ω = 1 and ω = 0
respectively. Recall that aggregate capital is fixed in the baseline model thus aggregate
investment rate is zero and hence not shown.

a positive causal relationship between income and fertility.28 Kearney and Wilson

(2018) use the fracking boom to isolate exogenous variation in income, finding a

positive relationship between (male) earnings and household fertility. Bennett et al.

(2021) use the discovery of oil and gas in the North Sea as an unexpected shock, find

a positive relationship between income and the number of children. Variation in the

cost of children over time could proxy for an increase in investment per child akin

to the growing importance of human capital. It could also be a reduced form means

to account for laws that prevent children working, the introduction of mandatory

education, parents spending more time with children, and so on. To summarize,

our model is captures the negative relationship between income and fertility at the

aggregate level, while at the same time remaining consistent with the micro evidence

on the individual-level relationship between wealth and the number of children.

Wealth and survival Clark and Hamilton (2006) uses English probate records over

the period 1585–1638 to show that richer households tended to have more children

28See Black et al. (2013) and Lovenheim and Mumford (2013).
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than poorer households. The typical will in the Clark and Hamilton data includes the

names of nearly all surviving children of the testator, along with the value of bequests

both of the main property in the estate as well as small items for each child. Using

this data, they show that the number of children surviving at a father’s point of death

is positively related to the total value of the assets bequeathed to those children.29

To compare the results of our model with the bequest data, in Appendix E.1

we obtain an expression for the expected number of surviving children, and the size

of bequests, at the period of death of the parent. Appendix Figure 17 reports our

model prediction (in the baseline set-up) for the year 1650, normalizing bequest levels

by their median size at that point in time. Qualitatively, both the model and the

data predict a non-linear, positive relationship between the value of bequests and the

number of surviving children. Moreover, up to bequests of five times the median level,

the quantitative predictions of the model are very close to the data.

The mechanism generating the positive relationship between wealth and children

in our model stems from the positive connection between patience and fertility as

well as between patience and wealth. More patient households place a greater value

on future consumption and hence save more, both in terms of physical capital and

in terms of children. While ‘survival of the richest’ does indeed hold empirically, the

driving mechanism for our relationship is the ‘survival of the patient’.

Shocks: pandemic and war While our models are entirely deterministic, we can

examine the effects of unexpected shocks, like those arising from a pandemic or war,

on the distribution of population or capital and compare them to data. We conduct

these counterfactuals in the baseline model and summarize the implications below.

Appendix E.2 provides all the details.

We model a pandemic as an event where a constant fraction of each dynasty

unexpectedly dies at the start of a period. The net capital holdings of the deceased

households are re-distributed equally among remaining members of the dynasty. We

suppose a 30% mortality rate, a shock of similar magnitude to the medieval Black

Death. A pandemic means that capital is relatively abundant and so the rate of

return on capital, the interest rate, drops in the period of the shock by nearly 1.5

percentage points. Subsequently, the interest rate is marginally higher than in the

29While the likelihood of writing a will is naturally contingent on having positive assets to be-
queath, Clark and Hamilton documents that wills were made by a cross section of society of all
social classes, including labourers with limited possessions.
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baseline, driven by a higher population growth rate as the economy returns to its pre-

shock growth path.30 This pattern for interest rates is consistent with the findings in

Jordà et al. (2020) who show that the immediate response of the interest rate to a

typical pandemic is a fall of the real rate, with effects lasting up to 40 years after the

end of the pandemic on average. Finally, a pandemic acts to reduce the level of wealth

inequality in the economy. The relative scarcity of workers after a pandemic drives up

wages for those who survive and results in households that rely more on wages than

rental income to accumulate greater quantities of capital. This is consistent with the

work of Alfani and Murphy (2017) who finds a large decline in economic inequality

driven by a similar mechanism in much of Europe during and after the Black Death.

Next, we consider a counterfactual akin to a large war. We model this as a

permanent destruction of 30% of each dynasty’s net capital holdings. We see an

immediate increase in interest rates followed by lower than baseline rates driven by

lower population growth, and an increase in inequality that decays over time due

to lower wages. Again, the estimates in Jordà et al. (2020) for the impact of war

on the interest rate are qualitatively consistent with the predictions of our model.

Furthermore, Vandenbroucke (2014), finds that fertility falls as a result of war due

to the chance of lost future household income. In our counterfactual, war causes

a permanent decline in steady state output, and lower population in the long run.

While not exactly the same mechanism, our simple counterfactual and the careful

empirical analysis in Vandenbroucke generate similar implications.

6 Imperfect transmission

Thus far, we have assumed that the level of patience within a dynasty is perfectly

transmitted across generations. In reality, transmission is likely to be imperfect due

to factors such as mutation, changing patterns of socialization or mean-reversion.

An immediate question is whether such imperfect transmission slows the process of

selection and hence diminishes its role in driving the declining interest rate.

To address this issue we consider a simple extension to the baseline model where

some portion of children in dynasty i inherit their level of patience from {βi−ε, βi+ε}
for some ε > 0. Children with a positive shock have what is called an advantageous

30Higher population growth rates lead to higher interest rates since they make an investment today
be worth more tomorrow since capital will be relatively more scarce, given the higher population.
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mutation (one that reduces fitness); whilst those with a negative shock have a dele-

terious (which increases fitness) mutation. One consideration is whether such noise

is distributed symmetrically or whether it is skewed toward the mean of the pop-

ulation. While Brenøe and Epper (2018) and Chowdhury et al. (2022) find strong

transmission in patience across generations, neither study identifies the existence of

asymmetric transmission. We thus consider the case of symmetric noisy transmission

and its implications.

Specifically, in Appendix G we develop a version of our baseline model which

incorporates mutation as an unanticipated shock to an agent’s discount factor. In

the model setting, such ‘mutation’ is a reduced form way to consider the implications

of imperfect transmission of preferences in general. Those agents that experience a

deleterious mutation have very small effects on population growth and interest rates.

Those that receive an equal-sized, but advantageous mutation can have large and long-

lasting consequences since those agents begin to accumulate a greater share of capital

and have a larger number of children (who themselves inherit the higher patience

level). This highly asymmetric response to a symmetric shock demonstrates that

even a small and ongoing process of imperfect transmission would serve to accelerate

the pace of selection and the decline in the interest rate.

If some form of asymmetric, mean-reverting transmission did exist, it would need

to be very strongly mean-reverting in order to offset the consequence of even a small

number of advantageous mutations. Given the complexity that such skewed mutation

bring to the model, given that there is no immediate way to calibrate such noisy

transmission in general, and given the limited evidence in the literature to guide us

in calibrating any potentially asymmetric mutation, we leave a fuller analysis of the

implications of skewed imperfect transmission to future research.

7 Concluding remarks

We introduced a simple fertility model with heterogenous preferences, calibrated to

the modern-day distribution in patience, and showed that the process of natural se-

lection can explain the trend in the interest rate over the last eight centuries. The

role of selection is robust to incorporating a number of extensions and to alternative

calibration. There are many further implications to consider. First, in our model the

population shift toward more patient types occurs partly via trading in capital. This
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suggests a potentially important relationship between the constraints on trade or bor-

rowing, the evolution in the population and the interest rate. Second, we have focused

on a simple form of the intergenerational transmission of preferences and pointed to

some implications of imperfect transmission. We leave to future work a fuller con-

sideration of the role of the strength and bias of transmission across generations.

Moreover, we studied heterogenous patience levels as the only time-varying element

of societal preferences. The evidence on the heterogeneity of altruism, risk aversion,

and other preferences, together with their intergenerational transmission and effect

on fertility, suggests that a number of additional further preference heterogeneities

could evolve over time alongside time preference. Third, we have focused our model

on its implications for the interest rate but our time period encompasses the onset of

the industrial revolution and periods of mass migration. While we captured the path

of income and population by exogenously varying child cost and productivity, these

items could potentially be made endogenous. The role for the evolution of societal

preferences in explaining these changes is left for future work.

Finally, we noted in the introduction that understanding social discount rates is

critical in formulating optimal policies to address very long-term, inter-generational

problems such as those that relate to the funding of social security programmes and

that address climate change. What is clear from our analysis is that such policy

should take into account not only that the social discount rate evolves over time in a

predictable fashion, but that path is not independent from some policy interventions.

Understanding the short- and long-run relationship between the social discount rate

and policy interventions is an important avenue for future research.

References

Alan, Sule and Martin Browning, “Estimating Intertemporal Allocation Pa-

rameters using Synthetic Residual Estimation,” The Review of Economic Studies,

October 2010, 77 (4), 1231–1261.

Alfani, Guido and Tommy E. Murphy, “Plague and lethal epidemics in the

pre-industrial world,” Journal of Economic History, 2017, 77 (1), 314–43.

Allen, Robert, “The Great Divergence in European Wages and Prices from the

Middle Ages to the First World War,” Explorations in Economic History, 2001, 38

30



(4).

Andersen, S., G. W. Harrison, M. I. Lau, and E. E. Rutström, “Eliciting

Risk and Time Preferences,” Econometrica, 2008, 76 (3), 583–618.

Arrow, K. J., M. Cropper, C. Gollier, B. Groom, G. Heal, R. Newell,

W. Nordhaus, R. Pindyck, W. Pizer, P. Portney, T. Sterner, R. S. J. Tol,

and M. Weitzman, “Determining Benefits and Costs for Future Generations,”

IPCC Policy Forum, 2013.

Bar, Michael and Oksana Leukhina, “Demographic transition and industrial

revolution: A macroeconomic investigation,” Review of Economic Dynmics, 2010.

Barro, Robert J. and Gary S. Becker, “A Reformulation of the Economic Theory

of Fertility,” Quarterly Journal of Economics, February 1988, 103 (1), 1–25.

and , “Fertility Choice in a Model of Economic Growth,” Econometrica, March

1989, 57 (2), 481–501.

Becker, Gary S., “Altruism, Egoism, and Genetic Fitness: Economics and Sociobi-

ology,” Journal of Economic Literature, 1976, 14 (3), 817–26.

Becker, Robert A., “On the Long-Run Steady State in a Simple Dynamic Model

of Equilibrium with Heterogeneous Households,” Quarterly Journal of Economics,

1980, 95 (2), 375–82.

Bennett, Patrick, Chiara Ravetti, and Po Yin Wong, “Losing in a Boom:

Long-term Consequences of a Local Economic Shock for Female Labour Market

Outcomes,” Labour Economics, 2021.

Bernstein, P. L., Against the Gods: The Remarkable Story of Risk, Wiley, 1998.

Black, Dan A., N. Kolesnikova, S. G. Sanders, and Lowell J. Taylor, “Are

Children “Normal”?,” Review of Economics and Statistics, 2013, 95 (1), 21–33.

Blanchard, Olivier J., “Debt, Deficits, and Finite Horizons,” Journal of Political

Economy, 1985, 93 (2), 223–47.

Brenøe, A. A. and T. Epper, “The Intergenerational Transmission of Time Pref-

erences Across Four Decades,” 2018. Mimeo.

31



Broadberry, Stephen and John Joseph Wallis, “Growing, Shrinking, and Long

Run Economic Performance: Historical Perspectives on Economic Development,”

Technical Report w23343, National Bureau of Economic Research, Cambridge, MA

April 2017.

and Roger Fouquet, “Seven Centuries of European Economic Growth and De-

cline,” Journal of Economic Perspectives, 2015, 29 (4).

Broadberry, Stephen N. and Alexandra de Pleijt, “Capital and Economic

Growth in Britain, 1270-1870: Preliminary Findings,” CEPR Discussion Paper,

2021, DP15889.

Carvalho, Carlos, Andrea Ferrero, and Fernanda Nechio, “Demographics

and Real Interest Rates: Inspecting the Mechanism,” Federal Reserve Bank of San

Francisco Working Paper, 2021, p. 32.

Caselli, Francesco, “Accounting for Cross-country income Differences,” in Philippe

Aghion and Steven N. Durlauf, eds., Handbook of Economic Growth, Volume 1A.,

Elsevier B.V., 2005, pp. 680–738.

Chowdhury, Shyamal, Matthias Sutter, and Klaus Zimmermann, “Economic

Preferences across Generations and Family Clusters: A Large-Scale Experiment in

a Developing Country,” Journal of Political Economy, April 2022, p. 720395.

Cinnirella, Francesco, Marc Klemp, and Jacob Weisdorf, “Malthus in the

Bedroom: Birth Spacing as Birth Control in Pre-Transition England,” Demography,

April 2017, 54 (2), 413–436.

, , and , “Further Evidence of Within-Marriage Fertility Control in Pre-

Transitional England,” Demography, August 2019, 56 (4), 1557–1572.

Clark, Gregory, “The Cost of Capital and Medieval Agricultural Technique,” Ex-

plorations in Economic History, 1988, 25, 265–294.

, A Farewell to Alms, Princeton University Press, 2007.

, “Genetically Capitalist? The Malthusian Era, Institutions and the Formation of

Modern Preferences,” mimeo, 2007.

32



, “The Macroeconomic Aggregates for England, 1209-1869,” Research in Economic

History, 2010.

and Gillian Hamilton, “Survival of the Richest: The Malthusian Mechanism in

Pre-Industrial England,” The Journal of Economic History, 2006, 66 (3), 707–36.

and Neil Cummins, “Randomness in the Bedroom: There Is No Evidence for

Fertility Control in Pre-Industrial England,” Demography, August 2019, 56 (4),

1541–1555.

, , and Matthew Curtis, “Twins Support the Absence of Parity-Dependent

Fertility Control in Pretransition Populations,” Demography, August 2020, 57 (4),

1571–1595.

Crafts, Nicholas and Terence Mills, “Economic models vs ‘techno-optimism’:

Predicting medium-term total factor productivity rates in the US,” July 2017.

de la Croix, David, Eric B. Schneider, and Jacob Weisdorf, “Childlessness,

Celibacy and Net Fertility in Pre-Industrial England: The Middle-Class Evolution-

ary Advantage,” J Econ Growth, September 2019, 24 (3), 223–256.

Deaton, Angus S. and John Muellbauer, “On Measuring Child Costs: With

Applications to Poor Countries,” Journal of Political Economy, August 1986, 94

(4), 720–744.

Del Negro, Marco, Domenico Giannone, Marc P. Giannoni, and Andrea

Tambalotti, “Global Trends in Interest Rates,” September 2018. Federal Reserve

Bank of New York Staff Reports, No. 866.

Dimson, Elroy, Paul Marsh, and Mike Staunton, Triumph of the Optimists:

101 Years of Global Investment Returns, Princeton University Press, 2002.

Doepke, Matthias and Fabrizio Zilibotti, “Occupational Choice and the Spirit

of Capitalism *,” Quarterly Journal of Economics, May 2008, 123 (2), 747–793.

, Giuseppe Sorrenti, and Fabrizio Zilibotti, “The Economics of Parenting,”

Annual Review of Economics, 2019.

33



Dohmen, T., A. Falk, D. Huffman, and U. Sunde, “The Intergenerational

Transmission of Risk and Trust Attitudes,” The Review of Economic Studies, 2011,

79 (2), 645–77.

Donni, Olivier, “Measuring the Cost of Children,” izawol, 2015.

Epstein, Larry G. and J. Allan Hynes, “The Rate of Time Preference and

Dynamic Economic Analysis,” Journal of Political Economy, August 1983, 91 (4),

611–635.

Falk, A., A. Becker, T. Dohmen, B. Enke, D. Huffman, and U. Sunde,

“Global Evidence on Economic Preferences,” Quarterly Journal of Economics,

2018, 133 (4), 1645–92.

Featherstone, Allen M. and Timothy G. Baker, “An Examination of Farm Sec-

tor Real Asset Dynamics: 1910–85,” American Journal of Agricultural Economics,

1987, 69 (3), 532–546.

Galor, O. and D. N. Weil, “Population, technology and growth: From the Malthu-

sian regime to the demographic transition’,” American Economic Review, 2000, 90

(4), 806–28.

and O. Moav, “‘Natural Selection and the Origin of Economic Growth’,” Quar-

terly Journal of Economics, 2002, 117 (4), 1133–91.
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A Data Appendix

A.1 Detail on interest rate data

Schmelzing (2020) considers a number of measures of real interest rates over time,

which vary by the asset class and region. Figure 1i) reports the 25 year medians of

the headline annual series ‘Global R’ in real terms (see sheet II column N of the data

appendix accompanying Schmelzing, 2020). In this section we describe these measures

and supplement them with country-specific real rates of return on land based on the

work of Clark (1988). The findings all point to a centuries-long downward trend in

real interest rates – regardless of the measure used and regardless of the region under

examination.31

Safe or risk-free rate The main measure introduced by Schmelzing (2020), and

the real rate used in our paper in our Figure 1i), is the ‘risk-free’ measure. Schmelzing

describes this as the real interest rate for the historical ‘safe asset provider’. The series

is constructed by splicing together yields of long-term, marketable, sovereign-bond

debt issued by the countries that were considered to be the safest and most reliable

in a given period of time. The series runs from 1311 to 2018, using data from Italy,

Spain, Holland, UK, Germany and the US. Importantly each of the types of debt was

traded on deep secondary markets and the series’ “central feature consists of the fact

that it remained default-free over its 707 year span” (op. cit., p.18). The nominal

rates of return are deflated using country-specific price data from Allen (2001). For

details of the assets used, the countries under consideration, the chosen splice points as

well as the justification of those countries and dates, see Table 2. Whilst arguably the

exact timing of the splice points is somewhat subjective, Schmelzing very carefully

lays out the case for the selected countries and their debt being the safest assets

available in their given time. He also shows that the return on land consistently

coincides with the safest asset.

Country specific Schmelzing extends the data used in the safe-asset calculations

to generate a 700 year long series for all countries in that exercise as well as a number

of other economically important countries. In particular he constructs rates for Italy,

31For expositional ease, all results in the section are presented as 50-year averages of generational
rates of return.

40



Table 2: Details of Schmelzing’s Global ‘Safe Rate’.
Justification for:

Period Country Type of Assets Start Date End Date

1311-
1509

Italy

Venetian Prestisi and
Genoese Luoghi. Earliest
marketable long-term
sovereign bond debt.

Earliest inflation data
available from 1311,

(Allen, 2001).

Battle of Agnadello
(1509). Venice lost “in
one day what took them

eight hundred years
exertion to conquer”,
(Machiavelli, 2003)

1510-
1598

Spain

Juros long-term debt
(de-facto sovereign debt:
sold for cash, established
seniority system, traded
in secondary market).
Cont. serviced unlike

short-term debt.

“During the 16th
century no other power
controlled ... armed
forces as powerful or
financial resources as
vast as Habsburg

Spain,”(Parker, 2000).

Philip II’s death in 1598
& Spanish decline: “The
empire on which the sun
never set had become a
target on which the sun
never set”, (Parker,

2000).

1599-
1702

Holland
Long term bond debts

(Renten and obligations)
issued by Dutch province

“Financial capital of the
world,”

(Marjolein T’Hart and
van Zanden, eds, 1997)

Transition of financial
markets from

Amsterdam to London

1703-
1907

UK British consol yields

Britain Europe’s “most
vibrant” economy,
(Broadberry and
Fouquet, 2015)

Germany overtakes UK
in GDP

1908-
1913

Germany
German Imperial 3%

benchmark
Strongest growth

trajectory
World War 1

1914-
1918

UK British consol yields
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UK, Holland/NL, Germany, France, United States, Spain and Japan. Data for each

country consists of long-term debt yields. For countries and time periods included

in the global ‘safe’ series, the debt instruments remain the same and consist of the

sovereign debt discussed above. For countries and/or periods not covered in the ’safe’

series, observations are arithmetically weighted on the country-level across data points

of long-term consolidated debt (such as debt issued by municipalities or mortgage-like

pledge loans) and sovereign personal loans (like loans to the British Crown or French

Revolutionary war loans to the United States) until marketable, national bond data

becomes available. The nominal rates of return are deflated using country-specific

price data from Allen (2001). As can be seen in the first panels graphs of Figure 9i),

the real rates of return are declining in each country under consideration.

Global Schmelzing then constructs a global interest rate series by weighting the

country-specific data above using GDP shares derived from The Maddison Project

(2013). The GDP share of the eight countries under consideration are on average

80.1%, and for the past 600 years they have never fallen below 52%. As can be

seen in the last panel (WLD) of Figure 9i), the global real rate of return is steadily

declining over the entire period.

‘Personal’ or ‘Sovereign’ non-marketable loans Schmelzing also examines the

extent to which the non-marketability of loans can account for the decline of interest

rates presented above by examining personal loans to sovereigns (including “pledge

loans” and loans from municipalities to the central authorities). These types of loans

were very common, outside “of the urban financial centers of Northern and Central

Europe in late medieval and early modern times, prior to the consolidation of debt

on the national level, (...) especially in war episodes and in the context of weak

central bureaucracies, (...) until well into the 17th century (...). Such non-marketable

sovereign loans have gone out of fashion over the past two centuries.” (op. cit., p.9).

As Schmelzing notes, “A ‘benchmark’ non-marketable instrument today is represented

by U.S. savings bonds, which are non-transferable, long-term, and redeemable after

12 months.” (p.11) Since there was considerably more scope to distort market prices

of capital in these circumstances, it is interesting to see if the rate of decline in these

types of loans is any larger than in the safe-series or in the global-series. The analysis

focuses on 454 non-marketable sovereign loans but excludes ‘all intra-governmental
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Figure 9: Country specific real rates of return on long-term debt and land. Dashed line
show regression trends.

i) Rates of Return on long-term debt

ii) Rates of return on personal/non-marketable loans to sovereigns and private
debt

iii) Rates of return on land (Flanders/Netherlands,
Italy) and rent charges (France, Germany)
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loans, loans featuring in-kind payments, forced loans and those which are de facto

expropriations’. The prices are adjusted for inflation using arithmetically weighted

inflation rates from Allen (2001). The results are shown in the first panel of Figure

9ii); here too we observe falling interest rates. Importantly the rate of decline of

interest rates is very similar to other measures of interest rates.

Private, ‘non-sovereign’ rates Schmelzing also examines non-sovereign (private)

real interest rates. In particular, he constructs a consistent series from the private,

secured mortgage market over last 700 years within “Carolignian Europe” – mostly

Germany, Switzerland, some parts of France and Holland. These debts “all involve

the debtor as a private party who pays the recorded interest rate, which is tied to

the value of a real estate asset itself, or where the collateral involved consists of

a real estate asset. The creditor counterparties involve abbeys, municipalities, or

other private individuals.” (op. cit., p.25). Contract length is often not specified

but is for at least for ‘one life’-time, thus this is certainly long-term private debt.

The instruments involved historically are Leibrenten or Erbleihen which changed into

Pfandbriefe in the 19th century and still exist today. Inflation data once more comes

from Allen (2001). The result is shown in the second panel of Figure 9ii) and also

demonstrates a steady decline over time.

Land Using data for nominal returns to farmland and rent-charges reported in

Clark (1988) as well as inflation data from Schmelzing, we construct real interest

rates on land for various countries. In particular, the first five panels of Figure 9iii)

show the real rates of return on land – arguable the ‘safest asset’ – for 5 countries

(Italy, U.K., Flanders, France and Germany).32 In addition, Schmelzing constructs

a real interest rate on land using similar sources, specifically Ward (1960, cited in

Schmelzing), Featherstone and Baker (1987), and Clark (1988, 2010), for the ‘G-5’

countries (Italy, U.K., Flanders, France, U.S.). We report the GDP-weighted average

in the last panel of Figure 9iii). The high interest rates in 13th century England that

can be seen shown in Figure 1ii. are echoed across northern Europe with surprisingly

close agreement and the declining pattern of real interest rates on land is a feature

32The GBR series is constructed using the same nominal interest rate data as in Figure 1. Notice
also that the real rates data for the Netherlands (i.e. NLD) is constructed using nominal interest
rates from Flanders and inflation from Amsterdam - whilst not ideal this is the best we can do due
to a lack of other data.
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in every country in which long-term data is available.

In addition to data for the last eight centuries, there is also evidence of an even

longer-run trend from ancient data, as shown in Table A.1.

Period Place Rate (%) Note
3000-1900 BC Sumer 20–25 Rate of interest on silvera

c.2500 BC Mesopotamia ≥20 Smallest fractional unitb

1900–732 BC Babylonia 10–25 Return on loans of silvera

C6th BC Babylonia 16–20 Interest on loansa

C5th-2nd BC Greece ≥10 Smallest fractional unitb

C2nd BC on Rome ≥81
3

Smallest fractional unitb

C1st-3rd AD Egypt 9–12 Land return, interest on loansa

C1st-9th AD India 15-30 Interest on loansa

C10th AD South India 15 Yield on temple endowmentsa

1200 AD England 10 Return on land, rent chargesa

1200–1349 AD Flanders, France,
Germany, Italy

10–11 Return on land, rent chargesa

C15th AD Various Euro-
pean

9.43 Risk-free rental ratec

C16th AD Ottoman Empire 10–20 Interest on loansa

C19th AD Various Euro-
pean

3.43 Risk-free rental ratec

2000 AD England 4–5 Return on land, rent chargesa

2000–17 AD Various Euro-
pean

1.24 Return on land, rent chargesc

Notes: aCalculated or referenced in Clark (2007b). bHudson (2000).
cSchmelzing (2020).

A.2 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal dataset which has, since

1984, collected information by interview on around 30,000 unique individuals in nearly

11,000 households (see Wagner et al., 2007). Among the data collected is household

net income, marital status and age. Of particular use to this paper is a question

asking for ‘general personal patience’ on a scale of 0-10 (where 0 is very impatient

and 10 is very patient). This question was asked in 2008 and 2013. We use SOEP-

Core version 33.1 which includes data up to 2016. Since there is some variability in

self-reported patience of individuals between 2008 and 2013, we use the 2008 measure
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of patience since it has been validated using experimental methods (Vischer et al.,

2013). We then focus on the number of unique children in each household at 2008

plus the number of additional household children up to 2013.

To construct our sample, we merge 2008 and 2013 using the ‘never changing person

ID’. We calculate the total number of children of each household as the number present

at 2008 plus any additional children at 2013. We drop those 41 observations where

patience is not observed in 2008 as well as the resident relatives and non-relatives.

Our sample of 17,452 individuals thus leaves only the head of the household and their

partner. The average number of children in each household is 0.71 (with a standard

deviation of 1.00); the average number in a household that has at least one child is

1.71 (s.d. 0.84). The average patience level is 6.1 (s.d. 2.28).

Equation (8) gives the equilibrium relationship between dynasty population dy-

namics, the dynasty-specific discount rate and the gross real interest rate on children

(which is common across dynasties). Since N i
t+1 = N i

tn
i
t, we can re-write (8) in terms

of the number of children each household has as simple ni
t = βiR̃t+1. Motivated by

this simple relationship, we estimate the following specification,

childreni,2013 = β0 + β1patiencei,2008 +X′
iβ + εi (18)

where childreni,2013 is the unique number of children of person i over the period 2008–

13, patiencei,2008 is the self-reported patience in 2008, and X is a vector of control

variables including age, log of net income, as well as dummy variables for gender and

marital status.

Table 3 column 1 reports our most parsimonious regression specification, where

we restrict the sample to those of child-rearing age (18-40). We can see a statistically

strong positive correlation between the patience of an individual and the number

of children they have. Columns 2 to 4 include observations of all ages. Column

2 includes a control for age, column 3 adds the log of net income and column 4

adds dummy variables for whether an observation is male, head of the household,

married, widowed, divorced or separated. Our preferred specification, in Column 5,

reports results with all controls for only those observations aged 18-40. In each of

these specifications, the coefficient on patience is statistically significant and of the

expected sign. Table 4 reports the results from an alternative approach to age, where

we use dummy variables for age brackets instead of including age as a linear variable.
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Table 3: Patience and Children

(1) (2) (3) (4) (5)
VARIABLES totalChildren totalChildren totalChildren totalChildren totalChildren

HHpatience 0.027** 0.013*** 0.017*** 0.012*** 0.022***
(0.010) (0.004) (0.004) (0.004) (0.009)

HHage -0.024*** -0.021*** -0.030*** 0.017***
(0.001) (0.001) (0.001) (0.005)

lincome 0.414*** 0.274*** 0.175***
(0.016) (0.017) (0.035)

Observations 4,341 17,224 17,222 17,222 4,340
R2 0.004 0.176 0.256 0.336 0.312
Controls no no no yes yes
Ages 18-40 All All All 18-40

*** p<0.01, ** p<0.05, * p<0.1
Note: Robust standard errors in parentheses. Standard errors are clustered at the household
level. Observations are weighted according to SOEP individual person weights. lincome is
the log of household post-government income. Controls are dummy variables for whether
an observation is male, the household head, married, widowed, divorced or separated.
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Table 4: Patience and Children: Age bins
(1) (2) (3)

VARIABLES totalChildren totalChildren totalChildren

HHpatience 0.010** 0.016*** 0.014***
(0.004) (0.004) (0.004)

mediumyoung 0.573*** 0.272*** 0.146***
(0.061) (0.062) (0.056)

mediumold 0.884*** 0.471*** 0.199***
(0.057) (0.060) (0.058)

old -0.056 -0.362*** -0.729***
(0.050) (0.052) (0.055)

lincome 0.420*** 0.312***
(0.017) (0.017)

Observations 17,224 17,222 17,222
R2 0.181 0.259 0.317
Controls yes no yes

*** p<0.01, ** p<0.05, * p<0.1
Note: Robust standard errors in parentheses. Standard errors are clustered at the household
level. Observations are weighted according to SOEP individual person weights. lincome
is the log of household post-government income. mediumyoung is a dummy equal to 1 if
25 < HHage <= 35; mediumold is a dummy equal to 1 if 35 < HHage <= 45; and,
old is a dummy equal to 1 if 45 < HHage. Controls are dummy variables for whether an
observation is male, the household head, married, widowed, divorced or separated.

48



A.3 Steady state consumption share

Data on final consumption expenditures in US dollars (NE.CON.TOTL.CD) and

GDP at market prices in US dollars (NY.GDP.MKTP.CD) comes from the World

Development Indicators. To match the scss term in the main body of the text, we

proceed as follows. We first calculate the ratio of global consumption to global GDP

in every year and then calculate the average of world consumption shares for the years

2000-2018 which comes to 75%.

A.4 Calibrating the beta distribution

The annualized variance of generational discount factors We proceed in two

steps to calculate a global variance for individual discount rates. A natural source

would be the Global Preference Survey described in Falk et al. (2018). This cannot be

used directly, however, as its data is normalized (each preference variable has a zero

global mean and unit standard deviation). The GPS data is also based on responses

to survey questions that are each focused on distinct preference characteristics. This

is problematic given the evidence in Andersen et al. and other work that the joint-

elicitation of time and risk preferences matters for measures of patience. Andersen et

al. (2008) report the standard error of their estimate for the discount rate, r. Since

β = 1
1+r

in equilibrium, we need to express var
(

1
1+r

)
as a function of the mean E(r)

and variance var(r). We use a first-order Taylor expansion of the second moment of

the transformed variable to find var
(

1
1+r

)
= 1

(1+E(r))4
vart(r). Thus we use the time

preference evidence in Andersen et al. to ‘de-normalize’ the Falk et al. data by fixing

the GPS variation across individuals in Denmark to that found in the experiments.

We then obtain a measure of the global variation across individuals, having taken

account of region-specific fixed effects. We find the median standard deviation across

countries is 0.0053.

The long run interest rate To find data on the long run interest rates we use

the Credit Suisse Global Investment Returns Yearbook (Dimson et al., 2002). This

publication provides cumulative real returns from 1900 to 2015 for equities, bonds

and treasury bills for 23 major economies that cover 98% of the world equity market

in 1900 and 92% at the end of 2015. Furthermore, the yearbook provides an “all-

country world equity index denominated in a common currency, in which each of the
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23 countries is weighted by its starting-year equity market capitalization. (It) also

compute(s) a similar world bond (and treasury) index, weighted by GDP.”

For each country (c), year (t) and asset class (s), we are given a cumulative real

return, Rs
c,t. We then use this to calculate both the annual rate of return (rsc,t) and

the annualized 25-year generational rate of return (r̄sc,t) as:

rsc,t+1 =

(
Rs

c,t+1

Rs
c,t

)
− 1, (19)

and

r̄sc,t+25 =

(
Rs

c,t+25

Rs
c,t

) 1
25

− 1. (20)

Tables 5 and 6 show summary statistics for both the annualized and generational rates

of return. Notice that as usual returns are highest for equities. For annual data, it is

also true that the variation in returns is much higher in equities than in either bonds or

treasuries. Generational return on equities however (these are the annualized rates of

return from making and holding an investment for 25 years) still offer higher average

rates of return than bonds or treasuries, but are no longer as volatile - the variation

in generational equity returns is either smaller or indistinguishable from variation in

returns on treasuries or bonds. This motivates why we choose to calibrate our model

to average, generational returns on equities - dynastic planners have a long time

horizon and rates of returns of equities over this horizon are higher than of bonds or

treasuries - and their variation is no higher.

The rate of return used in the calibration of the main body of the paper is obtained

as follows. We calculate the (weighted) generational rate of returns of the world

equity index, r̄sW,t, in every year and then find the average of the implied rates of

return between 1975 and 2015 which is equal to annualized 6.3%.

Table 5: Annual Rates of Return, un-weighted.
Asset N Mean Median Std p90/p10
Equities 2520 0.064 0.056 0.206 0.464
Bonds 2520 0.009 0.006 0.125 0.169
Treasuries 2520 0.016 0.012 0.129 0.248
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Table 6: Generational Rates of Return (Annualized), un-weighted.
Asset N Mean Median Std p90/p10
Equities 1930 0.049 0.051 0.038 0.094
Bonds 1930 0.001 0.011 0.043 0.092
Treasuries 1930 0.004 0.010 0.054 0.119

B Equation (1): derivation and discussion

In the main text we posited an expression for the real interest rate as a function of

growth and the discount rate:

rt = gt − ln β.

In more general terms, the real interest rate on an asset L takes the form,

r̃Lt = γgt −
γ2

2
σ2
t − ln β + γdL,t. (21)

where γ is the relative risk aversion coefficient, σ2 is the variance of consumption

growth, dL,t is related to the covariance between the consumption growth and the

return on asset L. While this is a standard expression, below we present its derivation

for completeness. We also discuss the evidence on these other parameters and the

role they play in driving declining interest rates.

B.1 Derivation

Consider a household that maximizes the present value of a flow utility by choice of

a portfolio of assets comprised of the risky asset, L and risk-free bonds, B,

max
Lt,Bt

Et

∞∑
t=0

βtU (Ct) (22)

subject to,

Lt+1 +Bt+1 = RL
t Lt +Rf

tBt +Wt − Ct (23)

where RL
t and Rf

t are gross returns on risky assets and bonds, respectively, and where

Wt is an income endowment each period. Rf
t is known at period t − 1; only the

probability distribution of RL
t is known at period t− 1.
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Optimal portfolio choices satisfy,

Rf
t+1Et

βU ′(Ct+1)

U ′(Ct)
= 1, (24)

EtR
L
t+1

βU ′(Ct+1)

U ′(Ct)
= 1. (25)

To obtain an expression in certainty-equivalent form, we make two assumptions.

First, we impose CRRA utility of the form,

U(Ct) =
1

1− γ
C1−γ

t , (26)

and so the optimal portfolio satisfies,

Rf
t+1Etβ

(
Ct+1

Ct

)−γ

= 1, (27)

EtR
L
t+1β

(
Ct+1

Ct

)−γ

= 1. (28)

Second, let rLt+1 = lnRL
t+1 and gt+1 = ln(Ct+1)− ln(Ct) and assume that these are

jointly Normally distributed,[
gt+1

rLt+1

]
∼ N

([
ḡt+1

r̄Lt+1

]
,

[
σ2
g,t, σ

2
g,L,t

σ2
g,L,t, σ

2
L,t

])
. (29)

where x̄t is the mean of x, σ2
x,t is the variance of x, and σ2

x,y,t is the covariance of x

and y at time t.

Given these assumptions, we can re-write the first order conditions as,

β exp

{
rft+1 − γḡt+1 +

1

2
vart (−γgt+1)

}
= 1 (30)

β exp

{
r̄Lt+1 − γḡt+1 +

1

2
vart

(
rLt+1 − γgt+1

)}
= 1. (31)

Note that from (30) we have the following expression for the real rate,

rft = γgt −
γ2

2
σ2
g,t − ln β. (32)

52



where with log utility (γ → 1) and no consumption growth variance (σ2
g,t = 0), we

have the expression for the real rate given above as equation (1).

The two first order conditions together give a relationship between the risk-free

rate and the return on L,

r̄Lt+1 +
1

2
σ2
L,t+1 = rft+1 + γσ2

g,L,t+1 (33)

Note that r̄Lt+1 = Etr
L
t+1 and, since rLt is Normally distributed, we can write

lnEtR
L
t+1 = r̄Lt+1 +

1
2
σ2
L and so,

lnEt−1R
L
t = rft + γσ2

g,L,t (34)

which, with r̃Lt = lnEt−1R
L
t and dL,t = σ2

g,L,t, is the expression given in equation (21).

B.2 Discussion

As we discussed in the paper, and as we develop in the extended versions of the model,

the historical record for per capita growth and life expectancy are unable to explain

the fall in rates over time. Equation (21) suggests a number of additional potential

channels.

Variance of consumption growth If the variance of consumption growth (σ2
g,t)

increased over time, this could explain a fall in real rates. However, shocks to con-

sumption, assets and production have either remained stable or declined over time.

Climate variability has been relatively constant over the last millennium, at least up

until the 20th century (Salinger, 2005). Levels of violence and warfare have system-

atically declined (Pinker, 2012). Moreover, the emergence of sophisticated insurance

markets have improved the resilience of agents to shocks (Bernstein, 1998). Each of

these changes lead to lower, not higher, variance in consumption growth. Broadberry

and Wallis (2017) provides direct evidence of the consequence. Using cross-country

data for the later 19th century, and long-run historical data for a number of Euro-

pean countries, Broadberry and Wallis shows that sustained increases in growth are

the result of fewer episodes of negative growth, rather than more episodes of positive

growth.
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Risk aversion Note that the relationship between relative risk aversion (γ) and

the risk-free rate depends, by (21), on the sign of (ḡt − γσ2). Maddison (2013) data

suggests that the country-level average annual variance in per capita incomes since

1800 are at least one order of magnitude less than the average level of annual growth.

So a fall in risk aversion may explain a portion of the decline in rates. In the same

way as the level of patience is not normally time-varying, the deep risk aversion

parameters are usually considered fixed over time. There is evidence that risk aversion

is intergenerationally transmitted, but the direction of the effect on fertility is not

clear and so there is no clear route in the manner of a Barro-Becker fertility model

of the sort introduced in the paper. However, we can see the required direction of

any potential societal shift: the evidence on risk aversion is that it has, if anything,

emerged and grown over time as an evolutionary adaptation (Robson, 1996; Levy,

2015). This would make the decline in the real interest rate harder to explain.

Declining risk We might see a decline in interest rates if our data are historical

returns on assets that become steadily closer to being risk-free over time. This would

manifest itself through a decline in dt and hence falling interest rates.33 There are a

number of reasons for thinking this is not the case, however. First, a key contribution

of Schmelzing (2020) is in constructing a dataset of the global risk-w rate by careful

study of financial history, taking into account the shifts in stable global financial

systems. Thus the series is constructed from the rates of returns on sovereign debt

in 14th century Genoa, 18th century UK and 20th century US. Clark (2010), in

contrast, uses data for one country and calculates returns on the safest assets within

a single country. Second, Clark (2010) makes the case for England that the risk of

expropriation of land was very stable in the long run and did not change significantly

over this period. For Clark (p.44), “The medieval land market offered investors a

practically guaranteed ... real rate of return with almost no risk.”

33Importantly a falling dt is not caused by declining idiosyncratic risk. When we speak of the
declining risk of an asset we are not referring to returns becoming less volatile over time, but rather
returns on the risky asset become less (positively) correlated with consumption growth. Risk that is
uncorrelated with consumption growth rates will generate no premium on returns - and changes in
this type of risk will not result in changes in the interest rate. So, for example, if the probability of
expropriation of an asset declines over time - this would not be reflected in declining interest rates.
Instead, we would need to observe a decline in expropriation probability in ‘bad’ times i.e. when a
negative shock hits consumption growth.
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C Baseline model

C.1 Competitive wquilibrium

In the baseline model, a competitive equilibrium for given parameter values and initial

conditions {N1
0 , . . . , N

I
0 , K

1
0 , . . . K

I
0}, consists of allocations

{Ci
t , N

i
c,t, N

i
t+1, K

i
t+1, X

i
t}∞t=0 for each dynasty i = 1, . . . , I and prices {wt, rt, pt}∞t=0

such that firms’ and dynasties’ maximization problems are solved, and all markets

clear.

C.2 Model derivations

The following expands on elements of the model solution, as described in Sections

3-3.1.

Time zero household problem Since households care about the outcomes of their

future children, we can simplify the problem in (2) by iterative substitution, and re-

write the individual household problem in the framework of a time zero household of

each type as follows:

max
{cit,ni

c,t,x
i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(cit) + (1− α) log(ni

t+1)
)

(35)

s.t.

cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t

ni
t+1 = π + ni

c,t

ki
t+1 =

ki
t + xi

t

ni
t+1

.

The above reflects the choice of an individual time zero adult household.

Household problem We can re-write the dynastic consumer maximization prob-

lem (3) by substituting out for N i
c,t and X i

t so that the problem for each dynasty i

becomes:

max
Ci

t ,K
i
t+1,N

i
t+1

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(36)
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Ci
t +N i

t+1 + ptK
i
t+1 ≤ (wt + π)N i

t + (rt + pt)K
i
t . (37)

The first order conditions for this problem are given by:

λi
t =

α(βi)t

Ci
t

, (38)

(1− α− βi)(βi)t

N i
t+1

+ (π + wt+1)λ
i
t+1 = λi

t (39)

ptλ
i
t = (pt+1 + rt+1)λ

i
t+1, (40)

where, λi
t is the Lagrange multiplier on the constraint (37). Now, substituting out for

λi
t in the last two FOCs using the first FOC, we obtain:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

(41)

and
Ci

t+1

Ci
t

= βipt+1 + rt+1

pt
. (42)

The above hold for all t ≥ 0 and for all i. Defining Rt+1 ≡ pt+1+rt+1

pt
we obtain

equation (8) in the main text.

Firm problem From the firm’s problem in (4) we obtain the following first order

conditions for all t ≥ 0:

wt = (1− α)DKα
t N

−α
t (43)

and

rt = αDKα−1
t N1−α

t . (44)

Market clearing The market clearing conditions are:

I∑
i=0

N i
t = Nt, (45)
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I∑
i=0

Ki
t = Kt = K̄. (46)

Transversality conditions Finally, there are two transversality conditions per

dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, (47)

lim
t→∞

(βi)tu′(Ci
t)N

i
t+1 = 0, (48)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.

Population Euler equation To derive equation (8) we proceed as follows. We

re-write FOC (6) as

N i
t+1 =

(1− α− βi)

α
(

Ci
t+1

Ci
t

− πβi − βiwt+1

)Ci
t+1,

and use the Euler Equation, (42), to substitute out for
Ci

t+1

Ci
t

to obtain and expression

for N i
t+1:

N i
t+1 =

(1− α− βi)

αβi (Rt+1 − π − wt+1)
Ci

t+1.

Bringing the above equation forward one period in time we obtain:

N i
t+2 =

(1− α− βi)

αβi (Rt+2 − π − wt+2)
Ci

t+2.

Taking the ratio of these two equations and substituting for
Ci

t+2

Ci
t+1

from the Euler

equation, (42), we obtain:
N i

t+2

N i
t+1

= βiR̃t+2, (49)

where in the above R̃t+2 ≡ Rt+2
Rt+1−(wt+1+π)
Rt+2−(wt+2+π)

. The above equation holds for all t ≥ 0.

We can also re-write it as:
N i

t+1

N i
t

= βiR̃t+1, (50)

where in the above R̃t+1 ≡ Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π)
, as long as t ≥ 1. This is equation (8)

in the main text.
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Steady state In the long run the dynasty with the highest discount factor will

come to dominate the entire population, whilst the population of the other dynasties

will tend to zero. In particular, continuing to denote by I the dynasty with the

highest discount factor, we can derive the steady-state equilibrium as t → ∞ since

the economy becomes entirely dominated by that dynasty with the highest patience.

In particular, denoting steady state values as Nss, etc. we have:

N I
ss = Nss and N i

ss = 0 ∀i < I (51)

KI
ss = Kss = K̄ and Ki

ss = 0 ∀i < I (52)

CI
ss = Css and Ci

ss = 0 ∀i < I. (53)

Using the above with the first order conditions (41) and (42) as well as the budget

constraint (37), along with the firm’s first order conditions, (43)-(44), it follows that

the steady state is characterized by:

Nss =

(
D(1− α− βI + αβI(1− ν))

(1− π(1− α))(1− βI)

) 1
ν

K̄ (54)

Css = (DK̄νN−ν
ss + π − 1)Nss (55)

Yss = DK̄νN1−ν
ss (56)

pss = ν
βI

1− βI
DK̄ν−1N1−ν

ss (57)

wss = (1− ν)DK̄νN−ν
ss (58)

rss = νDK̄ν−1N1−ν
ss . (59)

Note that the above steady state is identical to the steady state which would arise in

an economy populated by only one dynasty with discount factor βI .

Initial population and consumption A useful relationship that we use in solving

the model is that between the relative dynastic consumption and relative dynastic

population size. To derive this relationship we start by plugging in equation (9) into

(6).
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(1− α− βi)
(βi)tN i

1∑I
j=1(β

j)tNj
1

Nt+1

+ (π + wt+1)
αβi

(βi)t+1Ci
0∑I

j=1(β
j)t+1Cj

0

Ct+1

=
α

(βi)tCi
0∑I

j=1(β
j)tCj

0

Ct

, (60)

Simplifying and re-writing this expression relative to the highest discount factor

among agents results in:

(1− α− βi)
N i

1∑I
j=1(

βj

βI
)tNj

1

Nt+1

+ (π + wt+1)
α

Ci
0

βI
∑I

j=1(
βj

βI
)t+1Cj

0

Ct+1

=
α

Ci
0∑I

j=1(
βj

βI
)tCj

0

Ct

, (61)

Now as t → ∞ the above equation becomes:

(1− α− βi)
N i

1

NI
1
Nss

+ (π + wss)
α

Ci
0

βICI
0
Css

=
α

Ci
0

CI
0
Css

. (62)

Then, substituting from the solutions of the steady state shown in equations (54)-(59)

into the above, for each i < I we can then show that:

Ci
0

CI
0

=
N i

1

N I
1

1− α− βI

1− α− βi
. (63)

C.3 Aggregation and solution algorithm

It is convenient to solve the model in two stages: first, by deriving aggregate variables

and, second, by calculating prices and dynasty-specific variables.

We start by re-writing the first order condition (6) for dynasty I in terms of ag-

gregate population only. To do this, we use equations (9) and (63) to relate dynasty-

and aggregate-level variables via weighted averages of time zero dynasty-level con-

sumption:

Ci
t =

(βi)tCi
0∑I

j=1(β
j)tCj

0

Ct, and, N i
t+1 =

(βi)t(1− α− βi)Ci
0∑I

j=1(β
j)t(1− α− βj)Cj

0

Nt+1. (64)

Substituting (5), (64) and firm first-order conditions into (6), all evaluated with i = I,

gives us a first order condition in terms of aggregate population, {Nt}∞t=0, and initial

consumption distributions, {Ci
0}Ii=1, only. Assuming that the model converges to its

steady state after T periods, we use a reverse-shooting algorithm to solve for {Nt}Tt=0,

as a function of {Ci
0}Ii=1. Given this, we can then use (64), market clearing condition

(5) and the firm first order condition (43) to solve for {Ci
t , N

i
t+1, Ct, wt}Tt=0 as functions
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of {Ci
0}Ii=1.

Next, given the above solutions, we use household I first order condition (7) and

the firm first order condition (44) to derive the solutions for {pt}∞t=0 and {rt}∞t=0 as

functions of {Ci
0}Ii=1. Given the above and the assumption that the model converges

to steady-state after T periods,34 we can use the dynasty specific budget constraints

to derive sequences of each dynasty’s capital stock, {Ki
t}Tt=1, as functions of {Ci

0}Ii=1:

Ki
t =

Ci
t +N i

t+1 + ptK
i
t+1 − (wt + π)N i

t

(rt + pt)
. (65)

Finally, since we know the distribution of period zero capital across dynasties, then

(65) evaluated at t = 0, can be used to infer the dynasty distribution of initial

consumption:

Ci
0 = (r0 + p0)K

i
0 −N i

1 − p0K
i
1 + (w0 + π)N i

0. (66)

We can thus solve the problem for any initial distribution of capital and population.

C.4 Calibration

We assign a discount factor to each dynasty i ∈ I. Recall that we order dynasties

such that the sequence {βi}Ii=1 is strictly increasing in i. Given the restriction that

1 − α − βi > 0, each discount factor is bounded by 0 < βi < β̄, where β̄ ≡ 1 − α.

We divide this interval (0, β̄) into I equally-sized sub-intervals and locate each type’s

patience level at the central point of every sub-interval, so that, for each i, βi =

β̄ (2i−1)
2I

.

To pin down the sequence of βi’s, we need to find values for α and β̄. We can solve

for these two unknowns by noting first that the share of expenditure on consumption

relative to aggregate income in the steady-state, scss ≡ Css/Yss, is a function of α, βI ,

and other calibrated parameters:

scss ≡
α
(
1− βI(1− ν(1− π))

)
(1− π(1− α)) (1− βI)

. (67)

Note also that the highest discount factor in our grid, βI , is related to the upper

bound of the discount factors, β̄, by the expression βI = β̄
(
2I−1
2I

)
where β̄ ≡ 1 − α.

With scss = 0.75 chosen to match to the average global steady-state income share post-

34So that KI
T+1 = K̄ and Ki

T+1 = 0 for all i ̸= I.
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2000,35 we can thus solve the above equations simultaneously to obtain: α = 0.427

and β̄ = 0.573.

Capital distribution The initial distribution of capital across dynasties deter-

mines the population distribution of those dynasties in subsequent periods. To obtain

the initial capital distribution, we assume that the growth of each dynasty’s popula-

tion is consistent with solutions of the model in the period prior to the initial period.

That is, we assume that outcomes in the period before t = 0 are on the equilibrium

saddlepath just as much as they are in periods from t = 0 on. This simply means that

we are ignoring potential shocks, such as wars, famines or pandemics, that may cause

population growth from t = 0 to deviate from the saddlepath that continues from

period t = 1. The initial distribution of capital is thus chosen such that population

growth rates are solutions of the model from period t = 0. In practice, this means

assuming that equation (8) also holds for t = 0 which in turn implies that the second

expression for relative population growth also holds at t = 0:

N i
1

N j
1

=
βi

βj

N i
0

N j
0

. (68)

There are three steps to see why the above consistency assumption is necessary to

pin down the distribution of initial capital stock across dynasties. First, in Appendix

C we establish a relationship between the population of each dynasty (relative to

the most patient dynasty) in the first period and the consumption of each dynasty

(relative to the most patient dynasty) in period zero:

Ci
0

CI
0

=
N i

1

N I
1

(
1− α− βI

1− α− βi

)
. (69)

Second, the consistency assumption (10) along with (69) amounts to fixing the initial

distribution of consumption (relative to the most patient dynasty) according to the

following:
Ci

0

CI
0

=
βi

βI

(
1− α− βI

1− α− βi

)
N i

0

N I
0

. (70)

That is, given the consistency assumption, the initial population distribution tells us

what initial consumption distribution should be. Finally, we can use dynastic budget

35See Appendix A for details.
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constraints (66) to determine what this initial distribution of consumption implies

about the initial distribution of capital, {Ki
0}Ii=1.

Population distribution An immediate implication of Theorem 1 is that we can

derive expressions for the mean and variance of generational discount factors at any

time t:

Et(β) = β̄
γ0 + t

γ0 + t+ δ
and vart(β) = β̄2 (γ0 + t)δ

((γ0 + t) + δ)2(γ0 + t+ δ + 1)
(71)

Notice that as t → ∞, the mean beta converges to β̄ and the variance goes to

zero. Our measure of the variance is derived from data on annual discount rates.

Our target for the mean is a function of the prevailing long-run interest rate in the

economy. We thus need expressions for the variance of the annualized generational

discount factor and for the long-run interest rate in terms of the parameters of the

distribution of generational discount factors. Given that generational discount factors

are distributed according to a scaled beta distribution, we can show that the variance

of the annualized generational discount factor, β
1
25 , is given by:

vart(β
1
25 ) = β̄

2
25
Γ(γt + δt)

Γ(γt)2

(
Γ(γt)Γ(

2
25

+ γ)

Γ( 2
25

+ γt + δt)
− Γ(γt + δt)Γ(

1
25

+ γt)
2

Γ( 1
25

+ γt + δt)2

)
, (72)

and an approximate expression (see Appendix F) for the annualized gross interest

rate:

R
1
25
t ≈

(
γt − 1 + δt

β̄γt

) 1
25

. (73)

As described in Appendix A, we set var28(β
1
25 ) = 0.00532 to match experimental

evidence from representative individuals in Denmark (Andersen et al., 2008) and the

individual-level data in the Global Preference Survey (GPS) described in Falk et al.

(2018). We set R
1
25
28 − 1 = 0.063 to match the average (annualized) generational rates

of return on global equities.36 Together, these two equations imply the following shape

parameters of the beta distribution: γ28 = 32.089 and δ28 = 53.531. As can be seen

36In Appendix A we show that over the time spans under consideration by dynastic planners – a
basket of global equities was just as safe as bonds or treasuries but offered higher rates of return.
Specifically, the variation in the global rates of return on equities over 25 year periods are either
smaller or statistically indistinguishable from rates of return on government bonds or treasuries.
Since we are focusing on dynasty planners that have a horizon of 25 years or more, we calibrate to
the higher rates of equity return.
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Figure 10: Distribution of annualized discount factors in model and data
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Notes: The figure depicts the calibrated scaled beta distribution used in the model period
t = 28 (solid line) against the bandwidth filtered data described in the text with BW =
0.005 (dashed line).

in Figure 10, there is a good fit between the annualized distribution of generational

discount factors in the year 2000.

We can use the CDF to approximate, for some I, the proportion of the population

assigned to each dynasty i in the year 2000 (i.e. period t = 28) by:

N i
28

N28

= F

(
βi +

β̄

2I
; 28

)
− F

(
βi − β̄

2I
; 28

)
. (74)

With the above proportions in hand, we can then calculate the t = 0 distribution of

population using equation (11) with t = 28, and proceed to solve the model.

C.5 Additional figures
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Figure 11: Real interest rate
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Data is the Schmelzing (2020) global real interest rate. Baseline is the model in section 3.

D Extended models

In this section we derive the solution and demonstrate the calibration to the extended

model in section 4. As we will see below, setting ω = 1 will give us the baseline model

where we make capital endogenous and calibrate TFP and child cost; and setting

ω < 1 introduces a form of imperfect altruism.

Time zero household problem The time-zero household solves:

max
{cit,ni

c,t,x
i
t}∞t=0

∞∑
t=0

(βi)t

(
t∏

j=0

(πj(1− ω) + ω)

)(
α log(cit) + (1− α) log(ni

t+1)
)

(75)

s.t.

cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t

ni
t+1 = π + ni

c,t

ki
t+1 =

(1− δ)ki
t + xi

t

ni
t+1

.

As noted in the text, where the discount factor is common the altruism component,

captured in ω and πj, is distinct from the time preference β.
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Dynastic planner problem Dynasty-aggregate values are Ci
t ≡ citN

i
t , N i

c,t ≡
ni
c,tN

i
t , Ki

t ≡ ki
tN

i
t , X i

t ≡ X i
tN

i
t . We can re-write the time-zero household prob-

lem for the dynastic planner of each type in the same way as the baseline for each

dynasty i:

max
{Ci

t ,N
i
c,t,X

i
t}∞t=0

∞∑
t=0

(βi)tθ(t, ω)
(
α log(Ci

t) + (1− α− βi(πt+1(1− ω) + ω)) log(N i
t+1)

)
(76)

s.t.

Ci
t + qtN

i
c,t +X i

t ≤ wtN
i
t + rtK

i
t

N i
t+1 = πtN

i
t +N i

c,t

Ki
t+1 = (1− δ)Ki

t +X i
t ,

where in the above θ(t, ω) ≡ ∏t
j=0(πj(1 − ω) + ω). Setting ω = 1 reverts to perfect

altruism (i.e., shuts down the Blanchard (1985) mechanism). Setting ω < 1 intro-

duces a form of imperfect altruism in which parents care about the outcomes of their

children, but only when the parents themselves are alive.

Firms The representative firm hires workers (Nt) and capital (Kt) to produce final

output (Yt). The profit maximization problem of the firm is given by:

max
{Kt,Nt}

Yt − wtNt − rtKt, (77)

where Yt = DtK
ν
t N

1−ν
t is a standard Cobb-Douglas production function where 0 <

ν < 1 is the output elasticity of capital. Dt is the exogenous and – in contrast to the

baseline – potentially time-varying level of technology. Furthermore, in contrast to

the baseline, capital is entirely reproducible.

Market clearing The market clearing conditions are given by:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt,

Ct + qtNc,t +Xt = DtK
ν
t N

1−ν
t . (78)
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Notice that capital is now produced from output and that producing a child costs

and exogenous qt units of output.

Competitive equilibrium A competitive equilibrium, given a series of child prices

{qt}∞t=0 and technology {Dt}∞t=0, parameter values and initial conditions

{N1
0 , . . . , N

I
0 , K

1
0 , . . . K

I
0}, consists of allocations {Ci

t , N
i
c,t, N

i
t+1, K

i
t+1, X

i
t}∞t=0 for each

dynasty i = 1, . . . , I and prices {wt, rt, pt}∞t=0 such that firms’ and dynasties’ maxi-

mization problems are solved, and all markets clear.

D.1 Solution

To solve the model, we start by deriving the first order conditions of the dynastic

planner and the firms. For given parameter values, initial population and capital dis-

tributions, the competitive equilibrium of the problem, for each dynasty i = 1, . . . , I,

is characterized by consumer first-order conditions with respect to choice of children

and consumption as:

(1− α− βi(πt+1(1− ω) + ω))

N i
t+1

+(πt+1qt+1+wt+1)
αβi(πt+1(1− ω) + ω)

Ci
t+1

= qt
α

Ci
t

, (79)

Ci
t+1

Ci
t

= βi(πt+1(1− ω) + ω)(1− δ + rt+1), (80)

with consumer budget constraints for each dynasty i:

Ci
t + qtN

i
t+1 +Ki

t+1 = (wt + πtqt)N
i
t + (1− δ + rt)K

i
t . (81)

The firm first-order conditions are:

wt = (1− ν)DtK
ν
t N

−ν
t and rt = νDtK

ν−1
t N1−ν

t . (82)

The market clearing conditions are:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

Ki
t = Kt,

Ct + qt(N
i
t+1 − πtN

i
t ) + (Ki

t+1 − (1− δ)Ki
t) = DtK

ν
t N

1−ν
t . (83)
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Finally, there are two transversality conditions per dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, (84)

lim
t→∞

(βi)tu′(Ci
t)N

i
t+1 = 0, (85)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.

The long-run From the above, as in the baseline model we can obtain two Euler

equations that describe the evolution of dynasty consumption and dynasty popula-

tion:
Ci

t+1

Ci
t

= βiR̄t+1, t ≥ 0, (86)

N i
t+1

N i
t

= βi (1− α− βi(πt+1(1− ω) + ω))

(1− α− βi(πt(1− ω) + ω))
R̃t+1, t ≥ 1. (87)

where R̄t+1 ≡ (1−δ+rt+1)(πt+1(1−ω)+ω) and R̃t+1 ≡ Rt+1(πt(1−ω)+ω) qt−1Rt−qtπt−wt

qtRt+1−qt+1πt+1−wt+1
.

Given the above Euler equations, and since the interest rates are common across

dynasties, we can derive the shares of consumption and population of each dynasty

relative to economy-wide aggregate consumption and population, respectively, as a

function of the initial distribution of dynasty-specific consumption and population:

Ci
t

Ct

=
(βi)tCi

0∑I
j=1(β

j)tCj
0

, and,
N i

t+1

Nt+1

=
(βi)t (1−α−βi(πt+1(1−ω)+ω))

(1−α−βi(π1(1−ω)+ω))
N i

1∑I
j=1(β

j)t (1−α−βj(πt+1(1−ω)+ω))
(1−α−βj(π1(1−ω)+ω))

N j
1

, (88)

for t ≥ 0. Note that given the initial distributions, the evolution of a particular

dynasty’s population and consumption shares depends only on that dynasty’s patience

relative to the patience of other dynasties. In particular, recalling that dynasty I is

that with the highest patience, the above expressions imply that as t → ∞, so
NI

t+1

Nt+1
→ 1 and

CI
t+1

Ct+1
→ 1 whilst, for all i < I,

N i
t+1

Nt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. This means

that as with the baseline model the consumption and population of the most patient

type will dominate the economy over time. As t → ∞ the extended model collapses

to standard homogenous agent model with discount factor βI and a standard Barro-

Becker steady state.
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Detrending Unlike the baseline model, this model exhibits equilibrium growth

both in output per worker and in population. In order to solve the model, we need

to first de-trend all variables (write them in units per effective worker). We define

de-trended variables as follows: k̃i
t ≡ Ki

t

D
1

1−ν
t Nt

, k̃t ≡
∑I

i=1 K
i
t

D
1

1−ν
t Nt

, c̃it ≡ Ci
t

D
1

1−ν
t Nt

, c̃t ≡
∑I

i=1 C
i
t

D
1

1−ν
t Nt

,

w̃t ≡ wt

D
1

1−ν
t

, ηit ≡ N i
t

Nt
, gNt ≡ Nt+1

Nt
, gDt ≡ Dt+1

Dt
. We then proceed to re-write the first

order conditions of the model in terms of the above variables. The de-trended first

order conditions and budget constraint of the dynastic planner are:

α
c̃it+1

c̃it
gNt+1at = αβi(πt+1(1−ω)+ω) (w̃t+1 + πt+1at+1)+(1−α−βi(πt+1(1−ω)+ω))

c̃it+1

ηit+1

.

(89)
c̃it+1

c̃it
gNt+1g

1
1−ν

Dt+1 = βi(πt+1(1− ω) + ω) (1− δ + rt+1) . (90)

c̃it = (w̃t + πtat) η
i
t + (1− δ + rt) k̃

i
t − gNt+1

(
atη

i
t+1 + k̃i

t+1g
1

1−ν

Dt+1

)
. (91)

The de-trended first order conditions of the firm are:

rt = νk̃ν−1
t and w̃t = (1− ν)k̃1−ν

t . (92)

Finally, the market clearing conditions in terms of de-trended variables are:

I∑
i=1

c̃it = c̃t ,
I∑

i=1

ηit = 1 ,
I∑

i=1

k̃i
t = k̃t,

c̃t + at(gNt+1 − πt) + (k̃t+1gNt+1g
1

1−ν

Dt+1 − (1− δ)k̃t) = k̃ν
t . (93)

Steady state If we assume that the child-cost parameter, the survival probability

and TFP growth rates converge to constants (i.e. at → ass, πt → πss and gDt → gDss)

we can solve for the steady-state levels of the de-trended model. Denoting steady

state values as k̃ss, etc. we have:

gINss = gNss and giNss = 0 ∀i < I (94)

k̃I
ss = k̃ss and k̃i

ss = 0 ∀i < I (95)
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c̃Iss = c̃ss and c̃iss = 0 ∀i < I. (96)

Using the above along with the de-trended dynasty first order conditions and budget

constraints (89)-(91), and the firm’s de-trended first order conditions (92) we obtain

a set of 6 equations that characterize the steady state and can be solved for six

unknowns, gNss, k̃ss, w̃ss, rss, ỹss and c̃ss:

αgNssass = αβI(πss(1−ω)+ω) (w̃ss + πssass)+ (1−α−βI(πss(1−ω)+ω))c̃ss. (97)

gNssg
1

1−ν

Dss = βI(πss(1− ω) + ω) (1− δ + rss) . (98)

c̃ss + ass(gNss − πss) + (k̃ssgNssg
1

1−ν

Dss − (1− δ)k̃ss) = k̃ν
ss (99)

ỹss = k̃ν
ss (100)

w̃ss = (1− ν)k̃1−ν
ss (101)

rss = νk̃ν−1
ss . (102)

Note that, as in the baseline model, the above steady state is identical to the steady

state which would arise in an economy populated by only one dynasty with discount

factor βI .

Initial population and consumption Much like we did for the baseline model,

we can take the equations in (88) and use them to replace Ci
t and N i

t+1 in equation

(79). Then taking the limit of the resulting expression as t → ∞ and using the

steady-state first order conditions (97)-(102) we obtain the following relationship for

each i:
Ci

0

CI
0

=
1− α− βI(π1(1− ω) + ω)

1− α− βi(π1(1− ω) + ω)

N i
1

N I
1

. (103)

Aggregation As with the baseline, it is convenient to solve the model in two stages:

first, by deriving aggregate variables and, second, by calculating dynasty-specific

variables.

We start by re-writing the first order condition (89) and (90) for dynasty I in

terms of aggregate population growth rates, gNt, and de-trended capital, k̃t, only.

To do this, we use equations (88) and (103) as well as the definitions of the de-

trended variables above to relate dynasty- and aggregate-level de-trended variables
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via weighted averages of time zero dynasty-level de-trended consumption:

c̃it =
(βi)tc̃i0∑I
j=1(β

j)tc̃j0
c̃t, and, ηit+1 =

(βi)t(1− α− βi(πt+1(1− ω) + ω))c̃i0∑I
j=1(β

j)t(1− α− βj(πt+1(1− ω) + ω))c̃j0
.

(104)

Substituting (92), (93) and (104) into (89) and (90), all evaluated with i = I, gives

us two first order condition in terms of aggregate population growth rates, {gNt}∞t=0,

de-trended capital {k̃t}∞t=0 and initial de-trended consumption distributions, {c̃i0}Ii=1,

only. Assuming that the model converges to its steady state after T periods, we use a

reverse-shooting algorithm to solve for {gNt}Tt=0 and {k̃t}∞t=1 as a function of {c̃i0}Ii=1.

Given this, we can then use (104), the firm first order condition (92) and market

clearing condition (93) to solve for {c̃it, ηit+1, c̃t, w̃t, rt}Tt=0 as functions of {c̃i0}Ii=1.

Given the above and the assumption that the model converges to steady-state after

T periods,37 we can use the dynasty specific budget constraints to derive sequences

of each dynasty’s capital stock, {k̃i
t}Tt=1, as functions of {c̃i0}Ii=1:

k̃i
t =

c̃it + gNt+1

(
atη

i
t+1 + k̃i

t+1g
1

1−ν

Dt+1

)
− (w̃t + πtat) η

i
t

(1− δ + rt)
(105)

Finally, since we know the distribution of period zero capital across dynasties, then

(91) evaluated at t = 0, can be used to infer the dynasty distribution of initial

consumption:

c̃i0 = (1− δ + r0) k̃
i
0 − gN1

(
a0η

i
1 + k̃i

1g
1

1−ν

D1

)
+ (w̃0 + π0a0) η

i
0. (106)

We can thus solve the problem for any initial distribution of capital and population.

D.2 Calibration

The calibration of the extended models is very similar to the baseline and the calibra-

tion of each extended model is also similar to each other. To obtain the calibration

of what we call the ‘Growth model’ we set ω = 1 and to obtain the calibration of the

‘Blanchard model’ we set ω = 0. We then proceed to choose exogenous parameters

which we will feed into the model. All parameter values are summarized in Table 7.

37So that k̃IT+1 = k̃ss and k̃iT+1 = 0 for all i ̸= I.
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Productivity Productivity in the model, Dt, is chosen to match the median growth

rates of world GDP per capita during three time periods that exhibited markedly dif-

ferent growth patterns – 1300 to 1775, 1776 to 1875, and 1876 to 2000. Specifically,

we calculate the median generational GDP per capita growth rates during each of

those periods (0.84%, 10.06% and 41.48% respectively) using data from The Mad-

dison Project (2013). We then estimate a generalised logistic function using three

corresponding productivity growth rates in the model (0.98%, 13.07% and 30.86%

in the model with TFP and endogenous capital and 0.98%, 10.46% and 25.89% in

the model with the Blanchard mechanism) such that when the model is fed in this

implied productivity growth path it generates the observed GDP per capita growth

over the three time periods.38 Finally, the model also requires choosing a long-run

productivity growth rate, gDss. As Crafts and Mills (2017) argue, predicting future

TFP growth rates from past data can be difficult. Nonetheless, both they and an

extensive literature have shown consistently declining productivity growth rates that

may stay low into the future. They estimate that productivity growth between 2005

and 2016 was approximately 0.5% per year. As such we set our gDss = 1.00525 and

assume that the productivity growth rate in the model drops to this level after 2100.

Survival probabilities We calculate survival probabilities in the model by using

data on life expectancy for England and the UK for the period 1543-2020 from Roser

et al. (2013) who in turn compile data from Riley (2005), Zijdeman and Ribeira da

Silva (2015) and the UN (World Population Prospects 2019, Online Edition. Rev. 1.,

2019). We use English data as this offers the longest time span available. We linearly

interpolate this data and smooth it using the Hodrick Prescott filter with smoothing

parameter of 100. Then, assuming that one generation is 25 years, we calculate the

generational expected probability of death in the model as Πt = 1−25/lt - where lt is

life expectancy for generations from 1550 to 2000 at 25 year intervals. Finally, we fit

a generalized logistic function to this data in order to generate a smooth transition in

life expectancies.39 We assume a long run survival probability of πss = 0.667 which

38The productivity logistic function is given by: g(t) ≡ A+ K−A

1+e−B( t−1275
25

−M)
, where in the model

with TFP and endogenous capital A ≡ 0.98 is the minimum asymptote, K ≡ 1.28 is the maximum
asymptote whilst B = 0.79 and M = 22.31 are the fitted values. In the Blanchard model the
corresponding values are A ≡ 0.98, K ≡ 1.26, B = 0.71 and M = 21.83.

39This logistic function is given by: g(t) ≡ A+ K−A

1+e−B( t−1550
25

−M)
, where A ≡ 0.323 is the minimum

asymptote chosen to match the average probabilities in the first 250 years, K ≡ 2/3 is the maximum
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Figure 12: Generational Survival Probability, England.
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implies a life expectancy of 75 years — this is the same as in the baseline model. Also

notice that πss > πt – a fact that we use in our calibration of the patience grid below.

We extrapolate this logistic function back to 1300 giving us survival probabilities from

1300 to 2000. The survival probability implied by the data, and the smoothed series

we use in the model, is presented in Figure 12.

Child cost Both in the model with endogenous capital and TFP growth as well as

the Blanchard model, we generate a demographic revolution by choosing child costs,

at, in such a way as to exactly replicate the evolution of population growth. Specif-

ically, generational population growth rates are chosen to match world population

growth rates during three periods that exhibited markedly different growth patterns -

1300-1775, 1775-1875, and 1875 to 2000. We calculate the median population growth

rate during each of those periods (2.21%, 10.7% and 28.17% respectively) using data

from The Maddison Project (2013). We then smooth the transition between these

growth rates using a generalized logistic function. Finally, we choose period-by-period

at in order to replicate the observed growth rates of population. The model also re-

quires choosing a long-run population growth rate. Herrington (2021) updates the

Club of Rome’s 1972 ‘Limits To Growth’ report and estimates that global population

asymptote chosen to match a long-run life expectancy of 75 years whilst B = 0.89 and M = 14.01
are the fitted values.
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between 2020 and 2100 may fall by 1% per year. As such we set the long run growth

rate to be gNss = 0.9925 and assume that population growth rates in the model drop

to this level after 2100.

Patience grid We assign a discount factor to each dynasty i ∈ I. Recall that

we order dynasties such that the sequence {βi}Ii=1 is strictly increasing in i. In

order to ensure the strict concavity of the objective function we need to assume that

1−α−βi(πt+1(1−ω)+ω) > 0. Given this restriction as well as the assumptions that

limt→∞ πt → πss and that πss ≥ πt, each discount factor can bounded by 0 < βi < β̄,

where β̄ ≡ 1−α
πss(1−ω)+ω

. We sub-divide the interval (0, β̄) into I equally-sized sub-

intervals and locate each type’s patience level at the central point of every sub-interval,

so that, for each i, βi = β̄ (2i−1)
2I

. We set the number of types to be I = 10, 000 in

order to obtain a good approximation of continuous distribution. To pin down the

sequence of βis, we need to find values for α and β̄, βI , k̃ss and ass. We can solve

for these five unknowns by noting first that the share of expenditure on consumption

relative to aggregate income in the steady-state, scss ≡ limt→∞Ct/Yt, is an implicit

function of the above values and given by:

scss ≡
k̃ν
ss − (gNssg

1
1−ν

Dss k̃ss − (1− δ)k̃ss − ass(gNss − πss)

k̃ν
ss

. (107)

Combining this equation with the first two equations of the steady state first order

conditions (97) and (98) as well as the expression βI = β̄ (2I−1)
2I

and β̄ ≡ 1−α
πss(1−ω)+ω

and,

as in the baseline, setting scss = 0.75 to match the average global steady-state income

share post-2000,40 allows us to solve for these unknowns: α = 0.488, β̄ = 0.512,

βI = 0.512, ass = 0.345 and k̃ss = 0.082 in the growth model and α = 0.488,

β̄ = 0.7686, βI = 0.7685, ass = 0.345 and k̃ss = 0.082 in the Blanchard model.

Capital distribution We choose total (de-trended) capital so that initial (de-

trended) capital stocks pre-1300 lie on a saddle path. To do this we proceed by

starting the model in 1275 (instead of 1300) with a guess of the initial capital stock.

Since capital stocks adjusts very quickly (one period in the model is 25 years) capital

stock in 1300 (i.e. t = 0) will be on the saddle path.41 The initial distribution of this

40See Appendix A for details.
41In practice this means setting k̃−1 = k̃0 - but then only considering results from 1300.
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capital stock across dynasties is chosen exactly as in the baseline model. That is, the

initial distribution of capital across dynasties determines the population distribution

of those dynasties in subsequent periods. To obtain the initial capital distribution,

we assume that the growth of each dynasty’s population is consistent with solutions

of the model in the period prior to the initial period. Specifically, we assume that

outcomes in the period before t = 0 are on the equilibrium saddlepath just as much

as they are in periods from t = 0 on. The initial distribution of capital is thus chosen

such that population growth rates are solutions of the model from period t = 0. In

practice, this means assuming that equation (87) also holds for t = 0. This assump-

tion then allows us to re-write equation (103) as:

Ci
0

CI
0

=
βi

βI

(
1− α− βI(π0(1− ω) + ω)

1− α− βi(π0(1− ω) + ω)

)
N i

0

N I
0

. (108)

or in de-trended terms as:

c̃i0
c̃I0

=
βi

βI

(
1− α− βI(π0(1− ω) + ω)

1− α− βi(π0(1− ω) + ω)

)
ηi0
ηI0

. (109)

Given this consistency assumption, the initial population distribution tells us what

initial consumption distribution should be. Finally, we can use dynastic budget con-

straints (106) to determine what this initial distribution of consumption implies about

the initial distribution of (de-trended) capital, {k̃i
0}Ii=1.

Patience distribution As in the baseline we do not have data on the population

distribution of patience in the year 1300 (t = 0 in the model), we choose our period-

zero distribution of types so that the model replicates evidence on the distribution of

types in the year 2000 (t = 28 in the model). Under the assumption of consistency

we made in the previous paragraph we obtain the following expression relating the

relative distribution of dynasties in time t with respect to their distribution in time

zero:

ηit
ηIt

=
(βi)t(1− α− βi(πt(1− ω) + ω))(1− α− βI(π0(1− ω) + ω))

(βI)t(1− α− βI(πt(1− ω) + ω))(1− α− βi(π0(1− ω) + ω))

ηi0
ηI0

. (110)

Thus, given evidence on the distribution of patience at some later date t, we can

infer the initial distribution of the population across levels of patience. However, we
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face the same problem as before: modern data will capture only a censored portion

of the full initial distribution of preference types. To address this issue, we once

more impose a distribution on the data. Unlike the baseline however, we will impose

a distribution of generational discount factors on the mortality-adjusted population,

Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t . Notice that when ω = 1 the adjusted and the unadjusted

population are identical. When ω < 1 we can relate the distribution of patience

within the adjusted population to the distribution of patience in the non-adjusted

population using the following theorem.

Theorem 2. If I → ∞ and dynastic discount factors are distributed according to

f̃(β) within the mortality-adjusted population, then dynastic discount factors will

be distributed according to the following distribution in the un-adjusted population:

ft(β) =
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β).
Proof. See Appendix F.

Notice that if in any one period the distribution of patience levels in the adjusted-

population takes the form of a scaled beta distribution, f̃t(β; γt, δt), then from equa-

tion (87) the distribution of patience levels in the mortality-adjusted population will

satisfy Theorem 1 and, for a fine enough grid, it will follow a scaled-beta distribution

in the mortality-adjusted population in all other periods with shape parameters given

by γt+1 = γt+1 and δt+1 = δt. Furthermore, recalling that in our calibration we have

1− α = β̄(ω + (1− ω)πss), using Theorem 2 we can derive an explicit expression for

the distribution of patience levels in the un-adjusted population:

ft(β) ≡ f(β; γt, δ) =
(1− δ)(β̄(πss(1− ω) + ω)− β(πt(1− ω) + ω))

(β̄ − β)((πss(1− ω) + ω)(1− γ − δ) + γ(πt(1− ω) + ω))
f̃(β; γt, δt).

(111)

As in the baseline model we can then calculate analytical expressions for the expected

value and variance of both generational and annualized β. When t → ∞, the mean

generational beta converges to β̄ and the variance goes to zero. As in the baseline we

set var28(β
1
25 ) = 0.00532 to match experimental evidence from representative individ-

uals in Denmark (Andersen et al., 2008) and the individual-level data in the Global

Preference Survey (GPS) described in Falk et al. (2018). Similarly to the baseline we

can also derive an approximate expression (see Appendix F) for the annualized gross
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Table 7: Parameters for extended models
Parameter(s) Value Target

Growth Blanchard
ω 1 0 Switch between Growth & Blanchard

models
D0 1 1 Normalization
N0 0.37 0.37 World population, 1300, The Maddison

Project (2013)
{gDt+1}28t=−1 See Text See Text World output per worker growth rates

(smoothed), The Maddison Project
(2013)

gDss 1.00525 1.00525 Predicted long run productivity growth
rates, Crafts and Mills (2017)

k̃0 0.003 0.0005 On saddle path (see text)
{at}28t=−1 See Text See Text World population growth rates, The

Maddison Project (2013)
ass 0.345 0.345 Predicted future population growth

rates from Herrington (2021)
{πt}28t=0 See Text See Text English life expectancy, smoothed
πss 0.667 0.667 Adult life expectancy of 75
ν 0.33 0.33 Gollin (2002)
I 10,000 10,000 Number of Types

{βi}Ii=1

{
β̄(2i−1)

2I

}I

i=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

α 0.488 0.488 Consumption share (see text)
β̄ 0.512 0.769 Maximum (generational) discount fac-

tor
{γ28, δ28} {31, 48} {32, 50} Standard deviation of discount factors

(Andersen et al., 2008; Falk et al., 2018)
and long run rate of return (see text)

{ηi0}
I
i=1 See Text See Text Andersen et al. (2008) and Falk et al.

(2018){
k̃i0
k̃0

}I

i=1
See Text See Text Consistency (see text)
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interest rate:

R
1
25
t ≈

γt − 1 + δt
β̄γt

gNtg
1

1−ν

Dt

ω + (1− ω)πt

 1
25

. (112)

Given this, we set R
1
25
32 − 1 = 0.06 to match the average (annualized) generational

rates of return generated by the baseline model. This is so that both the extended

and baseline models predict the same rates of interest in the long run, i.e. when

productivity growth rates and child costs have reached their long-run values. We can

use this expression and the expression for the variance to determine the parameters

of mortality-adjusted distribution: γ28 = 31 and δ28 = 48 in the growth model and

γ28 = 32 and δ28 = 50 in the Blanchard model. Given these parameters, we can use

the CDF of the distribution of the discount factors in the adjusted-population, F̃ , to

approximate, for some I, the proportion of the population assigned to each dynasty

i relative to the most patient dynasty I, in the year 2000 (i.e. period t = 28) by:

ηi28
ηI28

=
N i

28

N I
28

=

1−α−βi(π28(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

1−α−βI(π28(1−ω)+ω)
1−α−βI(πss(1−ω)+ω)

F̃
(
βi + β̄

2I
; 28
)
− F̃

(
βi − β̄

2I
; 28
)

F̃
(
βI + β̄

2I
; 28
)
− F̃

(
βI − β̄

2I
; 28
) . (113)

With the above proportions in hand, we can then calculate the t = 0 distribution of

population using equation (110) with t = 28, and proceed to solve the model.

D.3 Robustness of calibration

Our calibration exercise depends on capturing the modern variation of patience in

the population. As we explained in the paper in section 3.2 and in the appendix in

section D.2, the calibration of the distribution of patience is based on individual-level

data in the Global Preference Survey (GPS) described in Falk et al. (2018). In this

section we present a robustness exercise in which we vary the parameters that govern

this distribution in order to consider the sensitivity of our results. We do this for

the ‘Blanchard’ version of the model alone, though quantitatively and qualitatively

similar results hold in the corresponding exercises with the ‘Baseline’ and ‘Growth’

versions of the model. We examine what share of the decline in interest rates is

explained by selection when we allow the variance of patience to deviate by no more
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than 10 percentage points from the variance in the GPS data?42

Our robustness exercise consists of independently varying one of either δ or γ0 in

the scaled-beta distribution, f̃t(β), whilst re-calibrating the other parameter so that

the model matches the interest rate predicted by the original Blanchard model in 1325.

All other parameters in the calibration are independent of these two parameters and

thus remain unchanged. For a given change in each parameter we plot two graphs:

1) the proportion of the decline in the interest rate between 1325 and 2000 that can

be explained by selection; and 2) the proportion of the variance in patience observed

in the year 2000 (in the GPS data) that can be explained given our parameter choice.

Figure 13 shows the results of the above exercise. Panel i) and ii) the propor-

tion of year 2000 variance in patience explained by the model when changing γ0

and δ respectively while panel iii) and iv) show the proportion of the decline ex-

plained by selection when changing γ0 and δ respectively. Panels i) and ii) point to

a hump-shaped relationship between these parameters and the success of the model

distribution in capturing the variance in the data. Figures ii) and iv), however, show

that the higher the δ and the higher the γ the smaller the role of selection.

Recall that in the calibration of the Blanchard model we take γ28 = 32 (so that

γ0 = 4) and δ = 50. Figure 13 points to the substantial robustness in the model

to alternative calibration. The model distribution captures more than 90% of the

variance in the data so long as γ0 is within (1.7, 16.3) and δ is within (29, 182). Despite

such variation, the contribution of selection to explaining the decline in the interest

rate remains strong. The predicted role of selection within both sets of bounds varies

from 55%-118%. Thus, for a large range of parameters determining the key object

of the model – the distribution of patience across individuals in the year 2000 – the

model points to an important role for selection.

42This is a larger than likely range for the variance; the bootstrapped 95% confidence interval for
the variance is [98.6, 101.0%]; the 90% confidence interval is [98.3, 101.4%].
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Figure 13: Blanchard model, varying γ0 and δ
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Note: Panels iii) and iv) report the share of the decline in the interest rate over 1325–2000
that can be explained by the selection mechanism (difference between heterogenous- and
homogenous-agent Blanchard model). Panels i) and ii) give the variance in the distribution
of patience in the model at the year 2000, as a share of the corresponding variance in the
data. Panels i) and iii) vary γ0 holding δ constant; panels ii) and iv) vary δ holding γ0
constant. The model is the ‘Blanchard’ model in section 4 where we set ω = 0. The dashed
lines give us the range of the selection-explained decline in the interest rate that results
from a deviation from the variance in the data of 10 percentage points.

D.4 Additional figures and tables

In this section we include additional figures and Tables associated with the extended

models.
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Figure 14: Interest rate decline in the model with capital and growth
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Note: Data is the Schmelzing (2020) global real interest rate. The model is the ‘Growth’
model in section 4 where we set ω = 1.

Figure 15: Interest rate decline in the model with Blanchard
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Note: Data is the Schmelzing (2020) global real interest rate. The model is the ‘Blanchard’
model in section 4 where we set ω = 0.
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Table 8: Individual model performance against the interest rate

Data Heterogenous Homogenous Selection
A B C A′ B′ C ′ ∆A ∆B ∆C

R1325 −R2000 6.77 7.89 5.08 7.33 1.33 -2.57 0.61 6.56 7.65 6.72
Avg. decline 10.88 7.68 4.94 6.80 1.26 -2.37 0.31 6.42 7.32 6.49
max−min 13.67 9.07 8.15 7.96 1.55 -2.57 0.76 7.52 9.16 7.36

Note: Data is the Schmelzing (2020) global real interest rate. Model A is the baseline model
with heterogenous agents. Model B is the baseline model where we introduce endogenous
capital and calibrate child cost, TFP and life expectancy but set ω = 1 (called “Growth”
in Table 7). Model C is model B with the additional mechanism to incorporate imperfect
altruism, setting ω = 0 (called “Blanchard” in Table 7). The prime models – A′, and so
on – are the same models but with homogenous agents (only one dynasty). The ∆A are
the selection effects, i.e., the difference between the heterogenous- and homogenous-agent
model results. Avg. decline is the result of a regression of the model or data on a time
trend, then uses the coefficient on time to obtain an average decline over the whole period;
R1325 −R2000 is the difference between the initial and final observation; max−min is the
maximum less the minimum over the whole period (except for B′, the homogenous growth
model, since the interest rate increases, where we report the minimum less the maximum).

Figure 16: Fertility rates and fertility-income relationship
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Note: Growth and Blanchard are the models in section 4 with ω = 1 and ω = 0 respectively.
See text and Appendix D.2 for details of the calibration.

E Additional quantitative implications

E.1 Surviving children and bequests

In Section 5.2 we compare the model to the testamentary data in Clark and Hamilton

(2006) and Clark (2007a). In order for us to generate this object in the model, we
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need to calculate the expected number of surviving children and the expected value

of bequest to those children at parents’ expected time of death in the model.

To calculate the expected number of children at the point of death, recall that for

each adult there is a probability (1 − π) of death each period. Each child born to

that adult more than one period ago has the same periodic probability of death. We

call an agent who becomes a parent in period t (i.e., that was born in period t− 1),

a t-parent. For each t-parent in each dynasty i, the expected number of children

surviving at the point of his death is,

E
[
si(t)

]
≡

∞∑
j=1

p(t, j)si(t, j), (114)

where p(t, j) is the probability of a t-parent dying j periods later and si(t, j) is the

expected number of children of a t-parent that survive to that point of death. For

j ≥ 1, we have,

p(t, j) ≡ πj−1(1− π). (115)

The t-parent had a sequence of children in each period from t to t+ j, each of which

children, after one period, has a probability of survival to t + j. I.e., if a t-parent

survives for two periods (j = 2), he has had ni
c,t children in period t and ni

c,t+1 in

period t+ 1. The children born in t, survive to t+ 2 with probability π; the children

born in period t+ 1 survive to t+ 2 with probability 1. For each j ≥ 1, we have the

expected number of surviving children of a t-parent,

si(t, j) ≡
j−1∑
k=0

πkni
c,t+j−(k+1), (116)

where ni
c,t+j−(k+1) is the number of children born k + 1 periods before t+ j.

Given the above we can calculate the expected number of surviving children of a

parent born in time t, si(t), at their expected time of death:

E
[
si(t)

]
=

1

1 + π

∞∑
m=0

πmni
c,t+m. (117)

Note that if ni
c,t+m were constant over time, ni

c,t+m = n̄i
c for all m > 0, then the this
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equation reduces to

E
[
si(t)

]
=

1

1− π2
n̄i
c. (118)

We can also calculate the total bequests of a t-parent, bi(t), at their expected time

of death (and only at that time):

E
[
bi(t)

]
= (1− π)

∞∑
m=0

πmki
t+m+1n

i
t+m+1. (119)

Total bequests of t-parent at time t+ j (and only at that time), for j ≥ 1:

bi(t, j) ≡ ni
t+jk

i
t+j (120)

Figure 17 reports the model implication in the baseline against the data in Clark

and Hamilton (2006) and Clark (2007a).

Figure 17: Wealth and surviving children

Data for 1585–1638, Clark and Hamilton (2006)
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E.2 Shocks

In section 5.2 we discussed how an unexpected shock to the distribution of population,

such as that which might result from a pandemic, and an unexpected shock to the
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distribution of capital, such as that which might arise from the result of warfare, will

influence our economy. Here we describe more fully these counterfactual exercises

and their results.

Pandemic We model a pandemic as an event where a constant fraction of each

dynasty (and hence the population) unexpectedly dies at the start of a period.43

The net capital holdings of the deceased households are re-distributed equally among

remaining members of the dynasty. We suppose that the disease hits in 2025 and

has a death rate of 30%. This size of shock is chosen in order to generate a large,

unexpected pandemic similar in magnitude to the medieval Black Death. First, in

Figure 18 panel i), we examine the impact on aggregate population. Immediately

after the negative shock to population, households choose to have more children as

the returns on children increase relative to those of land. No underlying parameters

of the model change and so the long run steady state level of population is as it was

prior to the pandemic. Note, however, that the recovery of the level of population is

not instantaneous and remains lower than it would have been without the pandemic

for several hundred years. Only around the year 2800 does the population reach close

to the same level it would have been. Thus, the effects of pandemics can, along certain

dimensions, be very long lasting.

In Figure 18 panel ii), we report the interest rate. A pandemic results in an

increase of the capital-labor ratio. Since capital is now abundant, the rate of return

on capital, the interest rate, drops in the period of the shock. Subsequently, the

interest rate is marginally higher than in the baseline, driven by a higher population

growth rate as the economy returns to its pre-shock growth path.44 The result for

interest rates is consistent with the findings in Jordà et al. (2020) who show that

the immediate response of the interest rate to a typical pandemic is a fall of the real

rate, with effects lasting up to 40 years after the end of the pandemic on average.

Finally, panel iii), shows that a pandemic acts to reduce the level of inequality. The

relative scarcity of workers after a pandemic drives up wages for those who survive

and results in households that rely more on wages than rental income to accumulate

43For computational convenience in this and the subsequent section we reduce the grid of discount
factors from I = 2000 to I = 20 dynasties. For the time period under consideration, the sparser
grid significantly reduces computational time and leaves results quantitatively nearly identical.

44Higher population growth rates result in higher interest rates since they make an investment in
capital today be worth more tomorrow since capital will be relatively more scarce, given the higher
population.
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Figure 18: Pandemic or war
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greater quantities of capital thus reducing wealth inequality. This is consistent with

the work of Alfani and Murphy (2017) who finds a large decline in economic inequality

driven by a similar mechanism in much of Europe during and after the Black Death.

War Next, we consider a counterfactual that is more akin to a large war, a shock

that results in the permanent destruction of capital. As with a pandemic, we model

a war as the destruction of 30% of each dynasty’s net capital holdings at the start

of a period. This experiment thus sheds light on how a heterogenous agent economy

adjusts to a sudden decrease in the capital-labor ratio caused by a decrease in the

capital stock. The results shown in Figure 18 panel i) show that in this case the
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long-run level of population does not recover; the long run capital to labour ratio is

unchanged and, since there is no mechanism for capital accumulation in our model,

this implies that the long-run total population must be lower. The results in panels ii)-

iii), mirror the results (with reversed intuition) from a pandemic; we see an immediate

spike in interest rates followed by lower than baseline rates driven by lower population

growth, and an increase in inequality that decays over time due to lower wages.

Again, the estimates in Jordà et al. (2020) for the impact of war on the interest rate

are qualitatievely consistent with the predictions of our model. This finding is also

related to Vandenbroucke (2014), which finds that fertility falls as a result of a war

due to the chance of lost future household income. In our model, the war causes

a permanent decline in steady state output, and lower population in the long run.

While not exactly the same mechanism, our simple counterfactual and the careful

empirical analysis in Vandenbroucke generate similar implications.

F Asymptotic results

F.1 Proof of Theorem 1

In the baseline calibration of the model we assumed a discrete number of types of

agents. In this section, we consider what happens when the number of types of agents

approaches infinity, in order to prove Theorem 1.

Theorem 1. If I → ∞ and dynastic discount factors are distributed according

to a scaled beta distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period

t̄, then dynastic discount factors will also be distributed according to a scaled beta

distribution in period t̄+1 on (0, β̄) with shape parameters γt̄+1 = γt̄+1 and δt̄+1 = δt̄.

Proof. Suppose that there are I dynasties with discount factors, βi, distributed evenly

along a grid so that β(i; I) = 2i−1
2I

for i = 1, · · · , I. Notice that the distance between

any two points is simply: ∆(I) ≡ β(i + 1; I) − β(i; I) = 1
I
. We define the following

function: νt(β(i; I)) ≡ νI
t (β

i) ≡ N i
t

Nt , which maps the discount factor of a particular

dynasty to the fraction of the total population of that dynasty i at time t. Notice,

that we can think of this function as a probability mass function of a discrete random

variable with realization, β(i; I), on the domain {2i−1
2I

|i = 1, · · · , I}. We wish to

characterize the evolution of the asymptotic function, νt(β(i;I))
∆(I)

, over time as I → ∞
- that is as the number of dynasties or types becomes infinite. The idea here is
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that although our model will be solved numerically, and thus, we will always need to

construct a grid and hence choose a finite number of types, we wish to emphasize that

the choice of the size of the grid will be less and less relevant as long as it is relatively

large. Furthermore, later we will wish to calibrate the model at a particular point in

time, and hence it will be useful to show that a form of stability for the distribution

function of types exists over time. This is easier to do in a continuous setting than a

discrete case.

For each agent i, we can re-write equation (8) as:

N i
t+1 = βiR̃t+1N

i
t . (121)

Summing these expressions over all agents, we obtain the following, Nt+1 = R̃t+1

∑I
j=1 β

jN j
t ,

which can also be written as:

Nt+1 = R̃t+1Nt

I∑
j=1

βjνI
t (β

j). (122)

Dividing equation (121) by equation (122) we obtain:

νI
t+1(β

i) =
βiνI

t (β
i)∑I

j=1 β
jνI

t (β
j)
. (123)

This recursive formulation defines the evolution of the probability mass function over

time. We are interested in the properties of this function as I → ∞. To aid us in

this investigation, notice that the cumulative distribution function of βi at time t for

a grid of size I is:

F I
t (β

i) ≡
∑i

j=1 β
jνI

t (β
j)∑I

j=1 β
jνI

t (β
j)
. (124)

This also means that:

νI
t (β

i) = F I
t (β

i+1)− F I
t (β

i) = P I
t (β

i ≤ β ≤ βi+1). (125)

Given the above, notice that (123) can be re-written as:

νI
t+1(β

i)

∆i(I)
=

βi ν
I
t (β

i)

∆i(I)∑I
j=1 β

jP I
t (β

j ≤ β ≤ βj+1)
. (126)
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Taking the limit of both sides of the above as I → ∞ we obtain the following expres-

sion:

ft+1(β) =
βft(β)

Et(β)
, (127)

where ft is the continuous probability density function corresponding to the discrete

mass function νI
t
45 and Et(β) ≡

∫ 1

0
uft(u)du = limI→∞

∑I
j=1 β

jP I
t (β

j ≤ β ≤ βj+1),

is simply the mean of the corresponding continuous random variable. Notice that

the above functional equation describes the evolution of the distribution of the limit

function over time. It is easy to show that a time invariant solution f(β) of the above

does not exist (see appendix). Instead, we are interested in a solution that takes

the following form ft(β) ≡ f(β;θt), where θt is a vector of potentially time varying

parameters of the distribution f . In other words, we are looking for a solution to the

above that remains of a fixed type, with only its parameters changing.

Below, we show that one solution to the above functional equation is the scaled

beta distribution defined on (0, β̄) with cumulative distribution function, F (·) given
in the main body of the text in equation (12). The corresponding probability density

function of this distribution f is given by:

ft(β;θt) ≡ f(β; γt, δt) =
(β̄ − β)δt−1βγt−1

β̄δt+γt−1B(γt, δt)
, (128)

where B(γt, δt) is the beta function. The mean of this distribution is given by:

E(β; γt, δt) = β̄
γt

γt + δt
. (129)

Using equations (127)-(129), we can write the pdf of discount factors at time t+1 as:

ft+1(β; γt, δt) =
β(β̄ − β)δt−1βγt−1

β̄ γt
γt+δt

β̄δt+γt−1B(γt, δt)
(130)

=
(β̄ − β)δt−1βγt

γt
γt+δt

β̄δt+γtB(γt, δt)

=
(β̄ − β)δt−1βγt

β̄δt+γtB(γt + 1, δt)

= f(β; γt+1, δt+1)

45To see this, notice that limI→∞
νt(β(i;I))

∆(I) = limI→∞
Ft(β(i+1;I))−Ft(β(i;I))

β(i+1;I)−β(i;I) =

limI→∞
Ft(β(i;I)+∆(I))−Ft(β(i;I))

∆(I) = F ′
t (β(i; I))
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where, γt+1 = 1 + γt and δt+1 = δt ≡ δ. The second equality follows from a beta

function identity that B(1 + x, y) = x
x+y

B(x, y). Thus, one solution to the functional

equation (127) is the beta distribution with parameters given by γt+1 = 1 + γt and

δt ≡ δ.

F.2 Proof of Theorem 2

The following theorem applies to the extended models and establishes a relationship

between the distribution of discount factors in the mortality-adjusted and unadjusted

population.

Theorem 2. If I → ∞ and dynastic discount factors are distributed according

to f̃(β), within the mortality-adjusted population, then dynastic discount factors will

be distributed according to the following distribution in the un-adjusted population:

ft(β) =
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β).
Proof. Suppose that there are I dynasties with discount factors, βi, distributed evenly

along a grid so that β(i; I) = 2i−1
2I

for i = 1, · · · , I. Notice that the distance between

any two points is simply: ∆(I) ≡ β(i + 1; I) − β(i; I) = 1
I
. We define the following

two functions. First, ν̃t(β(i; I)) ≡ ν̃I
t (β

i) ≡ Ñ i
t

Ñt where Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t

and Ñt ≡ ∑I
i=1 Ñ

i
t which maps the discount factor of a particular dynasty to the

adjusted population of that dynasty i at time t. Second, νt(β(i; I)) ≡ νI
t (β

i) ≡ N i
t

Nt ,

which maps the discount factor of a particular dynasty to the fraction of the total

population of that dynasty i at time t. Notice, that we can think of these functions

as probability mass functions of discrete random variables with realizations, β(i; I),

on the domain {2i−1
2I

|i = 1, · · · , I}. We wish to characterize the evolution of the

asymptotic functions, ν̃t(β(i;I))
∆(I)

and νt(β(i;I))
∆(I)

, over time as I → ∞ - that is as the

number of dynasties or types becomes infinite.

We first derive a relationship between these two distributions. Since ν̃I
t (β

i) ≡ Ñ i
t

Ñt
=

1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t∑I
j=1

1−α−βj(πss(1−ω)+ω)

1−α−βj(πt(1−ω)+ω)
Nj

t

, we can re-write this expression to obtain the total population
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in dynasty i as:

N i
t =

(
I∑

j=1

1− α− βj(πss(1− ω) + ω)

1− α− βj(πt(1− ω) + ω)
N j

t

)
1− α− βi(πt(1− ω) + ω)

1− α− βi(πss(1− ω) + ω)
ν̃I
t (β

i).

(131)

Summing the above over all i and simplifying we obtain the following expression for

total population at time t:

Nt =

(
I∑

j=1

1− α− βj(πss(1− ω) + ω)

1− α− βj(πt(1− ω) + ω)
N j

t

)(
I∑

i=1

1− α− βi(πt(1− ω) + ω)

1− α− βi(πss(1− ω) + ω)
ν̃I
t (β

i)

)
.

(132)

Taking the ratio of these two expressions we obtain an expression for the proportion

of workers in each dynasty:

νI
t (β

i) ≡ N i
t

Nt

=

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

ν̃I
t (β

i)∑I
i=1

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

ν̃I
t (β

i)
. (133)

Dividing both sides by ∆i(I) and taking the limit of the above as I → ∞ the above

becomes:

ft(β) =

1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β), (134)

where ft and f̃t are the continuous probability density functions corresponding to the

discrete mass functions νI
t and ν̃I

t respectively and Ef̃t
(β) is the mean of the latter

corresponding continuous variable.

F.3 Asymptotic expression for the rate of interest

Baseline model In the baseline model, the mean discount factor influences the

interest rate. Recall that

Rt+1 =
Ci

t+1/C
i
t

βi
=

(
κI
t+1(β

i)/∆(I)

κI
t (β

i)/∆(I)

)
Ct+1

Ct

βi
(135)

90



where κI
t (β

i) ≡ Ci
t/Ct. Note also that we can write:

κI
t (β

i)

∆(I)
=

βi

1−α−βi

νIt (β
i)

∆(I)∑I
j=1

βj

1−α−βj νI
t (β

j)
. (136)

Taking the limit of both sides of the above as I → ∞ we obtain the following expres-

sion:

fct(β) =

β
1−α−β

ft(β)

Et(
β

1−α−β
)
, (137)

where ft and fct are the continuous probability density function corresponding to

the discrete mass functions νI
t and κI

t . Note also that using the relationship derived

between ft+1(β) and ft(β) in the Appendix we have the following expression:

fct+1(β)

fct(β)
= β

Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) (138)

Taking the limit of both sides of (135) as I → ∞ we obtain:

Rt+1 =
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

)Ct+1

Ct

. (139)

Note that over time the growth rate of aggregate consumption converges to 1. In

particular for high enough t the approximation Ct+1

Ct
≈ 1 holds. Consequently, we

can write the following expression for mean generational gross interest rates for high

enough t:

Rt+1 ≈
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) . (140)

If we assume that the discount factors follow a beta distribution, then for high enough

t we can write the annualized gross interest rate as:

R
1
25
t+1 ≈

(
γt + δt

β̄(1 + γt)

) 1
25

. (141)

Finally, a further useful approximation can be made. For high enough δt or γt it holds

that 1+γt
γt+δt

≈ γt
γt+δt

. Given this, and using equation (129) we can write the annualized
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gross interest rate as:

R
1
25
t+1 ≈

(
1

Et(β)

) 1
25

. (142)

Extended model In the extended model, the mean discount factor influences the

interest rate. Recall that

Rt+1 =
c̃it+1/c̃

i
t

βi

gNtg
1

1−ν

Dt

ω + (1− ω)πt

=

(
κ̃I
t+1(β

i)/∆(I)

κ̃I
t (β

i)/∆(I)

)
c̃t+1

c̃t

βi

gNtg
1

1−ν

Dt

ω + (1− ω)πt

(143)

where κ̃I
t (β

i) ≡ c̃it/c̃t. Note also that using equations (104), (109) and (110) we can

write:

c̃it
c̃t

=

βi

1−α−βi(ω+(1−ω)πss)
Ñ i

t∑I
j=1

βj

1−α−βj(ω+(1−ω)πss)
Ñ j

t

, (144)

where, as before, Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t . Finally, this equation can in turn be

written as:

κ̃I
t (β

i)

∆(I)
=

βi

1−α−βi(ω+(1−ω)πss)

ν̃It (β
i)

∆(I)∑I
j=1

βj

1−α−βj(ω+(1−ω)πss)
ν̃I
t (β

j)
. (145)

Taking the limit of both sides of the above as I → ∞ we obtain the following expres-

sion:

f̃ct(β) =

β
1−α−β(ω+(1−ω)πss)

f̃t(β)

Ef̃t
( β
1−α−β(ω+(1−ω)πss)

)
, (146)

where f̃t and f̃ct are the continuous probability density function corresponding to the

discrete mass functions ν̃I
t and κ̃I

t . Note also that using the corresponding relationship

between f̃t+1(β) and f̃t(β) that is derived in exactly the same fashion as in equation

(127) we can write the following expression:

f̃ct+1(β)

f̃ct(β)
= β

Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) (147)

Taking the limit of both sides of (143) as I → ∞ and substituting the expression

92



from equation (147) we obtain:

Rt+1 =
Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) gNtg
1

1−ν

Dt

(ω + (1− ω)πt)

c̃t+1

c̃t
(148)

Note that over time the growth rate of aggregate consumption converges to 1. In

particular for high enough t the approximation c̃t+1

c̃t
≈ 1 holds. Consequently, we

can write the following expression for mean generational gross interest rates for high

enough t:

Rt+1 =
Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) gNtg
1

1−ν

Dt

(ω + (1− ω)πt)
. (149)

If we assume that the discount factors in the adjusted population follow a beta distri-

bution (that is, if we assume that f̃t is the PDF of the scaled-beta distribution with

shape parameters γt and δt) then for high enough t we can write the gross interest

rate as:

Rt+1 ≈

 γt + δt
β̄(1 + γt)

gNtg
1

1−ν

Dt

(ω + (1− ω)πt)

 . (150)

A further useful approximation of the above can be made under some additional

assumptions. The mean of beta is given by:

Ef,t(β) =
β̄γt

γt + δt

(1− δt)ω + (δt + γt)
(
πt

1+γt
γt+δt

− πss

)
(1− ω)

(1− δt)ω + (δt + γt−1)
(
πt

1+γt−1

γt−1+δt
− πss

)
(1− ω)

≈ β̄γt
γt + δt

, (151)

where the final relationship holds exactly if ω = 1 or approximately if either πt ≈ πss

or if δt or γt are large enough. Furthermore, since 1+γt
γt+δt

≈ γt
γt+δt

for high enough δt or

γt, we can approximate the gross interest rate as:

Rt+1 ≈
gNtg

1
1−ν

Dt

Ef,t(β)(ω + (1− ω)πt)
. (152)
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G Mutation

Our baseline model showed how natural selection favored more patient dynasties and

drove the observed fall in the interest rate. For simplicity, we abstracted from an

important part of the evolutionary process – mutation. In biology, a mutation is “an

alteration in the genetic material of a cell of a living organism that is more or less

permanent and that can be transmitted to the cell’s (...) descendants” (Griffiths,

2020). In our model setting, such ‘mutation’ is a reduced form way to consider the

implications of imperfect transmission of preferences in general. Mutation is one of

the fundamental forces of evolution since it helps contribute to the variability of traits

within populations. As mutations occur, the process of natural selection determines

which of these will thrive and which will die out by selecting the most advantageous

mutations for the given environment. In this section we introduce mutation into

our model and examine the role it has on the process of natural selection and the

economy. Specifically, we allow for the possibility that a proportion of some dynasty

exogenously, unexpectedly and permanently experiences a mutation in its discount

factor from one period to the next.

We find that some forms of mutation can have dramatic effects whilst others are

minor and short-lasting. Furthermore, the effect and impact of a mutation is highly

dependent on its type and on its environment, in terms of the contemporaneous

composition of agents. Finally we show that mutations to particularly high levels of

patience can give rise to long periods of stability, where mutants can dominate the

population for many thousands of years. In such a case, the economy can look to

have reached a ‘steady-state’ only for the longer-run evolutionary process to emerge

once more.

Our experiment can also be interpreted without reference to genetics. Mutations

can be thought of as changes in the discount factor brought about by parental or

peer influence through education or parental investment (i.e., different forms of imi-

tation and socialization). They could also be interpreted as immigration, invasion or

colonization, where a small number of outsiders arrive with different discount factors

that differ from those of the existing population.46 Thus, whilst primarily motivated

46In this case, the comparison is not exact, as migration would additionally increase the size
of the population while in our mutations the population remains fixed. Since only a very small
number of agents are assumed to mutate, the results are quantitatively and qualitatively almost
indistinguishable from a migration story.
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by genetic mutation, this section can also be interpreted as examining the effects of

a new variant of dynasty no-matter its source.

Setup Wemodel a mutation as an unanticipated shock to an agent’s discount factor.

Instead of attempting to match the rate at which mutations occur in nature (some-

thing which would be difficult to calibrate) we instead consider the consequences of

different types of one-off mutations. We assume mutations occur at only one point in

time. Each mutation counterfactual involves an unexpected but permanent change in

discount factor for 1% of agents belonging to the dynasty with that period’s median

discount factor. These mutants then form a new dynasty, retaining their net capital

per capita from the previous period.47 These types of mutations can be divided into

two categories based on the impact they have on an agent’s ‘fitness’ or reproductive

success: deleterious and advantageous mutations.

Deleterious mutations First, agents from the median dynasty can mutate to lower

levels of patience. In the biological literature these types of mutations are known as

‘deleterious’ since the mutants have lower fitness than before: agents mutating to a

lower level of patience will have fewer children over their lifetime than agents from

that same dynasty who did not mutate. The aggregate effects of these deleterious

mutations are short-lived and quantitatively small. Figure 19 reports the effect on

population, inequality and interest rates of three separate mutations of the 2025

median dynasty to three different levels of lower patience. It also shows the proportion

of mutants in the population after the shock. Notice that the mutations – even that

to the lowest patience – have very small effects on population, interest rates and

inequality. Furthermore, selective pressure works against the low-patience mutants.

Agents with lower patience will choose to have fewer children and their share will

quickly diminish in the population: the lower the mutant’s discount factor, the faster

they will disappear.

47For tractability, we allow mutations only on our grid of discount factors. Thus, after mutation
there will be two dynasties with the same discount factor, but potentially different capital stocks.
The assumption that mutants take their capital with them is quantitatively unimportant – we could
otherwise assume that mutated agents are ‘shunned’ by their dynasties and start life with no capital
or that mutants are favoured children gifted with above average capital stocks. In both extremes
the quantitative results are almost indistinguishable as agents quickly adjust their capital holdings
according to their time preference.
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Figure 19: Deleterious mutations in 2025
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Note: Figures report the simulation output with an unexpected mutation in the year 2025
(dashed line). Each line is a different mutation counterfactual. A mutation causes 1% of
the dynasty with the median level (β = 0.213) of patience in 2025 to wake up in 2025 with
the level of patience β̌ denoted in the Figure legend.

Advantageous mutations Second, agents from the 2025 median dynasty can mu-

tate to higher levels of patience. These mutations are knows as ‘advantageous’ in the

biological literature as they increase the fitness of the dynasty: agents mutating to

this higher level of patience will have more children over their lifetime than agents

from the same dynasty who remain un-mutated. Advantageous mutations can have

large and very long-lasting effects. Figure 20 shows the effects on population, interest

rates and inequality of a mutation to successively higher discount factors as well as

the share of mutants in the population. Notice that a mutation to the highest level
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of patience pushes the economy forward in the evolutionary process by thousands

of years. Since at the time of the mutation, so few agents are of the most patient

type, a 1% mutation of the median dynasty to the highest-patience dynasty is an

enormous shock. The economy is suddenly inhabited by a relatively large proportion

of the agents of the most patient type. These agents quickly amass all the capital

in the economy and begin to have large numbers of children which thereafter domi-

nate the population. This process would have happened without the mutation, but

it would have lasted thousands of years more. With mutation the process lasts less

than a thousand years. Thus we shift from today’s economy to one in which the

most patient agents dominate. Population and interest rates approach the long run

steady state. In response to this shock, wealth inequality (as measured by the Gini

coefficient) first spikes to levels of nearly 3.5 then falls to practically zero. This occurs

because the mutated agents very quickly start purchasing capital from all the agents

in the economy. This results in all existing agents getting into debt and substitut-

ing children for consumption. Since the remaining lower-patience dynasties (who are

now in debt) continue to make up a relatively large part of the population, wealth

inequality rises. After about 500 years however, all but the most patient dynasty

have been out-populated. Since by then there is only one type of dynasty, wealth

inequality falls to zero.

Mutations to levels of patience that are higher-than-median but not the highest,

give rise to some especially interesting dynamics. Agents mutated in this manner can

come to dominate the population for some time (see for example Figure 20), where

mutants with discount factor 0.355 practically dominate the population for a thousand

years or so before being overtaken by dynasties with higher betas still. The effects of

these types of mutations look initially like a shift to a new steady state where mutated

agents dominate the population forever and interest rates and Gini coefficients reflect

that mutant dynasty’s domination for many generations. However, since these are

not the most patient agents in the population, their domination is not permanent

and a transition eventually takes place to agents with even higher patience. In the

case of the outcomes this results in multiple oscillation with results first ‘converging’

to an intermediate steady-state-like phase and then only slowly shifting to the true

steady state where the most patient agent dominates.
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Figure 20: Advantageous mutations in 2025

2000 2500 3000 3500 4000
2

3

4

5

6

7

8

Year

i) Population

2000 2500 3000 3500 4000
0

1

2

3

4

Year

ii) Gini coefficient

2000 2500 3000 3500 40002%

4%

6%

8%

10%

Year

iii) Interest rates

2000 2500 3000 3500 40000%

20%

40%

60%

80%

100%

Year

iv. Mutant share

Baseline β̌ = 0.554 β̌ = 0.466 β̌ = 0.355 β̌ = 0.327
Note: Figures report the simulation output with an unexpected mutation in the year 2025
(dashed line). Each line is a different mutation counterfactual. A mutation causes 1% of
the dynasty with the median level (β = 0.213) of patience in 2025 to wake up in 2025 with
the level of patience β̌ denoted in the Figure legend.

Timing and environment The above discussion points to the importance of the

pre-existing environment when it comes to the impact of mutation. The exact same

mutation can have vastly different effects on outcomes depending on when it takes

place. What may be a highly advantageous mutation in an environment where the

median dynasty is especially impatient might not be nearly as advantageous, or might

even be deleterious, in an environment where the median dynasty is very patient. To

emphasize this point, Figure 21 shows the effects of the same mutation occurring in

one of three different years. In particular, we consider the same mutation of 1% of
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the dynasty with a discount factor of 0.212 (the 2025 median in the baseline) to a

discount factor of 0.327, but change the year in which it takes place to 1800, 2025

and 2200. If the mutation takes place in 1800 then mutants dominate the population

to a far larger extent and for a far longer period of time than if the mutation takes

place in 2025 or 2200. A mutation in 1800 also has a very sizeable economic impact

affecting population, inequality and interest rates for more than a thousand years.

The same mutation by 2200 however has almost no discernible effect. Thus whether

mutations are deleterious or advantageous is not predetermined but depends on the

structure of the rest of the population and hence on the environment at the time of

mutation.48

Implications for evolution One final point that emerges from this last exercise

is that mutation in the distant past can give rise to long periods of stability, where

evolution seems to stop only for it to seemingly start up once more many hundreds of

years later. For example, as Figure 21 Panel iv shows, the mutation in 1800 generates

a period where the population is almost entirely composed of one type of agent (the

mutant) between the years 2400 and 3600. This period of time is associated with

practically constant population and interest rates as well as zero inequality. Looking

at this sort of data might lead one to mistakenly infer that the economy is in a steady

state, and that the process of natural selection had concluded. The process however

is only paused. The mutation in 1800 results in the economy ‘leap-frogging’ the

evolutionary process and the selection process once more begins to apply to mutants

as the share of the more patient non-mutants comes to dominate thousands of years

after the initial mutation. Thus, over the course of human history, it may be quite

reasonable to expect very long periods of stability in terms of interest rates and

patience, only to be followed by a ‘gradual then sudden’ change. All one needs for

this to happen is a mutation to a particularly advantageous discount factor in the

past. These mutants then dominate the economy for long enough periods to give rise

to the illusion that evolution has halted.

48The only exception being a mutation to the very highest level of patience: this will always
(eventually) dominate the economy irrespective of the environment.

99



Figure 21: Same mutation, different periods
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Note: Figures report the simulation output with the same unexpected mutation in the year
1800, 2025 and 2200 respectively. Each line is the same mutation counterfactual that
takes place in different years. A mutation causes 1% of the dynasty with discount factor
of β = 0.213 to wake up in either 1800, 2025 or 2200 with the level of patience β̌ = 0.327.
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and fœnus as Metaphors for Interest Accruals,” Journal of the Economic and Social

History of the Orient, 2000, 43 (2), 132–61.
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